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Abstract

We introduce a metric-based anisotropic mesh
adaptation strategy for the fast multipole accel-
erated boundary element method (FM-BEM)
applied to exterior boundary value problems of
the three-dimensional Helmholtz equation. The
present methodology is independent of discretiz-
ation technique and iteratively constructs mesh-
es refined in size, shape and orientation accord-
ing to an “optimal” metric reliant on a recon-
structed Hessian of the boundary solution. The
resulting adaptation is anisotropic in nature and
numerical examples demonstrate optimal con-
vergence rates for domains that include geomet-
ric singularities such as corners and ridges.
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1 Introduction

We consider the scattering of an incident acous-
tic field ui(x) (characterized by the wavenumber
k) by a bounded domain Ω ⊂ R3 with boundary
Γ = ∂Ω and unit normal n outward to Ω. The
corresponding scattered field us(x) exterior to
the obstacle is a solution to the time-harmonic
scalar wave equation

∇2us + k2us = 0 x ∈ R3\Ω (1)

satisfying either Dirichlet (i.e. us = −ui) or
Neumann (i.e. ∂us/∂n = −∂ui/∂n) boundary
conditions on Γ, as well as the Sommerfeld radi-
ation condition at infinity. Problems can be for-
mulated as boundary integral equations (BIEs)
whose corresponding numerical solutions are con-
structed by boundary element methods (BEMs).
The main advantages of BEMs is that their for-
mulations exactly account for the radiation con-
ditions and restrict the discretization of the do-
main to that of the boundary alone. Standard
BEMs, however, lead to dense and (possibly)
nonsymmetric linear systems whose solutions
become prohibitively expensive for large-scale

problems. Fast multipole methods (FMM) over-
come this drawback by enabling drastic reduc-
tion in solution time and memory requirements.

Further improvements of accuracy and com-
putation time can be made by employing adapt-
ed meshes. Such strategies optimize the place-
ment of the degrees of freedom to better capture
solutions with anisotropic features as well as
discontinuities in the acoustic field near geomet-
ric singularities such as corners or ridges. Fewer
studies on these strategies have been made for
BEMs, and most current BEM adaptation strate-
gies, like those relying on Dörfler marking, have
been confined to isotropic techniques. These
methods are unable to recover optimal orders of
accuracy and have been restrictive to Galerkin
discretization techniques as well as the partic-
ular underlying equations. The focus of this
work is to introduce and extend an anisoptropic
mesh adaptivity strategy [3] in the context of
FM-BEM that addresses these issues by using
a metric-based error estimator whose effective-
ness has been demonstrated for volumetric (fi-
nite element) methods but not for BEMs.

2 Metric-based mesh adaptation

To find an optimal mesh that achieves a desired
level of accuracy and convergence we use the
following iterative procedure:

Coarse initialization step. Generate an initial
uniform mesh Ti = T0 with Ni = N0 vertices for
the surface Γ. The parameter N0 can be cho-
sen, for example, by requiring elements to have
widths of approximately λ/2 (where λ = 2π/k).

Step 1. Compute a BEM approximation usNi
on

the mesh with boundary element basis functions
{ψj}Ni

j=1.

Step 2. Associate with Ti a Riemannian metric
space M = (M(x))x∈Γ, where M is the met-
ric tensor whose value at each vertex dictates
the size and orientation of adjacent elements
upon adaptation. Defining ûs to be the second-
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order Taylor expansion of the exact solution us

around a mesh vertex, ΠNu
s the linear inter-

polant of us on the mesh Ti with elements K,
we extend to the use of boundary solutions the
results of [3] so that the total interpolation error

∑
K∈Ti

||ûs −ΠNus||L2(K) ≤ 2

∫
Γ

trace
(
M−

1
2HM−

1
2

)
dΓ

(2)
is minimized by a mesh generated by the metric

ML2 = N

(∫
Γ

det(|H|) 1
3

)−1

det(|H|)− 1
6 |H|. (3)

Here, H is a symmetric matrix representing the
Hessian of us and is computed at a vertex from
the approximate solution usN by the expression

(H)ij = − 3

|K|
∑
K∈Ti

(
∂usN
∂xi

)
K

∫
K

∂ψk∈K

∂xj
dx. (4)

Step 3. Construct a new mesh Ti+1 with ver-
tices Ni+1 = 2Ni that is quasi-unit with respect
to the optimal metric computed from (3), i.e.
seek triangles K with edges {ei}3i=1 such that

1√
2
≤ ||ei||M ≤

√
2, i = 1, 2, 3 and |K|M '

√
3

4 .

Step 4. Iterate over Steps 1-4 until a specified
maximum number of vertices N is surpassed.

3 Validation of the adaptive mesh strat-
egy with numerical examples

The proposed strategy constructs adapted me-
shes that can recover optimal convergence rates
for domains with corners and ridges. Figure 1
shows a mesh after four adapting iterations–
with clear refinement at the edges–for the ex-
terior Dirichlet problem of the scattering of an
incident plane-wave (k = 5) by a cube with a
cavity. The Hessian and metric tensor of Step
2 are computed by METRIX [3] and the mesh
construction of Step 3 by the AMG library [4].
The approximate solution in Step 1 employs a
P1-element discretization for a BEM whose ef-
ficient solution is facilitated by the fast multi-
pole method [5]. The relative L2-errors for the
scattered field with varying degrees of freedom,
depicted in Figure 2, indicate a reduced con-
vergence order for a uniform refinement due to
edge singularities of the obstacle. On the other
hand, the anisotropic refinement is shown to re-
cover the optimal convergence rate of O

(
n−1

)
.

Figure 1: Adapted mesh at the fourth step of
adaptation for the cube with cavity.
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Figure 2: Relative L2-errors for uniform and
anisotropic refinement of the example.
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