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Abstract

We present a spectral numerical algorithm for
the fast solution of elastodynamics problems in
general 3D domains based on a FFT-speed Four-
ier Continuation (FC) approximation for accu-
rate Fourier expansion of non-periodic functions.
The high-order methodology yields physically
correct solutions including those with traction
conditions on curved boundaries. The approach
is essentially without dispersion errors; entails
mild CFL constraints; runs at a cost scaling lin-
early with discretization size; and can be effi-
ciently parallelized for computing clusters.
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1 Introduction

This work considers the propagation of elastic
waves in a linear, isotropic, possibly heteroge-
neous medium contained in a general domain
Ω ∈ R3 and governed by the Navier equation

ρ(x)utt(x, t) = ∇ ·
[
µ(x)

(
∇u(x, t) +∇uT (x, t)

)
+ λ(x) (∇ · u(x, t)) I

]
+ f(x, t)

(1)

for position and displacement vectors x and u;
Lamé parameters µ(x), λ(x); density ρ(x); and
a given vector of body forces f(x, t). Initial con-
ditions u(x, t0), ut(x, t0) are prescribed at ini-
tial time t = t0, and the boundary ∂Ω is parti-
tioned as a union ∂Ω = ΓD ∪ΓT of two surfaces
ΓD and ΓT upon which boundary displacements
and boundary tractions,

u = c(x, t) on ΓD and

σ · n = d(x, t) on ΓT ,

are prescribed, where n is the inward unit nor-
mal and σ is the (symmetric) stress tensor for
an isotropic medium.

2 Methodology

Accelerated FC(Gram). The FC method [1–3]
enables high-order convergence of Fourier series

approximations of non-periodic functions by re-
solving the Gibbs “ringing” effect, extending
the applicability of classical Fourier-based PDE
solvers (together with their inherent qualities,
e.g. limited dispersion, high-order accuracy and
mild CFL conditions) to problems with general
domains and boundary conditions. Given point
values f(xi) of a function f : [0, 1] → R on a
uniform grid xi = i/(N − 1), i = 0, . . . , N − 1,
the FC method produces a rapidly-convergent
interpolating Fourier series representation f c :
[0, b]→ R on a region [0, b] larger than the phys-
ical domain [0, 1] as

f c(x) =

M∑
k=−M

ake
2πikx
b s.t. f c(xi) = f(xi), (2)

for suitably chosen FC-parameters M (band-
width) and b > 1 (interval length). The b-
periodic continuation function f c is an approx-
imate periodic extension of f that closely ap-
proximates f in [0, 1]. Derivatives for a PDE
solver can be then produced with high-order
accuracy by term-wise differentiation. We base
the construction of (2) on a “biased-order” tech-
nique [1] that uses numbers d` and dr of function
values near the left and right endpoints 0 and 1,
together with projections of the corresponding
vectors of function values onto a Gram poly-
nomial basis—whose continuations are precom-
puted by means of high-precision linear algebra
methods. This is then extended to a form suit-
able for use in traction conditions [2].

Geometry and parallelization. Physically real-
istic configurations with curved geometries are
treated by an overset method [4] that decom-
poses Ω into a union Ω =

⋃
j Ωj of a finite num-

ber of overlapping, boundary-conforming curvi-
linear patches–endowed with uniform Cartesian-
like discretizations–within each one of which a
curvilinear formulation of (1) is evolved. In-
formation is exchanged via interpolation, and
sharp corners and edges are approximated by
rounded patches. Further decomposition of each
patch Ωj into mutually disjoint sub-patches, to-
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gether with the use of certain “line-segmented”
FC operators (which produce very efficient cal-
culation of the corresponding optimally-sized dis-
crete Fourier transforms), enables a paralleliza-
tion for distributed-memory computing environ-
ments that achieves excellent scalability [2].

3 Numerical experiments

These examples utilize an explicit fourth-order
Adams-Bashforth scheme (AB4) in time and a
fixed number of 25 discrete points in the pe-
riodic extension to construct continuations for
fourth-order Gram polynomials (d`, dr = 5). Fur-
ther parameters and studies are detailed in [2].

A convergence study. A solid cylinder composed
of two patches is prescribed with body forces
and traction boundary conditions correspond-
ing to a known solution (see [2]). The table be-
low reports the max errors in displacement over
all time and space, where fifth-order accuracy
can be appreciated.

N (patch Ω1) N (patch Ω2) L∞
err O(L∞

err)

27,000 72,000 2.82e-03 —
216,000 576,000 8.29e-05 5.09
729,000 1,944,000 9.37e-06 5.38

1,728,000 4,608,000 2.00e-06 5.37

A parallel performance study. The table below
reports errors and CPU-seconds per million un-
knowns (denoted S) for propagation in a 3D
aluminum plate with a circular hole modeled by
six different curvilinear patches. Nearly perfect
scalability is achieved as the number of cores is
increased for a fixed number of grid points.

# grid pts # cores L∞
err S

3,033,360 240 7.89e-3 1.51 sec
— 360 7.98e-3 1.55 sec
— 480 8.32e-3 1.45 sec

A dispersion study. Plane-waves of various num-
bers W of wavelengths are advanced through
a 3D aluminum plate with traction boundary
conditions. Figure 1 shows the max errors over
all space and over one full temporal cycle (de-
fined as the time required for any one crest to
travel the length of the plate) of the solution for
increasing W . For each fixed number of points-
per-wavelength (PPW), the accuracy of the FC
solver remains essentially constant, suggesting
that the use of large numbers of sub-domains
and sub-patches does not give rise to significant
dispersion (up to 512 cores are employed for the
highest values of W ).

101 102

10 4

10 3

10 2

10 1

100

# of wavelengths

L
 e

rro
r

 

 

15 PPW
20 PPW

Figure 1: Errors over a cycle for varying W .
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Figure 2: Simulated response of an earthquake.

A classical seismology problem. Wave amplifi-
cation by a 180m hill in a 3D region impacted
by an incident shear (S-)wave is depicted in
the seismogram of Figure 2 using the FC-based
elasticity solver and a traction-free boundary
condition at the surface. The high-definition
solutions are constructed in 58 seconds on 96
cores of a high-performance cluster using just
shy of 150,000 volumetric discretization points–
significantly coarser than a high-order spectral
element method (4,935,953 points) and a stable
difference method (109,808,412 points) [2].
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