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The position of floating spheres trapped within an immersed turbulent water jet is investigated. Using the
self-similarity properties of the jet velocity profile, the equilibrium problem is formulated in a rescaled space where
the sphere is static and deformable. This approach is found to be related to a problem of elastic reconfiguration
where elasticity arises here from the geometry of the flow instead of an actual deformation of a body.
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I. INTRODUCTION

Reconfiguration is a concept that was introduced in botany
to describe plants in moving fluids [1]. Because a plant is
deformable, its shape may change in a fluid flow. This results
in a drag reduction compared to a reference configuration for
an equivalent rigid body. The drag reduction is at the core of
reconfiguration since the concept is usually associated to a
survival strategy in high winds or fast currents [2–5].

The drag exerted on deformable structures has been studied
in various contexts such as the study of plants in air [6] or water
[7,8] flows and in simplified geometries corresponding to soft
rods [9], rolled-up sheets [10], or flexible plates [11]. Contrary
to a rigid body, the drag measured for those deformable
structures is not proportional to the squared fluid velocity.
Nevertheless, the drag D still verifies a simple scaling relation

D ∼ V 2+E , (1)

where V is the fluid velocity and E a power exponent usually
referred as the Vogel exponent.

The existence of a single scaling law (1) is a remarkable
and robust result for many different situations. A first argument
supporting this result is found by dimensional analysis based
on the relevant physical parameters of the fluid-structure
interaction problem [12]. A second complementary argument
is found in the work of Alben et al. [9] in terms of self-
similarity of the elastic structure profile. It should be mentioned
that scaling laws with Vogel exponents (1) are also reported
when the buoyant force [13], or equivalently the weight [14],
is involved instead of elastic forces.

In this paper, a fluid-structure problem consisting of a rigid
buoyant sphere placed in a self-similar flow is considered.
While there is no deformation of the body, the framework of
elastic reconfiguration is surprisingly adapted to describe the
forces acting on the object. More precisely, it is shown that the
fluid-structure interaction problem formulated in a specific
rescaled frame is equivalent to a reconfiguration problem
involving the isotropic deformation of an elastic body.

For all the practical situations where usual elastic reconfig-
uration is reported, deformable bodies are slender structures.
For nonslender structures, reconfiguration is not likely to
be observed as bulk deformations are not expected for a
pressure drag (∼103 Pa for a wind of 30 m s−1) that remains
much smaller than the elastic modulus of usual materials
(∼109 Pa) [5]. Beyond the exercise of interpreting a rigid-body
problem as a problem of elasticity, the analogy that is proposed

here permits the exploration of reconfiguration regimes for
nonslender bodies such as spheres.

II. EXPERIMENTAL SETUP

The experimental setup studied here is depicted in Fig. 1.
A turbulent monophasic jet is established in a water tank
(0.3 × 0.3 × 0.7 m3) by the injection of water through a
circular nozzle with a diameter dN = 6.5 mm. The flow rate
Q in the experiments is between 10 and 50 mL s−1, which
corresponds to a velocity at the nozzle ranging from 0.3 to
1.5 m s−1. The Reynolds numbers at the nozzle, ReN , then vary
between 2000 and 10 000, where ReN = Q/dNν with ν the
kinematic viscosity of water. Floating polypropylene spheres
(with density ρs = 850 kg m−3 and radius R ranging from 7
to 15 mm) are placed in the vicinity of the jet centerline and
reach a stable equilibrium position where the buoyant force
and the fluid forces are balanced. This configuration is similar
to the levitation of a table-tennis ball over a hair dryer. The
latter experiment is a classic teaching demonstration [15,16]
exploiting the intriguing aspects of levitation [17].

The trapping stability of the sphere in the plane perpendic-
ular to the jet axis has been discussed in terms of the Coandă
effect [18]. If a curved surface is impacted by a jet, the outgoing
jet is deflected, which imparts a net force on the curved body
because of momentum conservation [19]. The Coandă effect
and the associated forces have been investigated for spheres
suspended by vertical [20] and tilted jets [21]. The trapping of
spheres far from the nozzle is not observed. This is because
the confining force in the horizontal plane decreases with the
distance to the nozzle [20].

The question addressed here concerns the trapping distance
between the sphere and the jet nozzle for a controlled injection
flow rate. Despite its apparent simplicity, this problem is
not trivial because it requires the computation of the force
exerted by an inhomogeneous flow on a sphere. In the case
of homogeneous flows, the computation of the drag involves
an empirical coefficient known as the drag coefficient. For
inhomogeneous flows, a similar empirical coefficient may
exist [22] but it has no general formulation and depends on
the geometry of the object as well as on the profile of the
incoming flow.

The jet profile was determined by three-dimensional (3D)
particle tracking velocimetry (PTV). Two cameras are used
to record the tracks of submillimeter particles injected from
the nozzle. The particles are matched in density with water in
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FIG. 1. Schematics of the trapped sphere experiment. Two cam-
eras are positioned at 90◦ to observe the motion of the sphere in two
perpendicular planes. The free jet profile is visualized from camera 2
(not represented) by the injection of dye at the nozzle. A solid circle is
inserted to represent the typical trapping of a floating centimeter scale
sphere submitted to buoyant forces and fluid forces with magnitudes
FA and Ff , respectively.

order to behave as tracers for the large-scale mean flow. The
submillimeter particles are small enough to satisfy the uniform
sampling condition [23] that occurs when the particles do not
exceed 20 times the smallest scales of the turbulent flow. Here
the size of the smallest scales is of the order of 0.1 mm. The
3D mean velocity map is obtained from the time averaging
of the particle velocity onto a binning grid with submillimeter
resolution. The radial profiles are extracted from the map for
different distance z to the nozzle. Measurements of the mean
profiles are performed for a flow rate of Q = 27 mL s−1 in the
absence of the trapped sphere. Velocity profiles are displayed in
Fig. 2 (left). The jet profile is self-similar when it is represented
in a specific set of coordinates [24,25] as shown in Fig. 2
(right). The self-similar velocity profile is given by

vz(r,z) = 1
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FIG. 2. Left: Axial velocity vz of the jet as a function of the
radial distance r . Eleven axial distances to the nozzle are considered
for z starting from 84 mm going up to 264 mm with a linear
spacing of 18 mm. The flow rate at the nozzle is Q = 27 mL s−1.
Right: Product zvz (m2 s−1) as a function of the normalized radial
coordinate r/z for the same data points. The solid line is a fitting
function established after the profileF(r/z) ∝ 1/(1 + (r/ tan(α)z)2)2

[24] with α = 0.12 rad.

FIG. 3. Illustration of the self-similarity. Left: Three spheres with
same drag for the same ratio ze/R, where ze is the equilibrium
distance to the nozzle and R the sphere radius. Center: Three identical
spheres at their equilibrium positions for three different flow rates.
The cylindrical frame {r,z} is represented at the origin of the jet. Right:
Profiles in the rescaled frame {r ′ = r/ze,z

′ = z/ze} of the spheres’
surfaces impacted by the jet for the three corresponding positions of
the central figure. The associated numbers indicate the radial portion
of the sphere impacted by the jet in the scaled frame αze/R, where
α is the characteristic opening angle of the jet. This dimensionless
number is interpreted as a Cauchy number [see Eq. (5)].

where r is the radial coordinate, z the vertical distance to the
origin of the jet, and F the self-similar profile. The expression
F(r/z) ∝ 1/(1 + (r/ tan(α)z)2)2 [24] is used for the fitting
function in Fig. 2 (right). The parameter α relates to the
opening half-angle of the jet with α = 0.12 rad.

III. SELF-SIMILARITY

The stationary trapping of a sphere by a vertical jet occurs
if the fluid forces and the buoyant forces are balanced (see
Fig. 1). In this case, the magnitudes of these forces verify

FA = Ff , (3)

where Ff are the net fluid forces exerted on the sphere and FA

the buoyant forces given by the Archimedes principle FA =
(4π/3)�ρR3g, where R is the sphere radius, g the gravity
field, and �ρ = ρw − ρs the apparent density with ρw the
density of water and ρs the density of the sphere.

As mentioned before the expression Ff for the drag exerted
on a spherical body in an inhomogeneous flow is a delicate
problem. In this experiment, the sphere is only trapped close
to the nozzle where the jet typical width does not exceed
the sphere diameter. This means that the flow profile is
strongly inhomogeneous over the sphere’s surface and the
presence of the sphere strongly modifies the flow profile. As a
consequence, direct computation of the net fluid force acting
on the sphere is challenging.

The strategy adopted here is to use geometric considerations
related to the jet profile in order to reinterpret the vertical
equilibrium position of a sphere. Because the jet profile is
self-similar, the fluid forces acting on a sphere at a given
position should be the same as the forces acting on a smaller
sphere at a proportionally smaller distance to the origin of the
jet. This geometrical property is sketched in Fig. 3 (left). If
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self-similarity is verified, the fluid force may be written as

Ff = G
(

R

ze

)
, (4)

where ze is the distance between the nozzle and the equilibrium
position of the sphere. The functionG depends on the jet profile
(2) modified by the presence of the sphere.

The fluid force acting on a sphere in a jet [Eq. (4)] depends
on the dimensionless radius R/ze only. This means that a
variation of the sphere position along the jet centerline ze is
equivalent to a decrease of the sphere radius R by the same
factor (see Fig. 3).

The approach of this work is to consider the problem of
the sphere trapped in the jet after the rescaling of the space
coordinates {r,z} by the factor ze. In the dimensionless space
{r ′,z′}, the sphere does not move as it lies at a distance unity
ze

′ = 1 from the nozzle. The sphere is effectively deformable
with a radius R′ = R/ze. In the rescaled frame, the deformable
sphere obeys a mechanical equilibrium with a stationary flow
(Fig. 2, right).

IV. EFFECTIVE RECONFIGURATION

The study of drag reduction in reconfiguration problems
uses two dimensionless parameters: the Cauchy number CY

and the reconfiguration number R.
The Cauchy number quantifies the deformation induced

by the fluid flow by comparing the fluid dynamic pressure
σf and the elastic stress σE for a typical deformation. For
usual reconfiguration problems, i.e., with an actual elastic
deformable body, the typical elastic stress is the elastic Young
modulus E, and the Cauchy number is given by CY = σf /E.
For the problem addressed here, there is a priori no expression
for an elastic modulus. However, a Cauchy number can be
proposed by considering a generic elastic relation σf = Eε

that the deformable sphere would verify in the rescaled frame,
where σf is the external stress due to the fluid and ε is the
resulting deformation ratio. In this case, the Cauchy number is
simply given by CY = ε. In the rescaled frame, the deformation
of the sphere corresponds to an isotropic deformation for which
the strain in the linear regime is ε ∼ δR/R. As the variation
of R and ze is equivalent, the strain parameter may scale as
ε ∼ ze/R. In the following, the Cauchy number is defined by

CY = α
ze

R
, (5)

where the opening angle of the jet, α, has been introduced.
The reconfiguration number R quantifies the efficiency

of the drag reduction by comparing the drag exerted on the
deformable body and the drag that would be exerted on the
equivalent rigid body. As mentioned before, the drag exerted
on the sphere equals the buoyancy. The drag on the equivalent
rigid body corresponds to the drag in the limit ε = 0. In this
limit, the sphere is asymptotically close to the jet nozzle and
impacted on its top surface which is perpendicular to the flow.
Consequently one can write the reconfiguration number as

R = (4π/3)�ρR3g

(1/2)cP ρw(Q2/SN )
, (6)
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FIG. 4. Reconfiguration number [Eq. (6)] as a function of the
Cauchy number [Eq. (5)] for polypropylene spheres and a melting ice
ball. The solid line corresponds to the equilibrium problem (3) with an
empirical expression for the drag coefficient, c̃(r/R) = 1 − (r/R)η,
with η = 0.5. The inset plot shows the equilibrium distance to the
nozzle,ze, as a function of the flow rate Q for the same data points.

where cP = 2.1 is the drag coefficient of a plate for the jet
profile and SN = (π/4)dN

2 the cross-sectional area of the
nozzle.

The equilibrium positions of spheres for varying flow rates
of the jet have been measured for a set of four floating
spheres and a melting spherical ice ball. The ice ball was
obtained by crystallization of dyed water in a specific mold
previously designed [26]. The relative density is 0.85 for the
polypropylene spheres and 0.92 for the ice ball. The average
positions of the spheres are obtained from acquisitions of 45 s,
corresponding to an order of 102 oscillations of the sphere
in the confining potential with a typical amplitude ∼R. The
resulting data are plotted in Fig. 4 using the dimensionless
numbers CY andR defined in Eqs. (5) and (6). For comparison,
the equilibrium distance with respect to the flow rate has been
also represented in usual coordinates in the inset plot in the
same figure.

The experimental data collapse on a master curve when
represented with the dimensionless numbers CY and R. This
master curve shows a quantitative agreement with reconfig-
uration of actual deformable bodies in a flow (see [5] for
example).

The limit CY � 1 relates to a low drag limit where the
deformable body in the rescaled space is weakly deformed.
This implies that the drag is that of an equivalent rigid body
(R ∼ 1). In physical space, this limit corresponds to a sphere
impacted by the jet at its very center where the sphere is locally
a surface perpendicular to the flow. According to its definition,
the reconfiguration number is expected to approach unity in
the low drag limit where deformation is asymptotically small.
This is the case here, notably because the parameter cP has
been introduced to account for the drag of the sphere when it
is close to the jet nozzle.
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For CY ∼ 1, the body is moderately deformed. The
reconfiguration and drag reduction are dominated by the
streamlining of the body rather than the area reduction [11].
In physical space, this regime corresponds to the jet impacting
the sphere on its typical size. This justifies the introduction
of the opening angle α = 0.12 rad in the expression of the
Cauchy number since this transition is expected for CY ∼ 1.

For higher Cauchy numbers, the whole sphere is impacted
by the jet and the drag reduction may be attributed to the
area reduction in the rescaled frame. In physical space, the
sphere is far from the nozzle, ze > R/α, and in a spatially
homogeneous flow corresponding to the axial velocity on
the jet centerline [27]. In this regime of uniform flow, the
drag is 1/2csρwπR2ve

2, where cs is the drag coefficient for
a sphere and ve the equilibrium velocity needed to balance
buoyancy. The asymptotic regime CY � 1 is not observed for
trapped spheres since the confinement is not possible without
velocity gradients. The stationary trapping is experimentally
lost around CY ∼ 2. If stability was possible for CY � 1,
one should expect a scaling regime for the reconfiguration
number where R ∼ CY

−2 (or a Vogel exponent E = −2) after
the definition of R and the expression for the equilibrium
velocity on the centerline, ve = v(r = 0,ze) ∝ (1/ze)Q/SN .
This regime could be explored by a force measurement while
maintaining the sphere in the jet.

The relation between R and CY has also been explored for
a given flow rate Q = 18 mL s−1 with a melting ice ball as
plotted in Fig. 4. Contrary to an attached body [28], the melting
is isotropic because the ice ball is free to rotate when it is
suspended in the jet. This experiment allows for a continuous
variation of R and CY as the ball progressively melts and
reduces in size. As for the rigid spheres, the equilibrium is lost
when CY approaches 2.

The collapse of the data in Fig. 4 implies that, in the
rescaled frame, the sphere behaves as a deformable body
with a stress-to-strain relation similar to Hooke’s law. The
analogy with reconfiguration allows for the introduction of
an effective elastic coefficient for the sphere. For an elastic
body, the Cauchy number is given by CY = ρU 2/E, where
ρ is the density of the fluid, U the flow velocity, and E the
elastic modulus. With this relation considered for CY = 1, one
obtains an effective elastic modulus Ẽ = ρw(Q/SN )2.

In Sec. III, the self-similarity of the fluid force [Eq. (3)] has
been assumed as it is suggested by the self-similar properties
of the jet flow. The net force [Eq. (4)] can be explicitly obtained
from the jet profile [Eq. (2)] by integrating a simplified model
for local drag over the sphere cross section,

dFf (r,z) = (1/2)ρwc̃(r/R)vz(r,z)2 dS, (7)

where c̃ is a dimensionless local drag coefficient. This
approach is usual for slender structures where the local drag
description is valid. Here, the flow around a sphere is highly

nonlocal which means that inconsistencies are expected. The
empirical expression c̃(r/R) = cP (1 − (r/R)η) is used in a
local drag approach [Eq. (7)], where cP = 2.1 is the drag
coefficient for a perpendicular plate and the exponent η = 0.5
is the only free parameter used to obtain a satisfactory fit of
the rescaled data in Fig. 4. However, the local drag approach
and the expression of c̃ are limited to this experiment as they
are not valid, for instance, for a sphere in a uniform flow:
vz(r,ze) = v0.

V. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed an original approach to
account for the equilibrium position of a sphere trapped by a
turbulent jet. It was shown that the existence of self-similar
forces establishes a connection with a problem of elasticity
based on a geometric interpretation of self-similarity. In this
interpretation, the space may be rescaled which means that the
sphere is static but deformable.

A relation similar to linear elasticity was proposed to
account for the mechanical equilibrium of the sphere in the
rescaled coordinates. The representation of reconfiguration
based on the dimensionless numbers R and CY shows
remarkable similarities with classical reconfiguration studies
involving the actual deformation of a truly elastic body. With
this analogy, it is possible to define an effective elastic modulus
for the deformable sphere in the rescaled frame.

The asymptotic regime of high deformation, CY � 1,
or equivalently ze � R/α, is not accessible for a trapped
sphere. This is because the confining associated with the
velocity gradients of the jet profile is too weak to overcome
the forces induced by the velocity fluctuations of the fluid.
However, reconfiguration in this regime is predictable because
the velocity is homogeneous on the scale of the sphere
with a simple scaling on the centerline, v(r = 0,z) ∝ z−1.
The asymptotic regime CY � 1, where R α CY

−2 would be
observed by maintaining the sphere in the jet centerline where
the vertical forces vanish.

Future work following this contribution may consider a
usual reconfiguration experiment with spheres truly capable
of deformation. The center of the soft sphere should be
maintained in a fixed position in the similar jet flow. A technical
difficulty would be to manufacture an elastic spherical body
for which the deformations are purely isotropic. A promising
approach would be to use a class of soft mechanical meta-
materials [29–31] close to the limit of dilational elasticity
[32]. The dilational regime corresponds to the pure extensional
deformations, which means with a Poisson ratio that is equal to
−1. In this limit, the only deformation modes allowed are the
ones that change the size of the object but not its shape. In these
conditions, some unconventional regime of reconfiguration
could be observed for a nonslender metamaterial body, such
as regimes of drag independent of the flow velocity, that was
only reported in a previous work [14] for slender structures.
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