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Abstract: The simple roots problem is a natural question related to the structure of the
error locator polynomial, which is one of the key objects in the decoding algorithms for
Alternant codes. Finding the roots of this polynomial enables the error positions and
thus the decoding solution for this family of codes. Hence, we propose here to study the
structure of the error locator polynomial, denoted σ(x). We prove that when the degree
of σ(x) is sub-linear in the length of the code, the probability that all the coefficients of
σ(x) are different from zero is extremely high.
Key words: The simple roots problem, Goppa codes, McEliece scheme.

1 Introduction

Finding a practical solution for quantum resistant cryptography became an urgent issue, due to two
major facts: firstly the existence of a quantum polynomial time algorithm [Sho94] that breaks the
actual RSA and ECC solutions and secondly the improvements of classical algorithms against dis-
crete logarithm in small characteristic [BGJT14]. NIST’s 1 appeal for post-quantum cryptography
is one among many recent initiatives to find alternative solutions. In the cryptographic community,
quantum resistant schemes is probably one of the hottest topics these days and that is one of the
reasons many scientific projects and conferences started to integrate this field in their program.

Code-based cryptography is a promising solutions for post-quantum cryptography [BBD09].
It is also the oldest quantum resistant public key encryption schemes thanks to McEliece’s idea
[McE78] to use a family of error correcting codes that admits an efficient decoding algorithm. In
the original paper, McEliece proposed to use binary Goppa codes, which are still unbroken up to
nowadays. Other families of algebraic codes were proposed like Generalized Reed-Solomon (GRS)
code [Nie86], Reed-Muller (RM) codes [Sid94], algebraic geometry (AG) codes [JM96], Polar codes

1http://csrc.nist.gov/groups/ST/post-quantum-crypto/
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[SK14, HSEA14] etc. But they were successfully cryptanalyzed, mainly due to their algebraic
structure (GRS - [SS92], RM - [MS07], AG - [CMCP14], Polar - [BCD+16]). Another promising
family of codes is the QC-MDPC variant [MTSB13], mainly due to the “random”-like structure
of the codes. Nonetheless, this scheme is quite recent and needs a bit more of comprehension and
analysis, fact that is mentioned in [BDLO16] where the author’s exhibit the existence of weak keys.

The original McEliece scheme is one of the most studied variant. Despite their well known
structure there are no efficient key recovery or decoding attacks against binary irreducible Goppa
codes. A distinguisher exists in the case of high rate Goppa codes [FGO+13]. But despite of this
potential vulnerability there is no efficient algorithm for the moment exploiting the knowledge and
properties of this distinguisher. This family of codes was also the most cryptanalyzed scheme from
side-channel perspective. There are mainly two types of side-channel attacks classified by their
goal:

1. Recover the secret message [STM+08, AHPT11, MSSS11, Str11];

2. Recover the private key (fully or partially) [SSMS09, HMP10, Str10, Str13, PRD+15, PRD+16,
BCDR16].

In each paper, authors propose to counter the leak and thus step towards a secure imple-
mentation of the scheme. Countermeasures and secured implementations are also proposed in
[CHP12, DCCR13, BCS13]. In several articles the weakness comes from the error locator polyno-
mial which is mainly used by all the decoders for the Alternant codes. Hence understanding the
structure of this polynomial is a crucial step for securing the McEliece cryptosystem. Our goal here
is to study the error locator polynomial, from a practical point of view in timing attacks context
and from a theorical point of view as a mathematical problem.

Our contribution is to study the error locator polynomial. We analyze the probability that
the aforementioned polynomial is rather dense or sparse. We formally define the simple roots
problem that is the probability that a simple roots polynomial defined over an extension field of
F2 has all coefficients different from zero. This paper is a natural extension of the work done in
[DCCR13, Ric16] and hence our work completes this topic by answering the remaining questions
and proposing an asymptotic analysis of the results.

For that we give a simple formula for the first elementary symmetric function and compare the
case of dependent variables with the independent case. Moreover, we provide asymptotic analysis
for the usual cryptographic scenario, namely the Hamming weight of the error, is sub-linear in the
code length. We prove that when t = o(2m) with m → ∞, the probability that a simple roots
polynomial of degree t over F2m has only non zero coefficients equals 1 − ct/n + O(t2/n2), where
c is a constant that we compute. Even thought our results are really sharp in the sub-linear case
(t = o(2m)), they need improvement for the linear case.

Regardless of the impact of our results in cryptography, it represents in itself an application
in the field of discrete probability and enumerative combinatorics. On the other hand for the
asymptotic behavior we notice that other techniques inspired by the work of Flajolet et Sedgewick
in the field of asymptotic combinatorics [FS09] might be alternative solutions to the study of such
objects. It would also be interesting to see whether closed formulae exist for the distribution of the
rest of the coefficient, not only the roots sum.

Another remark is that our results might also be seen from a geometric point of view. Indeed,
each symmetric function that equals to zero can be seen as an hypersurface since it is the solution
to an algebraic equation in t unknowns over an extension field of F2. Thus it becomes a classical
geometry problem of estimating the number of points on a curve from which asymptotics might be
deduced. Nonetheless, estimating the number of points in the intersections of two surfaces seems
rather difficult to compute, for which our technique is able to give a solution to this question.
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2 Background

Since the background on coding theory is not really relevant for understanding the results and the
motivation in our work, we only give some details concerning the original McEliece scheme and
binary Goppa codes. Nevertheless we address interested readers in coding theory to [MS86].

2.1 Goppa codes

Definition 2.1 (Binary Goppa code). Let g(x) be a polynomial over F2m [x] with deg(g) = t and
L = {α1, α1, . . . , αn} be a subset of F2m s.t. g(αi) 6= 0.

We define the syndrome polynomial associated to any vector c ∈ Fn2 by Sc(x) =
n∑
i=1

ci
x⊕αi

.

Now given g(x),L and Sc(x) the binary Goppa code is defined as:

Γ(L, g) = {c ∈ Fn2 | Sc(x) ≡ 0 mod g(x)}.

Among the most important properties that a Goppa code satisfies we recall the followings.

Proposition 2.2 ([MS86]). A Goppa code Γ(L, g) is a linear code over F2. Its length is given by
n = |L|, its dimension is k ≥ n−mt, where t = deg(g) and its minimun distance d ≥ t+ 1.
The syndrome polynomial Sc(x) satisfies the following property:

Sc(x) = ω(x)
σ(x) mod g(x),

where σ(x) =
t∏
i=1

(x ⊕ ai) is called the error locator polynomial (ELP) and the elements ai ∈ L,

∀i ∈ {1, . . . , t}, are the error positions.

Alternant decoders For the (irreducible) binary Goppa codes, we can use (at least) three differ-
ent decoding algorithms, namely the extended Euclidean algorithm (EEA), the Berlekamp-Massey
algorithm and the Patterson algorithm. The Extended Euclidean Algorithm (EEA) can correct up
to t

2 errors. The error-correction capacity can be increased up to t errors for irreducible binary
Goppa codes by using the syndrome associated to g2 instead of g. Unfortunately, the corresponding
parity-check matrix has twice more rows. The Berlekamp-Massey algorithm (BMA) has to use g2,
similarly to the EEA, in order to decode up to t errors. The advantage of this algorithm is that it
is not vulnerable to several existing timing attacks and it allows a fast and constant-time compu-
tation [BCS13]. The Patterson algorithm offers another solution for the syndrome decoding. The
decryption described in [Pat75] permits to correct up to t errors by using the syndrome associated
to g (and not to g2). That leads to smaller keys to correct the same amount of errors than EEA
or BMA with g2.

2.2 The McEliece Cryptosystem

The McEliece public key encryption scheme [McE78] is composed of three algorithms: key genera-
tion (KeyGen), encryption (Encrypt) and decryption (Decrypt).

The first step is the key generation algorithm, see Figure 1. It takes as inputs the integers
n, k, t such that k < n and t < n, and outputs the public key/private key pair (pk, sk). In order to
encrypt a message m ∈ Fk2 one applies the Encrypt(m, pk) function, see Figure 2. The last step is
the decryption function, see Figure 3. It takes as input a ciphertext z and the private key sk, and
outputs the corresponding message m.
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1. Pick a generator matrix G of a [n, k]-binary Goppa code Γ(L, g) that can corrects up to t
errors.

2. Randomly pick a (k × k)-invertible matrix S and a (n× n)-permutation matrix P .

3. Compute Gpub
def
= SGP .

4. Return
pk = (Gpub, t) and sk = (S,G,P ).

Figure 1: The Key Generation function of the original McEliece scheme - KeyGen(n, k, t) = (pk, sk)

1. Generate a random error-vector e ∈ Fn2 of Hamming weight wt(e) ≤ t.
2. Return z = mGpub ⊕ e.

Figure 2: The Encryption function of the original McEliece scheme - Encrypt(m, pk) = z

1. Compute a parity-check matrix H of Γ(L, g) thanks to G.

2. Compute z∗ = zP−1 and m∗ = Decode(z∗,H).

3. Return m∗S−1.

Figure 3: The Decryption function of the original McEliece scheme - Decrypt(z, sk) = m

Here Decode(., .) is an efficient decoding algorithm for Γ(L, g). Notice that multiplying the error
vector by a permutation does not change the weight of the vector. One can easily verify the
correctness of the scheme by checking

Decrypt(Encrypt(m, pk), sk) = m.

1. Compute the syndrome polynomial of z∗ using the parity-check matrix H.

2. Solve the so-called key-equation Sz∗(x) = ω(x)
σ(x) mod g(x) to find σ(x).

3. Find all roots of σ(x) by evaluating it over L.

4. Correct z∗ to the codeword z∗ + eP−1.

5. Return m∗ = mS.

Figure 4: The Decode function in the McEliece decryption - Decode(z∗,H) = m∗

By looking inside the Decode(., .) function, described in Figure 4, we can easily notice that the
evaluation of the error locator polynomial (step 3) is not depending on the decoder chosen to solve
the key-equation (step 2, see Alternant decoders in Subsection 2.1). That is why we analyze the
structure of the error locator polynomial and how it can influence the evualation of this polynomial.
We call that the simple roots problem because by definition the error locator polynomial has only
simple roots over L ⊆ F2m .

3 The simple roots problem

3.1 Preliminaries

Definition 3.1. Let t and m be two strictly positive integers and n
def
= 2m. Let At

def
= {(α1, . . . , αt) ∈

(F2m)t : 1 ≤ i < j ≤ t, αi 6= αj} be the set of t-tuples with pairwise distinct elements.
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• Let (a1, . . . , at) be a random uniform variable defined over At with

prob((a1, . . . , at) = (α1, . . . , αt)) = 1/ |At| ,

where |At| = n(n−1) . . . (n− t+1) is known as the number of “arrangements” or the number
of injections from {1, 2, . . . , t} to {1, 2, . . . , n}.

• We define the random variables Sk,t over F2m such that

Sk,t
def
=


1 , k = 0∑

1≤j1<j2<···<jk≤t
aj1 . . . ajk , 1 ≤ k ≤ t

0 , k > t

The Sk,t are the so-called elementary symmetric functions.

• We define the simple roots polynomial as

σ(x)
def
=

t∏
i=1

(x⊕ ai)
def
=
∞∑
i=0

Si,tx
t−i.

Definition 3.2 (The simple roots problem). Let m and t be two integers and σ(x) be a simple
roots polynomial with coefficient Sk,t as defined in Definition 3.1.

The simple roots problem is then defined as the probability that all the coefficients of σ(x)
are different from zero, namely:

SRP(F2,m, t)
def
= prob(∀ 1 ≤ k ≤ t, Sk,t 6= 0).

Remark 3.3. This model is known in the literature as a urn process without replacement. Indeed
we remark that sampling a random uniform variable (a1, . . . , at) from the set At is equivalent to

sampling t random dependent uniform variables from F2m . For example S1,t
def
= a1 + . . . at is the

sum of t dependent uniform random variables over F2m.
When we consider independent random uniform variables over (F2m)t we will use the usual notation,
namely (u1, . . . , ut) where

∀(α1, . . . , αt) ∈ (F2m)t, prob((u1, . . . , ut) = (α1, . . . , αt)) = 1/nt.

Furthermore we recall some known properties from the urn process models. The next proposi-
tion is a direct consequence of [Ric16, Theorem 8.2].

Proposition 3.4. Let (a1, . . . , at) be a random uniform variable defined over At and (α1, . . . , αt) ∈
At. Then we have that (a1, . . . , at) is exchangeable:

∀π ∈ St , prob((a1, . . . , at) = (α1, . . . , αt)) = prob((aπ(1), . . . , aπ(t)) = (α1, . . . , αt)).

Furthermore we deduce Corollary 3.5 and a more general case in Corollary 3.6.

Corollary 3.5. Let (a1, . . . , at) be a random uniform variable defined over At and α ∈ F2m . Then
we have that

∀1 ≤ k ≤ t , prob(ak = α) = prob(a1 = α) = 1/n,

which is exactly the probability prob(uk = α). So the probability of extracting α at the kth position
is given regardless of the independence condition.

Corollary 3.6. Let (a1, . . . , at) be a random uniform variable defined over At and X be a random

variable defined over F2m as a function X
def
= f(a1, . . . , at) that is symmetric in all the variables,

more exactly X satisfies the condition: for any π ∈ St, f(a1, . . . , at) = f(aπ(1) . . . , aπ(t)).
Then we have that

∀1 ≤ i < j ≤ t , prob(ai = X) = prob(aj = X).
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3.2 General properties

From this subsection we consider that m ≥ 2 and t ≥ 3. In the Appendix (Remark 5) we give the
results in the case of 1 ≤ t ≤ 3. Many properties that we give here can be found in [Ric16].

Notation 3.7. We denote by A∗t
def
= At ∩ (F∗2m)t the set of t-tuples with pairwise distinct elements

that are different from zero and for any 1 ≤ k ≤ t denote by S∗k,t the restriction of Sk,t to A∗t .
Let t1 and t2 denote two strictly positive integers. Then for any k and i such that 1 ≤ k ≤ t1

and 1 ≤ i ≤ t2 we denote

probk,t1
def
= prob(Sk,t1 = 0)

prob∗k,t1
def
= prob(S∗k,t1 = 0)

E i,t2k,t1

def
= prob(Sk,t1 = 0 , Si,t2 = 0)

E i,t2k,t1

def
= prob(Sk,t1 = 0 , Si,t2 6= 0).

In the next paragraph we recall the recurrence relation between the symmetric functions and
give the first properties related to probt,t and Ek,tt,t .

Properties 3.8 ([Ric16, Property 8.5]). Let (a1, . . . , at) be a random uniform variable defined over
At and for 1 ≤ k ≤ t , Sk,t be the elementary symmetric functions. Then we have that

∀1 ≤ k ≤ t Sk,t = Sk,t−1 + atSk−1,t−1.

Using basic probability identities we deduce from 3.8 the following relations.

Corollary 3.9. Let (a1, . . . , at) be a random uniform variable defined over At and for 1 ≤ k ≤
t , Sk,t be the elementary symmetric functions. Then we have that

1. Sk,t = 0 ⇔ Sk,t−1 = atSk−1,t−1.

2. probt,t = t
n and prob∗t,t = 0.

3. ∀ 1 ≤ k ≤ t− 1, Ek,tt,t = prob∗k,t−1 × t
n and E t−1,tt,t = 0.

4. ∀ 2 ≤ k ≤ t− 1, Ek−1,t−1k,t = probk,t−1probk−1,t−1 and E0,t−11,t = 0.

The first identities in Corollary 3.9 are also given in [Ric16, Property 8.3] and [Ric16, Lemma
8.1]. The next result is a generalization of [Ric16, Lemma 8.2].

Lemma 3.10. Let (a1, . . . , at) be a random uniform variable defined over At and X be a random

variable defined over F2m as X
def
= f(a1, . . . , at−1), such that for any π ∈ St, f(a1, . . . , at−1) =

f(aπ(1) . . . , aπ(t−1)). Then we have

prob(at = X) =
1

n− t+ 1
×
(

1− (t− 1)× prob(at−1 = X)

)
.

Proof. Let us begin by splitting the probability into two different probabilities.
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prob(at = X) = prob(at = X , ∃i ∈ {1, . . . , t− 1}; ai = X)︸ ︷︷ ︸
=0

+ prob(at = X , ∀ i ∈ {1, . . . , t− 1}, ai 6= X)

⇒ prob(at = X) = prob(at = X , ∀i ∈ {1, . . . , t− 1}, ai 6= X)

=
∑

(α1,...,αt)∈At

prob(at = αt , X = αt, at−1 = αt−1, . . . , a1 = α1)

=
∑

(α1,...,αt)∈At

prob(at = αt | X = αt, at−1 = αt−1, . . . , a1 = α1)

× prob(X = αt, at−1 = αt−1, . . . , a1 = α1)

=
1

n− t+ 1
×

∑
(α1,...,αt)∈At

prob(X = αt, at−1 = αt−1, . . . , a1 = α1)

=
1

n− t+ 1
× prob( ∀i ∈ {1, . . . , t− 1}, ai 6= X)

=
1

n− t+ 1
× (1− prob( ∃i ∈ {1, . . . , t− 1}; ai = X))

Using the definition of the random variables ai, we get that prob(ai = X, aj = X) = 0 for any
pair of integers (i, j) such that 1 ≤ i < j ≤ t− 1. Thus the probability

prob( ∃i ∈ {1, . . . , t− 1}; ai = X) =
t−1∑
i=1

prob(ai = X).

Since the random variable X
def
= f(a1, . . . , at−1) satisfies the conditions in Corollary 3.6 we

obtain the wanted result.

3.3 The distribution of the first symmetric function

This subject was already studied in [Ric16] where a closed formula was given for prob1,t (see [Ric16,
Proposition 8.2]). However this formula is really difficult to analyze from a asymptotic point of
view. It is also hard to visualize the difference between the odd and even cases for t, for which we
give here an elegant one, that can easily be analyzed.

Proposition 3.11. Let (a1, . . . , at) be a random uniform variable defined over At. Then

For even t

prob1,t =
1

n
+ (−1)t/2

(
1− 1

n

) (n/2
t/2

)(
n
t

) .
For odd t

prob1,t =
1

n
.

Proof. Using Proposition 3.4 and Lemma 3.10 applied to at and S1,t−1 we deduce the following
equation

prob1,t =
1

n− t+ 1
− t− 1

n− t+ 1
× prob1,t−2 , with prob1,1 =

1

n
and prob1,2 = 0. (1)
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The solution to Equation (1) is

prob1,t =


1
n for t odd,

−2Γ(32 −
n
2 )Γ( t2 + 1

2)

n
√
πΓ( t−n2 + 1

2)
+ 1

n for t even.

For odd t, we just have to check that 1
n −

1
n−t+1 + t−1

n−t+1 ×
1
n = 0 in order to obtain the result

in this case.
For even t, we begin by transforming the relation for prob1,t using the following identity for the

Gamma function

Γ(1− n− 1

2
)Γ(

n− 1

2
) = π/sin(

π

2
(n− 1)).

Since in our case n = 2m we have that n − 1 = −1 mod 4 for any m ≥ 2 and thus obtain
Γ(1− n−1

2 )Γ(n−12 ) = −π.
We use the same technique for the second function and thus obtain Γ(1 − n−t+1

2 )Γ(n−t+1
2 ) =

π

(−1)t/2
. Hence, using the definition for the Gamma function, the probability when t is even becomes

prob1,t =
1

n
+

2(−1)t/2√
πn

Γ( t+1
2 )Γ(n−t+1

2 )

Γ(n−12 )

=
1

n
+ (−1)t/2

n− 1

n

(n/2
t/2

)(
n
t

) .
The last step is to verify that the result verifies the Equation (1), that can be easily computed

by injecting the formula for prob1,t−2 in (1).

In the next paragraph we generalize our result to any value α ∈ F2m . We obtain the same
probability when t is odd and a slightly different formula for even t.

Proposition 3.12. Let (a1, . . . , at) be a random uniform variable defined over At. Then for any
α ∈ F∗2m we have

For even t

prob(S1,t = α) =
1

n
+ (−1)t/2+1 1

n

(n/2
t/2

)(
n
t

) .
For odd t

prob(S1,t = α) =
1

n
.

Proof. Using the same technique as in Proposition 3.11, we obtain the following recurrence relation

prob(S1,t = α) =
1

n− t+ 1
− t− 1

n− t+ 1
× prob(S1,t−2 = α).

As for the first terms of the recurrence, we have prob(S1,1 = α) = prob(a1 = α) = 1/n and for
the second one, we can use Lemma 3.10 and obtain:

prob(S1,2 = α) = prob(a1 + a2 = α)

= prob(a2 = a1 + α)

3.10
=

1

n− 1
(1− prob(a1 = a1 + α))

=
1

n− 1
.
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The solution to this equation is quite similar to the first case

prob1,t =


1
n for t odd,

−Γ(12 −
n
2 )Γ( t2 + 1

2)

n
√
πΓ( t−n2 + 1

2)
+ 1

n for t even.

Using the same technique we obtain the wanted result.

Remark 3.13. Let (u1, . . . , ut) be a sequence of independent random variables, each one uniformly
distributed on F2m . Then we have:

∀α ∈ F2m , prob

(
t∑
i=1

ui = α

)
= 1/n.

But from Proposition 3.12 and 3.11, we get that:

∀α ∈ F2m , lim
n→∞

∣∣∣∣prob
(

t∑
i=1

ai = α

)
− prob

(
t∑
i=1

ui = α

)∣∣∣∣ = 0.

This result represents a natural consequence of the fact that when the size of the samples goes to
infinity the urn process without replacement becomes a urn process with replacement. This is also
analogue to the convergence of the Hypergeometric distribution to the binomial distribution.

Details on the asymptotic expansion of prob1,t in function of t when n goes to infinity are given
in Section 4.

3.4 Bounds on the rest of the coefficients

In order to achieve our goal, we need to prove two important lemmas. The first one, Lemma 3.14,
is a slightly better result than [Ric16, Lemma 8.3].

Lemma 3.14. For any 2 ≤ k ≤ t− 1, we have

Ek−1,tk,t ≤ 2(k − 1)

(n− t+ 1)(n− t+ k)
.

We prove this lemma in Appendix 5.

Proposition 3.15 ([Ric16, Proposition 8.3]). Let (a1, . . . , at) be F2m-valued random exchangeable
variables. Then for any 2 ≤ k ≤ t− 1, we have:∣∣∣∣probk,t − 1

n− t+ 1

∣∣∣∣ ≤ 2t

(n− t+ 1)2
.

In order to complete the results, one last result is needed, namely the probability that two
coefficients Si,t and Sk,t equal to zero at the same time. This result was not obtained in [Ric16]
and numerical simulations showed that this quantity was negligible compared to probk,t. So here
we give an upper bound for the wanted probabilities and thus complete the proofs.

Lemma 3.16. For any 1 ≤ i < k ≤ t− 1 s.t. k > i+ 1, we have:

E i,tk,t ≤
4

(n− t+ 1)2
+

8t

(n− t+ 1)3
+

8t2

(n− t+ 1)4
.
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Proof.

E i,tk,t = prob(Sk,t = 0 , Si,t = 0 , Sk−1,t−1 = 0 , Si−1,t−1 = 0) (2)

+ prob(Sk,t = 0 , Si,t = 0 , Sk−1,t−1 = 0 , Si−1,t−1 6= 0) (3)

+ prob(Sk,t = 0 , Si,t = 0 , Sk−1,t−1 6= 0 , Si−1,t−1 = 0) (4)

+ prob(Sk,t = 0 , Si,t = 0 , Sk−1,t−1 6= 0 , Si−1,t−1 6= 0) (5)

We remark that the sum of Probability (2) and Probability (3) is upper bounded by Ek−1,t−1k,t .

Moreover the third probability, namely (4), can be upper bounded by E i−1,t−1i,t . So we obtain that:

E i,tk,t ≤ prob(Sk,t = 0 , Si,t = 0 | Sk−1,t−1 6= 0 , Si−1,t−1 6= 0)

+ Ek−1,t−1k,t + E i−1,t−1i,t

Using the relation between the coefficients from Corollary 3.9, we obtain that prob(Sk,t = 0 , Si,t =
0 | Sk−1,t−1 6= 0 , Si−1,t−1 6= 0) = prob(at = St−1i /Si−1,t−1 = Sk,t−1/Sk−1,t−1), which can also be
bounded by

1/(n− t+ 1)prob(Si,t−1/Si−1,t−1 = Sk,t−1/Sk−1,t−1). (6)

If we develop the relation Si,t−1/Si−1,t−1 = Sk,t−1/Sk−1,t−1, we have as before an equation of degree
two in at−1, from which we deduce that Probability (6) can be upper bounded by 1/(n− t+ 1)×
2/(n− t+ 1). Furthermore we use the result from Corollary 3.9, more exactly Ek−1,t−1k,t = probk,t−1×
probk−1,t−1, and the upper bound for probk,t from Proposition 3.15 to finally obtain

E i,tk,t ≤ 2

(
1

n− t+ 1
+

2t

(n− t+ 1)2

)2

+
2

(n− t+ 1)2
.

In Figure 5 we recall all the results we have obtained for the probabilities involved in the study
of the simple roots problem.

From those results, we extract upper and lower bounds for the simple roots problem (SRP) for
a polynomial of degree t over F2m , problem denoted SRP (F2,m, t) in this paper.

3.5 The simple roots problem

Theorem 3.17. Let (a1, . . . , at) be a random uniform variable defined over At and

• lb = 1−
(
t
n + t−2

n−t+1 + 2t(t−2)
(n−t+1)2

+ prob1,t

)
,

• ub = lb + t−2
(n−t+1)2

(
4 + 7(t− 1) + 8t(t−1)

n−t+1 + 8t2(t−1)
(n−t+1)2

)
,

where

prob1,t = 1
n +

 (−1)t/2
(
1− 1

n

) (n/2t/2

)(
n
t

) for t ≡ 0 (mod 2),

0 for t ≡ 1 (mod 2).

Then we have
lb ≤ SRP(F2,m, t) ≤ min (ub, 1− t/n).
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Probability Formula Reference

1

n
+ (−1)t/2

n− 1

n

(n/2
t/2

)(
n
t

) (for even t)

prob1,t Proposition 3.11
1

n
(for odd t)

≥ 1

n− t+ 1
− 2t

(n− t+ 1)2

probk,t Corollary 3.15

≤ 1

n− t+ 1
+

2t

(n− t+ 1)2

probt,t
t
n Proposition 3.9

Ei,t
k,t ≤ 4

(n−t+1)2
+ 8t

(n−t+1)3
+ 8t2

(n−t+1)4
Lemma 3.16

Ek−1,t
k,t ≤ 2(k−1)

(n−t+1)2
Lemma 3.14

Figure 5: Bounds on probabilities

Proof. For the lower bound, we have:

SRP(F2,m, t) = 1− prob (∃i ∈ {1, . . . , n}; Si,t = 0)

def
= 1−

t∑
i=1

probi,t

≥ 1−
(
t

n
+

t− 2

n− t+ 1
+

2t (t− 2)

(n− t+ 1)2
+ prob1,t

)
.

For the upper bound, we haveSRP(F2,m, t) ≤ min
1≤i≤t

(prob(Si,t 6= 0)) = 1− t/n. Nonetheless, we

prefer to compute a finer approximation. Therefore we use the Bonferroni inequality

prob (∃i ∈ {1, . . . , n}; Si,t = 0) ≥
t∑
i=1

probi,t −
∑

1≤j<k≤t
Ek,tj,t

and obtain

SRP(F2,m, t) = 1− prob (∃i ∈ {1, . . . , n}; Si,t = 0)

≤ 1−
t∑
i=1

prob (Si,t = 0) +
∑

1≤j<k≤t
Ek,tj,t

≤ lb +
4t(t− 2)

(n− t+ 1)2
+

(t− 1)(t− 2)

(n− t+ 1)2

+
(t− 2)(t− 1)

2

(
4

(n− t+ 1)2
+

8t

(n− t+ 1)3
+

8t2

(n− t+ 1)4

)
.
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4 Asymptotic behavior and numerical values

4.1 Discussion on the upper bound

Since 1 − t/n is an absolute upper bound to the simple roots problem we analyze the regime on
t for which ub is better that 1 − t/n. To do so, we simplify a bit the inequalities, and by that we
mean that we loose the constant factors in the expressions. For example we consider the fraction
t2/(n− t)2 instead of t(t− 2)/(n− t+ 1)2. Hence, we have to analyze the regime of values for t for
which

1− t

n
− t

n− t
+

(
t

n− t

)2
[

5 + 4
t

n− t
+ 4

(
t

n− t

)2
]
≤ 1− t

n
. (7)

Proposition 4.1. Let n be an integer that goes to infinity. Then for t > 0.14n, we have ub ≥
1− t/n.

Proof. Computing the difference between ub and 1 − t/n implies from Equation (7) solving the
following equation in x ∈ (0, 1)

4x4 + 4x3 + 5x2 − x = 0, (8)

where x = (n/t − 1)−1. So solving Equation(8) gives the range of values for t in function of n for
which ub becomes grater than 1− t/n, namely n > 6.8t, which implies the wanted result.

Figure 6 plots the evolution of the three bounds, namely the lower bound lb in blue, the upper
bound ub in red and 1 − t/n in green, when n = 2000 (Figure 6a) and n = 4000 (Figure 6b). If
we compute the value of t for which 1 − t/n becomes smaller than ub (intersection between red
and green curves), we obtain t = 280 for n = 2000 (Figure 6a), respectively t = 560 for n = 4000
(Figure 6b).

(a) n = 2000 (b) n = 4000

Figure 6: The lower bound in blue, the upper bound in red and 1− t/n in green

Proposition 4.1 states that for t ≥ 0.14n our approximation for ub becomes too large. The
main reason comes from the approximation that we make on prob (Sj,t = 0, Sk,t = 0) . Nonetheless,
in a sub-linear regime for t, the bounds become sharp enough, fact that we analyze in the next
subsection.

4.2 Asymptotic expansion

We begin here by the study of the probability prob1,t, since in this case we have a closed formula.
The next proposition gives the asymptotic equivalence for prob1,t when t is sub-linear in n as well
as linear.

Proposition 4.2. Let h(·) denote the binary entropy function. Then for even t we have
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prob1,t =
1

n
+



O

(
1

nt/2

)
for t = O(1),

O

(
1

(e
√
n)
√
n

)
for t = O(

√
n),

O

(
1

2h(c)n/2

)
for t = cn, with c a constant.

Proof. Use the Stirling formula for factorials to deduce for t = cp with c constant(
n

t

)
= 2h(c)n

√
1

2πc(1− c)n

(
1− 1

12n

(
1

c
+

1

1− c
− 1

)
+O

(
1

n2

))
.

Since t/2 = cn/2 use the same approximation and deduce the wanted result for t = cn.
For the other cases we have

(
n
t

)
=


nt

t!

(
1 +O( 1

n)
)

if t = O(1),

nt

t!
e−c

(
1 +O( 1√

n
)
)

if t2

2n = c+O( 1√
n

).

Use the later approximations to obtain the results.

Next we analyze the difference between the ub and lb when t is sub-linear in n.

Proposition 4.3. Let t = o(n) when n→∞. Then we have

lb = 1−



2c−1
n +O

(
1

n2

)
for t = c, with c a constant,

2√
n
− 2

n +O

(
1

n3/2

)
for t =

√
n,

2
√

logn
n + 1

n − 3 logn
n +O

(
log n

n

3/2
)

for t =
√
n log n.

Then ub− lb is given by:

ub− lb =



3(c−1)2
n2 +O

(
1

n3

)
for t = c, with c a constant,

3
n + 4

n3/2 +O

(
1

n2

)
for t =

√
n,

3 logn
n +O

(
log n

n

3/2
)

for t =
√
n log n.

Proof. Develop the series for the formulae of ub and lb and obtain the wanted results.

Proposition 4.3 states that for a sub-linear t in n, the upper and the lower bound converge to
the same limit, fact that we illustrate through the following figures. In Figure 7a we plot the lower
bound in blue, the upper bound in red and 1 − t/n in green for n = t2. In Figure 7b we plot the
same functions but when n = t3. We notice that when t = n1/3 the difference between ub and lb
converges much faster to zero than for t = n1/2.
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(a) n = t2 (b) n = t3

Figure 7: The lower bound in blue, the upper bound in red and 1− t/n in green

4.3 Numerical values

Numerical simulations were conducted using the Monte Carlo method for estimating several quan-
tities. We executed our simulations in PariGP, a free software mainly known for its library in
number theory and finite fields. In practice we tested several range of values for n and t but we
recall here only the most relevant for the McEliece scheme. Hence, in Figure 8 we choose to fix
n = 1024 and consider 3 ≤ t ≤ 200. Our algorithm chooses t different elements in F210 and com-
putes the polynomial σ(x). We repeat this procedure 3· 106 times and compute the mean number
of polynomials σ(x) with non zero coefficients. Finally we plot in black the experimental result as
well as the lb in blue, the ub in red and 1 − t/n in green. The figure 8 is a fine illustration of the
theoretic results obtained in the later section.

Figure 8: The experimental results in black, the lower bound in blue, the upper bound in red and
1− t/n in green for n = 1024 and 3 ≤ t ≤ 200.

5 Conclusion

In this paper we study the simple roots problem, that is a probability problem related to the error
locator polynomial. Our results prove that when the degree of the error locator polynomial (σ(x)) is
sub-linear in the length of the code, we have a sharp asymptotic approximation for the probability
that all the coefficients of σ(x) are different from zero. A direct application of our results is a natural
countermeasure against timing attacks on the decoding algorithm in the McEliece cryptosystem
using any family of codes belonging to the Alternant codes.

We also give an elegant closed formula for the first coefficient of σ(x), more exactly for the sum
of σ’s roots, which represents a nice combinatorial result. We point out that for a linear regime
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in the code length of the deg(σ), the results here are no longer sharp enough and other techniques
have to be considered.
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quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic.
In Advances in Cryptology - EUROCRYPT 2014, volume 8441 of Lecture Notes in
Comput. Sci., pages 1–16, Copenhagen, Denmark, May 2014. Springer.

[Che82] Chin-Long Chen. Formulas for the solutions of quadratic equations over
GF (2m)(corresp.). IEEE Transactions on Information Theory, 28(5):792–794, Septem-
ber 1982.

[CHP12] Pierre-Louis Cayrel, Gerhard Hoffmann, and Eduardo Persichetti. Efficient implemen-
tation of a CCA2-secure variant of McEliece using generalized Srivastava codes. In
Public-Key Cryptography - PKC 2012, volume 7293 of Lecture Notes in Comput. Sci.,
pages 138–155. Springer, 2012.

[CMCP14] Alain Couvreur, Irene Márquez-Corbella, and Ruud Pellikaan. A polynomial time
attack against algebraic geometry code based public key cryptosystems. In Proc. IEEE
Int. Symposium Inf. Theory - ISIT 2014, pages 1446–1450, June 2014.

[DCCR13] Vlad Dragoi, Pierre-Louis Cayrel, Brice Colombier, and Tania Richmond. Polynomial
structures in code-based cryptography. In Progress in Cryptology - INDOCRYPT 2013
- 14th International Conference on Cryptology in India, Mumbai, India, December 7-10,
2013. Proceedings, pages 286–296, 2013.



Dominic Bucerzan and Vlad Dragoi and Tania Richmond

[FGO+13] Jean-Charles Faugère, Valérie Gauthier, Ayoub Otmani, Ludovic Perret, and Jean-
Pierre Tillich. A distinguisher for high rate McEliece cryptosystems. IEEE Trans.
Inform. Theory, 59(10):6830–6844, October 2013.

[FS09] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University
Press, Cambridge, 2009.

[HMP10] Stefan Heyse, Amir Moradi, and Christof Paar. Practical power analysis attacks on
software implementations of McEliece. In Nicolas Sendrier, editor, Post-Quantum Cryp-
tography 2010, volume 6061 of Lecture Notes in Comput. Sci., pages 108–125. Springer,
2010.

[HSEA14] R Hooshmand, M Koochak Shooshtari, T Eghlidos, and MR Aref. Reducing the key
length of McEliece cryptosystem using polar codes. In 2014 11th International ISC
Conference on Information Security and Cryptology (ISCISC), pages 104–108. IEEE,
2014.

[JM96] Heeralal Janwa and Oscar Moreno. McEliece public key cryptosystems using algebraic-
geometric codes. Des. Codes Cryptogr., 8(3):293–307, 1996.

[McE78] Robert J. McEliece. A Public-Key System Based on Algebraic Coding Theory, pages
114–116. Jet Propulsion Lab, 1978. DSN Progress Report 44.

[MS86] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting Codes.
North–Holland, Amsterdam, fifth edition, 1986.

[MS07] Lorenz Minder and Amin Shokrollahi. Cryptanalysis of the Sidelnikov cryptosystem.
In Advances in Cryptology - EUROCRYPT 2007, volume 4515 of Lecture Notes in
Comput. Sci., pages 347–360, Barcelona, Spain, 2007.

[MSSS11] H. Gregor Molter, Marc Stöttinger, Abdulhadi Shoufan, and Falko Strenzke. A simple
power analysis attack on a McEliece cryptoprocessor. Journal Cryptographic Engineer-
ing, 1(1):29–36, 2011.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto.
MDPC-McEliece: New McEliece variants from moderate density parity-check codes. In
Proc. IEEE Int. Symposium Inf. Theory - ISIT, pages 2069–2073, 2013.

[Nie86] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory, 15(2):159–166, 1986.

[Pat75] N. Patterson. The algebraic decoding of Goppa codes. IEEE Trans. Inform. Theory,
21(2):203–207, 1975.
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Appendix

A. The simple roots problem for 1 ≤ t ≤ 3

• for t = 1, we have P (x) = x− a1 and thus

SRP(F2,m, 1)
def
= prob(a1 6= 0) = 1− 1/n.

• for t = 2, we have P (x) = x2 − (a1 + a2)x+ a1a2 and thus

SRP(F2,m, 2)
def
= prob(a1a2 6= 0 , a1 + a2 6= 0).

Since a1 + a2 is different from zero for any values of the tuple (a1, a2), we have that

SRP(F2,m, 2) = prob(a1a2 6= 0) = 1− 2/n = 1− 1/2m−1.

• for t = 3, we have P (x) = x3 − (a1 + a2 + a3)x
2 + (a1a2 + a1a3 + a2a3)x − a1a2a3. In order

to give the probability, we detail each coefficient separately:
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– prob(a1a2a3 = 0) = 3 × prob(a1 = 0) = 3/n (here we use the fact that (a1, a2, a3) is
exchangeable).

– prob(a1a2a3 = 0 , a1a2 + a1a3 + a2a3 = 0) = 0 because of the fact that a1, a2, a3 are
pairwise distinct. Indeed if we replace the values of a1a2a3 and a1a2 + a1a3 + a2a3 into
P (x), we obtain P (x) = x2(x− a1 − a2 − a3) which is impossible since P (x) is a simple
roots polynomial.

–

prob(a1 + a2 + a3 = 0) = prob(a3 = a1 + a2 , ∀1 ≤ i ≤ 2, ai 6= a1 + a2)

= prob(a3 = a1 + a2 | ∀1 ≤ i ≤ 2, ai 6= a1 + a2)

× prob(∀1 ≤ i ≤ 2 ai 6= a1 + a2)

=
1

n− 2
× (1− prob(∃ 1 ≤ i ≤ 2; ai = a1 + a2)).

Using the fact that (a1, a2) is exchangeable, we deduce that

prob(∃ 1 ≤ i ≤ 2; ai = a1 + a2) = 2× prob(a1 = a1 + a2) = 2× prob(a2 = 0).

So we have that
prob(a1 + a2 + a3 = 0) = 1/n.

– Using the same argument for the second coefficient we obtain

prob(a1a2 + a1a3 + a2a3 = 0) = prob(a3 = a1a2/(a1 + a2))

=
1

n− 2
× (1− prob(∃1 ≤ i ≤ 2; ai = a1a2/(a1 + a2))

=
1

n− 2
× (1− 2× prob(a2 = a1a2/(a1 + a2))

=
1

n− 2
× (1− 2× prob(a22 = 0))

= 1/n.

– The last quantity to examine is

prob(a1 + a2 + a3 = 0 , a1a2 + a1a3 + a2a3 = 0 , a1a2a3 6= 0).

First we develop the equations. We obtain that a3 = a1 + a2 and a3 = a1a2/(a1 + a2),
since a1 + a2 6= 0. This implies that a21 + a22 = a1a2. Since (F∗2m ,×) is a cyclic group we
can put a1 = θi and a2 = θi+j with j 6= 0 and θ a generator of the cyclic group. We
develop the equation and obtain θ2i + θ2i+2j + θ2i+j = 0. We multiply the equation by
θ−2i and obtain a second degree equation in θj , namely

θ2i + θi + 1 = 0, (9)

which turns out to have no solution if m is odd and two solutions when m is even.

Figure 9 synthesizes these results and gives the probability SRP(F2,m, 3) = 1− 5/n when m
is odd.
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a1 + a2 + a3 a1a2 + a1a3 + a2a3 a1a2a3 prob

0 0 0 0

6= 0 0 0

0 6= 0 0

0 0 6= 0

6= 6= 0 3/n

0 6= 6= 1/n

6= 0 6= 1/n

6= 6= 6= 1− 5/n

Figure 9: The probability for t = 3 when m is odd.

B. Proof of Lemma 3.14

Lemma (3.14). For any 2 ≤ k ≤ t− 1, we have

Ek−1,tk,t ≤ 2(k − 1)

(n− t+ 1)(n− t+ k)
.

Proof. Let’s start by giving the recurrence relation for each variable involved in the equation:

Sk−1,t = 0 ⇔ Sk−2,t−1 × at = Sk−1,t−1
Sk,t = 0 ⇔ Sk−1,t−1 × at = Sk,t−1

1. In the first time, we find a recurrence relation for Ek−1,tk,t and begin by splitting it into two
different probabilities such that:

Ek−1,tk,t = prob (Sk−1,t = 0 , Sk,t = 0 , Sk−2,t−1 = 0)︸ ︷︷ ︸
≤Ek−2,t−1

k−1,t−1

+ prob (Sk−1,t = 0 , Sk,t = 0 , Sk−2,t−1 6= 0) .

So we obtain the following inequality:

Ek−1,tk,t − Ek−2,t−1k−1,t−1 ≤ prob (Sk−1,t = 0 , Sk,t = 0 , Sk−2,t−1 6= 0)

= prob (Sk−1,t = 0 , Sk,t = 0 | Sk−2,t−1 6= 0)× prob (Sk−2,t−1 6= 0)

= prob (Sk,t = 0 | Sk−1,t = 0 , Sk−2,t−1 6= 0)

× prob (Sk−1,t = 0 | Sk−2,t−1 6= 0)×
(
1− probk−2,t−1

)
.

We detail a part the two probabilities involved in the inequality and begin by considering

prob (Sk−1,t = 0 | Sk−2,t−1 6= 0) = prob

(
at =

Sk−1,t−1
Sk−2,t−1

)
Since Sk−1,t−1/Sk−2,t−1 verifies Lemma 3.10, we upper bound this probability by 1/(n−t+1).

We also analyze the second probability involved in the relation, more exactly:

prob (Sk,t = 0 | Sk−1,t = 0 , Sk−2,t−1 6= 0) .

We notice that given Sk−1,t = 0 and Sk−2,t−1 6= 0, and using Corollary 3.9, we have that
Sk,t = 0⇔ Sk−1,t−1

2 = Sk−2,t−1 × Sk,t−1. If we develop this equality, we have:
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(
(Sk−2,t−2)

2 + Sk−3,t−2 × Sk−1,t−2
)

a2t−1

+ (Sk−3,t−2 × Sk,t−2 + Sk−1,t−2 × Sk−2,t−2) at−1

+ (Sk−1,t−2)
2 + Sk−2,t−2 × Sk,t−2

= 0

But this is a second degree equation in at−1 over F2m . So the number of solutions in at−1 is at
most two and in some cases zero [Che82]. This implies that the probability can be bounded
by

prob(Sk,t = 0 | Sk−1,t = 0 , Sk−2,t−1 6= 0) ≤ 2

n− t+ 2
.

Putting all those relations together, we obtain the following inequality:

Ek−1,tk,t − Ek−2,t−1k−1,t−1 ≤
1

n− t+ 1
× 2

n− t+ 2
× (1− probk−2,t−1)

≤ 2

(n− t+ 1)(n− t+ 2)

= 2

(
1

n− t+ 1
− 1

n− t+ 2

)
.

2. In order to finish the proof of Lemma 3.14, one last step remains, more exactly to give the
final relation using induction. As S0,t = 1, we have that E0,t1,t = 0, ∀ t < n. We also know

that E t−1,tt,t = 0, fact proved in Corollary 3.9. Thus we have:

Ek−1,tk,t − Ek−2,t−1k−1,t−1 ≤ 2
(

1
n−(t−1) −

1
n−(t−2)

)
. . . . . .

E1,t−k+2
2,t−k+2 − E

0,t−k+1
1,t−k+1︸ ︷︷ ︸

=0

≤ 2
(

1
n−(t−k+1) −

1
n−(t−k)

)
So we obtain the following inequality:

∀k ∈ {2, . . . , t− 1}, Ek−1,tk,t ≤ 2

(
1

n− t+ 1
− 1

n− t+ k

)
=

2(k − 1)

(n− t+ 1)(n− t+ k)
.


