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NATURE METHODS | POINTS OF SIGNIFICANCE 
 
Machine learning: A primer 

Machine learning extracts general principles from observed 
examples without explicit instructions. 

In previous columns we have discussed several unsupervised learning 
methods—for example, clustering and principal component analysis—
as well as supervised learning methods such as regression and 
classification. This month, we begin a series that delves more deeply 
into algorithms that learn patterns from data to make inferences. This 
process is called machine learning (ML), a rapidly developing domain 
closely related to high-dimensional statistics, data mining, pattern 
recognition, and artificial intelligence. Such methods fall under the 
broad umbrella of “knowledge discovery”, a computational and 
quantitative approach to characterize and predict complex 
phenomena described by many variables. 

ML is a strategy to let the data speak for themselves, to the degree 
possible. Rather than choosing a set of formal assumptions, ML 
applies brute-force to fit patterns in the observed data using functions 
with potentially thousands of weights. Even if there is no a priori 
model, ML can apply heuristics and numerical optimization to extract 
patterns from the data. Although ML algorithms typically allow fitting 
to very complex patterns, data may exhibit salient patterns outside 
the ML algorithm’s learning capabilities. Due to their adaptive and 
flexible nature, many ML algorithms perform best when data are 
abundant [1]. However, increasing data does not necessarily mean 
that learning improves. ML algorithms are limited by bias in the 
algorithm and bias in the data, which can produce systematically 
skewed predictions. 

ML is often applied to complicated, poorly understood phenomena in 
nature [1], such as complex biological systems, climate change, 
astronomy, or particle physics. For example, we have little definitive 
knowledge about the workings of the healthy brain and the 
progression and changes associated with neurobiological disease. 
Mental health researchers studying psychiatric disorders are 
struggling to explain the disease mechanisms at the level of genome, 
epigenetics, thinking and behavior, and life events.  
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The flexibility of data-guided pattern learning is well suited to 
address this multitude of possible influences and their complicated 
relationships. For example, ML algorithms can computationally 
derive abstract rules to distinguish healthy individuals from affected 
patients—a process that we cannot expect to be captured by an 
explicit equation or hand-picked model. With some a priori 
assumptions, ML approaches can identify disease-specific biological 
aspects that provide potential indicators for accurate diagnosis, 
treatment, and prognosis in complex diseases. 

The sensitivity and performance of ML algorithms can be quantified 
for each potential influence, such as genomic variation, presence of 
risk variants, brain properties, cognitive performance, and 
epidemiological descriptors (Fig. 1). For example, some genetic or 
neurobiological markers may be more indicative of disease (e.g., 
genetic mutation or brain connectivity features) and this can provide 
insight into the mechanisms underlying mental disease. One way to 
estimate the statistical uncertainty around this and other influences is 
by bootstrap confidence intervals [3], which estimate how the 
prediction would fluctuate in new data from the same population. 

 
Figure 1 | Probing the basis of a psychiatric disorder at multiple levels. Schematic of 
how psychological, genetic, neurobiological and epidemiological observations can be 
used to automatically learn the difference between healthy individuals and affected 
patients. For each type of measurement (e.g., attention test scores), a learning 
algorithm is trained on part of the data and subsequently evaluated on remaining 
test data from independent individuals to obtain prediction performance estimates 
(50% accuracy corresponds to random guessing). The statistical uncertainty of the 
prediction accuracies is shown by 95% confidence intervals obtained from bootstrap 
resampling of data points with replacement. 
 

When applying ML techniques, one question that often arises is “How 
much data do I need?” To address this, we need to look at some of the 
fundamental properties of ML. 
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One of the primary considerations in ML is the n-p ratio, where n is 
the number of samples and p is the number of variables per 
observation. ML is particularly effective in the high-dimensional 
setting (p >> n) with hundreds or many thousands of variables to be 
fitted. But, learning algorithms need to tackle the challenges specific 
to scenarios when p is large—the so-called curse of dimensionality. 
The danger for overfitting can be counteracted with more samples 
[4], which allows for a better final algorithmic solution (e.g., higher 
accuracy in single-patient prediction) and by dimension reduction 
methods such as PCA. 

The complexity of the learning algorithm is critical and should be 
calibrated with the complexity of the data. The more sophisticated the 
underlying algorithm, the more data are needed. For instance, a 50th-
order polynomial or a deep neural network algorithm is able to 
capture very complex trends, but requires abundant data in practice 
to avoid overfitting. Simple algorithms are often easier to interpret, 
require less data, and are useful to the extent that complicated 
interactions between the variables can be neglected. When trained 
with large data sets, overly simple algorithms that do not overfit can 
sometimes outperform complex algorithms with the same number of 
samples [2]. 

An underlying goal of ML is to approximate the so-called target 
function, which captures the ground-truth relationship in nature 
between the input variables (e.g., functional relationships between 
genes) and an outcome variable (e.g., brain phenotype such as brain 
or personality disorders). The target function is not known and 
potentially not knowable. In general, the more complex the target 
function, the higher the risk for overfitting, so there may still be 
advantages to choosing a lower-complexity algorithm. 
 
The learning process can be impeded by different sources of 
randomness. Stochastic noise is non-identical in different samples 
drawn from the same population and does therefore not exhibit 
coherent structure. Such randomness in the data increases the 
tendency for overfitting by adapting algorithm weights to noise in the 
training data. In this case, prediction errors will rise in held-out or 
new observations. This can be mitigated with larger training sample 
sizes at the same level of complexity, for example the same number of 



 4 

adaptive weights. 
 
Typically, ML algorithms cannot achieve perfect accuracy on new 
data even if the “ground truth” model - the pattern to be uncovered 
from the data - was known  [5,7]. For example, when the relationship 
between genetic profile and a patient's disease status was known, a 
learning algorithm that perfectly describes the target function will 
nevertheless infer wrong outcomes from some new observations. This 
source of irreducible error is caused by fluctuation in the outcome 
association with each observation (“label noise”) and is characteristic 
for each learning problem. It can be quantified using the Bayes error 
rate (BER), a theoretical quantity capturing algorithm failures that 
occurred under the condition that the “true” data distribution and the 
input-output mapping are accessible. In practice, as the amount of 
data for algorithm training keeps increasing towards the entire 
population, the maximal performance of an optimal-complexity 
algorithm predicting new data points converges to the BER. 
 
All these fundamental considerations point to a core insight on ML 
practice: there is no single right answer to the question how many 
samples are needed to reach a certain prediction performance. 
Moreover, if a relationship between input and output variables exists, 
we cannot be assured that it can be captured in a given dataset or 
extracted with a particular learning algorithm (Fig. 2). 

 

Figure 2 | General behaviors of machine-learning algorithms. (a) When algorithm 
complexity is low, both prediction on new data (“prediction error”) and failed model 
evaluation on the training data (“training error”) are high. In this high-bias regime, 
prediction is poor because the algorithm has a tendency to underfit structure in the 
data. As algorithm complexity increases, both errors drop but eventually prediction 
error rises again. The algorithm enters the high-variance regime, where it starts to 
overfit. (b) As training sample size increases, for a fixed level of algorithm 



 5 

complexity, prediction error drops and training error increases. This trend is more 
pronounced for low-complexity algorithms, such as logistic regression or linear 
regression, which have a limited capacity to improve with additional data. High-
complexity algorithms, such as high-order polynomials, CART, or (deep) neural 
networks, on the other hand, continue to improve on the test data but their 
predictive performance is still limited by sources of noise. In this practical example, 
the low-complexity example could benefit from a more flexible algorithm and the 
high-complexity example from more data. The three dashed lines show a 
hypothetical desired error level. 
 
The holy grail in ML is to use the data at hand to assess the algorithm 
performance in independent, unseen data points [4]. In other words, 
we want to perform an in-sample estimate of the expected out-of-
sample generalization. We want to know under what circumstances 
does a statistical relationship discovered in one set of data (e.g., 
patients in the current dataset) successfully extrapolate to another set 
of data (e.g., future patients)?  

In practice, cross-validation procedures [4,7] are routinely used to 
obtain an accurate estimate of an algorithm's "true" capacity to 
extrapolate patterns to future datasets. However, the outcome is 
invalidated if some part of the data used for algorithm testing has 
affected some aspect of the learning process during algorithm 
building based on the training data split (i.e., data snooping or data 
peeking by variable selection or selection of some of the weights). 

More broadly, pattern generalization beyond a particular data sample 
is only possible because every learning algorithm has some inductive 
bias. The chosen algorithm can be viewed as defining a characteristic 
class of functions (called the hypothesis space), each being a 
candidate to best represent the pattern to be extracted from the data. 
Each hypothesis class embodies different knowledge about the 
possible types of configurations to be encountered in the training 
data. This prerequisite for pattern generalization is also the reason 
why no single algorithm can be considered an optimal choice in all 
analysis settings (“no free lunch” theorem, http://www.no-free-
lunch.org/). Choosing an algorithm unavoidably imposes specific 
complexity restrictions on how we think the function of interest 
should behave at data points that have not been observed in the data 
at hand [7]. Interpretation of ML findings thus hinges on the 
investigator’s awareness of the subset of problems to which a given 
algorithm is specialized. 
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Ultimately, there is an important convergence guarantee from 
statistical learning theory [7] for many learning algorithms. The rate 
at which algorithms increase their capacity to capture complex 
structure from a stream of observations is greater than the 
simultaneously increasing difficulties of extrapolating to new 
samples. 
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