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Abstract

Given data points p0, . . . , pN on a manifold M and time instants 0 = t0 < t1 < . . . <

tN = 1, we consider the problem of finding a curve γ on M that best approximates the data
points at the given instants while being as “regular” as possible. Specifically, γ is expressed
as the curve that minimizes the weighted sum of a sum-of-squares term penalizing the lack of
fitting to the data points and a regularity term defined, in the first case as the mean squared
velocity of the curve, and in the second case as the mean squared acceleration of the curve.
In both cases, the optimization task is carried out by means of a steepest-descent algorithm
on a set of curves on M . The steepest-descent direction, defined in the sense of the first-order
and second-order Palais metric, respectively, is shown to admit simple formulas.

Keywords: curve fitting, steepest-descent, Sobolev space, Palais metric, geodesic distance,
energy minimization, splines, piecewise geodesic, smoothing, Karcher mean.

1 Introduction

We are interested in the problem of fitting smooth curves to given sets of points on nonlinear
manifolds. Let p0, p1, . . . , pN be a finite set of points on a Riemannian manifold M , and let
0 = t0 < t1 < ... < tN = 1 be distinct and ordered instants of time. The problem of fitting
a smooth curve γ on M to the given points at the given times involves two goals of conflicting
nature. The first goal is that the curve should fit the data as well as possible, as measured, e.g.,
by the real-valued function Ed defined by:

Ed(γ) =

N
∑

i=0

d2(γ(ti), pi), (1)

where d denotes the distance function on the Riemannian manifold M . The second goal is that
the curve should be sufficiently “regular” in a certain sense, e.g., the changes in velocity or in
acceleration should be minimized. We are thus facing an optimization problem with two objective
functions—a fitting function Ed and the regularity function Es—whose domain is a suitable set
of curves on the Riemannian manifold M .

Curve fitting problems on manifolds appear in various applications. To cite but one example,
let (Ii)i≤N be a temporal sequence of images of a 2D or 3D object motion, in which the object
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can appear and disappear at arbitrary times due to obscuration and other reasons. The task is to
estimate the missing data and recover the motion of the object as well as possible. It is clear that
focussing on the first goal (fitting the data) without concern for the second goal (regularity of the
curve) would yield poor motion recovery, and that the result is likely to be improved if inherent
regularity properties of the object motion are taken into account.

1.1 Previous work

One possible way of tackling an optimization problem with two objective functions is to turn it
into a classical optimization problem where one of the objective functions becomes the objective
function and the other objective function is turned into a constraint.

Let us first discuss the case where the fitting objective function Ed is minimized under a
regularity constraint. When M = R

n, a classical regularity constraint is to restrict the curve γ
to the family of polynomial functions of degree not exceeding m, (m ≤ N). This least-squares
problem cannot be straightforwardly generalized to an arbitrary Riemannian manifold M because
the notion of polynomial does not carry to M in an obvious way. An exception is the case m = 1;
the polynomial functions in R

n are then straight lines, whose natural generalization on Riemannian
manifolds are geodesics. The problem of fitting geodesics to data on Riemannian manifold M was
considered in [MS06] for the case where M is the special orthogonal group SO(n) or the unit
sphere S

n.
The other case is when a regularity criterion Es is optimized under a constraint on Ed, in which

case it is natural to impose the interpolation constraint Ed(γ) = 0. For example, when M = R
n,

minimizing the function Es defined by

Es,1(γ) =
1

2

∫ 1

0

‖γ̇(t)‖
2
dt (2)

yields the piecewise-linear interpolant for the given data points and time instants (this follows
from [Mil63, p. 70]), while minimizing

Es,2(γ) =
1

2

∫ 1

0

‖γ̈(t)‖2dt

yields solutions known as cubic splines. (From now on, we will frequently omit the variable t in
the integrand when it is clear from the context.) For the case where M is a nonlinear manifold,
several results on interpolation can be found in the literature. Crouch and Silva Leite [CS91] (or
see [CS95]) generalized cubic splines to Riemannian manifolds, defined as curves γ that minimize,
under interpolation conditions, the function

Es,2(γ) =
1

2

∫ 1

0

〈

D2γ

dt2
,
D2γ

dt2

〉

γ(t)

dt, (3)

where D2γ
dt2

denotes the (Levi-Civita) second covariant derivative and 〈·, ·〉x stands for the Rie-
mannian metric on M at x. (The subscript may be omitted if there is no risk of confusion.)
They gave a necessary condition for optimality in the form of a fourth-order differential equa-
tion, which generalizes a result of Noakes et al. [NHP89]. Splines of class Ck were generalized
to Riemannian manifolds by Camarinha et al. [CSC95]. Still in the context of interpolation on
manifolds, but without a variational interpretation, we mention the literature on splines based on
generalized Bézier curves, defined by a generalization to manifolds of the de Casteljau algorithm;
see [CKS99, Alt00, PN07]. Recently, Jakubiak et al. [JSR06] presented a geometric two-step algo-
rithm to generate splines of an arbitrary degree of smoothness in Euclidean spaces, then extended
the algorithm to matrix Lie groups and applied it to generate smooth motions of 3D objects. An-
other approach to interpolation on manifolds consists of mapping the data points onto the affine
tangent space at a particular point of M , then computing an interpolating curve in the tangent
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space, and finally mapping the resulting curve back to the manifold. The mapping can be defined,
e.g., by a rolling procedure, see [HS07, KDL07].

Another way of tackling an optimization problem with two objective functions is to optimize a
weighted sum of the objective functions. In the context of curve fitting on manifolds, this approach
was followed by Machado et al. [MSH06] using the first-order smoothing term (2) and by Machado
and Silva Leite [MS06] for the second-order smoothing term (3).

Specifically, in [MSH06], the objective function is defined to be

E1 ≡
1

2

N
∑

i=0

d2(γ(ti), pi) +
λ

2

∫ 1

0

〈γ̇, γ̇〉 dt,

over the class of all piecewise smooth curves γ : [0, 1] → M , where λ (> 0) is a smoothing
parameter. Solutions to this variational problem are piecewise smooth geodesics that best fit the
given data. As shown in [MSH06], when λ goes to +∞, the optimal curve converges to a single
point which, for certain classes of manifolds, is shown to be the Riemannian mean of the data
points. When λ goes to zero, the optimal curve goes to a broken geodesic on M interpolating the
data points.

In [MS06], the objective function is defined to be

E2 ≡
1

2

N
∑

i=0

d2(γ(ti), pi) +
λ

2

∫ 1

0

〈

D2γ

dt2
,
D2γ

dt2

〉

dt

over a certain set of admissible C2 curves. The authors give a necessary condition of optimality that
takes the form of a fourth-order differential equation involving the covariant derivative and the cur-
vature tensor along with certain regularity conditions at the time instants ti, i = 0, . . . , N [MS06,
Th. 4.4]. The optimal curves are approximating cubic splines : they are approximating because in
general γ(ti) differs from pi, and they are cubic splines because they are obtained by smoothly
piecing together segments of cubic polynomials on M , in the sense of Noakes et al. [NHP89]. It
is also shown in [MS06, Prop. 4.5] that, as the smoothing parameters λ goes to +∞, the optimal
curve converges to the best least-squares geodesic fit to the data points at the given instants of
time. When λ goes to zero, the approximating cubic spline converges to an interpolating cubic
spline [MS06, Prop. 4.6].

1.2 Our approach

In this paper, rather than trying to solve directly the fourth-order differential equation obtained
in [MS06] (a feat that is not attempted in [MS06], except for M = R

n), we propose to search
for an optimizer of the objective function using a steepest-descent method in an adequate set of
curves on the Riemannian manifold M . In this section, we present the essence of our approach,
and delay the mathematical technicalities until Section 2.

We consider the problem of minimizing the objective function of [MSH06], namely

E2 : Γ2 → R : γ 7→ E2(γ) = Ed(γ) + λEs,2(γ)

=
1

2

N
∑

i=0

d2(γ(ti), pi) +
λ

2

∫ 1

0

〈

D2γ

dt2
,
D2γ

dt2

〉

dt, (4)

where Γ2 is an adequate set of curves on M to be defined in Section 2. The steepest-descent
direction for E2 is defined with respect to the second-order Palais metric

〈〈v, w〉〉2,γ = 〈v(0), w(0)〉γ(0) +

〈

Dv

dt
(0),

Dw

dt
(0)

〉

γ(0)

+

∫ 1

0

〈

D2v

dt2
,
D2w

dt2

〉

γ(t)

dt. (5)

As we shall see in Section 4, this choice of metric ensures that the gradient of E2 at γ, represented
by a vector field G along γ, admits a simple expression. This simple expression makes it possible

3



to implement a steepest-descent algorithm on Γ2, where the next iterate is obtained from the
current iterate γ using a line-search procedure along the path ε 7→ γε on Γ2 defined by

γε(t) = expγ(t)(−εG(t));

see Section 5. We use an Armijo backtracking procedure, but other stepsize selection methods
would be suitable.

We also present a gradient-descent approach for the objective function of [MSH06], namely

E1 : Γ1 → R : γ 7→ E1(γ) = Ed(γ) + λEs,1(γ)

=
1

2

N
∑

i=0

d2(γ(ti), pi) +
λ

2

∫ 1

0

〈γ̇, γ̇〉 dt, (6)

where Γ1 is another adequate set of curves on M defined below. For E1, the steepest-descent
direction is considered with respect to the first-order Palais metric

〈〈v, w〉〉1,γ = 〈v(0), w(0)〉γ(0) +

∫ 1

0

〈

Dv

dt
,
Dw

dt

〉

γ(t)

dt. (7)

This choice confers a simple expression to the gradient; see Section 3.
Observe that the parameter λ makes it possible to balance between the two conflicting goals

mentioned above: when λ is large, a higher emphasis is on the regularity condition relative to the
fitting condition, whereas when λ is small, the fitting condition dominates.

The rest of the paper is organized as follows. Section 2 deals with the choice of the curve spaces
Γ1 and Γ2. An expression for the gradient of E1, resp. E2, is given in Section 3, resp. 4. The
steepest-descent method is presented in Section 5. Numerical illustrations are given in Section 6
for M = R

2 and M = S
2. Section 7 contains final remarks.

2 Preliminaries

In this section, we exploit results of Palais [Pal63, §13] and Tromba [Tro77, §6] to define Γ in
such a way that the gradient of E with respect to the Palais metric is guaranteed to exist and be
unique.

2.1 First-order case

We first consider the objective function E1 defined in (6). Let I denote the unit interval [0, 1] and
let H0(I, Rn) denote the set of square integrable functions from I to R

n. The set H0(I, Rn) is a
Hilbert space under pointwise operations and with the inner product 〈〈·, ·〉〉0 defined by

〈〈v, w〉〉0 =

∫ 1

0

〈v(t), w(t)〉 dt,

where 〈·, ·〉 is the standard inner product in R
n. Let H1(I, Rn) denote the set of absolutely

continuous maps γ : I → R
n such that γ̇ ∈ H0(I, Rn). Note that absolute continuity is equivalent

to requiring that γ̇(t) exists for almost all t ∈ I , that γ̇ is summable, and that

γ(t) = γ(0) +

∫ t

0

γ̇(s) ds.

Then H1(I, Rn) is a Hilbert space under the inner product 〈〈·, ·〉〉1 defined by

〈〈v, w〉〉1 = 〈v(0), w(0)〉 + 〈〈v̇, ẇ〉〉0 . (8)

This inner product belongs to a class of Riemannian structures proposed by Linnér [Lin03, §3].
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Let M be a closed Ck+4-submanifold of R
n (k ≥ 1). Define H1(I, M) to be the set of all

γ ∈ H1(I, Rn) such that γ(I) ⊆ M . Then H1(I, M) is a closed Ck-submanifold of the Hilbert
space H1(I, Rn). We set

Γ1 = H1(I, M), (9)

which ensures that E1 (6) is a well defined Ck map, provided that, for all i, pi is in the image of
the domain of injectivity of the exponential mapping at γ(ti) (see Lazard and Tits [LT66] for the
case where the manifold is a Lie group).

The tangent space to H1(I, M) at a curve γ ∈ H1(I, M) is given by

TγH1(I, M) = {v ∈ H1(I, TM) : v(t) ∈ Tγ(t)M for all t ∈ I},

where TM denotes the tangent bundle of M . Moreover, H1(I, M) is a complete Ck-Riemannian
manifold in the Riemannian structure induced on it as a closed Ck-submanifold of H1(I, Rn).

Note that the induced Riemannian structure on H1(I, M) induced by (8) is the “extrinsic”
structure given by

〈v(0), w(0)〉 + 〈〈v̇, ẇ〉〉0 ,

where v̇ and ẇ are the derivatives in the sense of the embedding space R
n. It thus differs from the

“intrinsic” first-order Palais metric defined in (7). However, the extrinsic and intrinsic Riemannian
structures are equivalent on bounded sets [Tro77, Prop. 6.1].

From this, it follows that, given γ ∈ H1(I, M), the tangent space TγH1(I, M) endowed with
the inner product (7) is a Hilbert space. The gradient of E1 at γ is defined to be the unique
G ∈ TγH1(I, M) that satisfies, for all w ∈ TγH1(I, M),

〈〈G, w〉〉1,γ = DE1(γ)[w],

where DE1(γ)[w] denotes the derivative of E1 at γ along w. The existence and uniqueness of
G are guaranteed by the Riesz representation theorem. We will use the notation ∇E(γ) for the
gradient of a function E at γ, or simply G when E and γ are clear from the context.

2.2 Second-order case

We now turn to the objective function E2 defined in (4). Let H2(I, Rn) be the set of maps
γ : I → R

n with γ ∈ H1(I, Rn) and γ̇ ∈ H1(I, Rn). Then H2(I, Rn) is a vector space under
pointwise operations, and the map

Φ : R
n × R

n × H0(I, Rn) → H2(I, Rn) : (γ0, γ̇0, h) 7→ γ,

defined by γ(0) = γ0, γ̇(0) = γ̇0, γ̈(t) = h(t) for all t ∈ I , is an isomorphism. In H2(I, Rn),
consider the inner product 〈〈·, ·〉〉 defined by

〈〈v, w〉〉 = 〈v(0), w(0)〉 + 〈v̇(0), ẇ(0)〉 +

∫ 1

0

〈v̈(t), ẅ(t)〉 dt.

Then Φ is an isometry and H2(I, Rn) is a Hilbert space.
Let M be a closed Ck+4-submanifold of R

n (k ≥ 1). Define H2(I, M) to be the set of all
γ ∈ H2(I, Rn) such that γ(I) ⊆ M . Then, by restricting the proof of [Pal63, Th. 6.6] to H2, one
obtains that H2(I, M) is a closed Ck-submanifold of the Hilbert space H2(I, Rn). We set

Γ2 = H2(I, M), (10)

which ensures that E2 is well defined. The tangent space to H2(I, M) at a curve γ ∈ H2(I, M) is
given by

TγH2(I, M) = {v ∈ H2(I, TM) : v(t) ∈ Tγ(t)M for all t ∈ I}.

Given γ ∈ H2(I, M), consider the mapping

Φ : Tγ(0)M × Tγ(0)M × H0(I, Tγ(0)M) → TγH2(I, M)

5



that maps (v0, v̇0, g) to the vector field v along γ defined by

v(0) = v0,
Dv

dt
(0) = v̇0,

D2v

dt2
(t) = P t←0

γ g(t),

where P t←0
γ is the parallel transport along γ. Recall that the parallel transport is an isometry.

The map Φ is an isomorphism of vector spaces between its domain and image, and it is an isometry
with the obvious metric on the domain and the second-order Palais metric (5) on the image. Since
the domain of Φ is a Hilbert space, its image is also a Hilbert space endowed with the inner
product (5). Hence the Riesz representation theorem applies.

3 Gradient of E1 in the first-order Palais metric

We derive an expression for the gradient of E1 = Ed + λEs,1 (6) over Γ1 (9) endowed with the
first-order Palais metric (7). The gradient evaluated at a curve γ involves the operations of parallel
transport and covariant integral along γ.

3.1 Derivative of Ed

We first give an expression for the derivative of the ith term in Ed, namely,

fi : Γ1 → R : γ 7→
1

2
d2(γ(ti), pi).

Let expp denote the Riemannian exponential map at p ∈ M ; see, e.g., [Boo75, dC92]. Since
M is a closed Riemannian submanifold of R

n, it follows that M is complete (see [Pal63, p. 326]),
which means that expp ξ exists for all ξ ∈ TpM . If q ∈ M is not in the cut locus of p, then there
exists a unique minimizing geodesic αpq with αpq(0) = p and αpq(1) = q (see [dC92, corollary
13.2.8]), and we define exp−1

p (q) = α̇pq(0). Note that in this case, it also holds that p is not in the
cut locus of q (see [dC92, corollary 13.2.7]), and we have exp−1

q (p) = −α̇pq(1). An expression for
the derivative of fi is readily obtained from the following result.

Theorem 3.1 (Karcher, 1977). Let M be a complete Riemannian manifold, let p be a point of

M and let q be a point of M that is not in the cut locus of p. Then the squared distance function

to p is differentiable at q and we have, for all ξ ∈ TqM ,

1

2
Dd2(p, ·)(q)[ξ] =

〈

ξ,− exp−1
q p

〉

.

Proof. This proof is essentially a restriction of the proof of [Kar77, Th. 1.2]. Let α be defined by
α(t) = expq(tξ). Consider the family of geodesics from p to α(t): cp(s, t) = expp(s exp−1

p α(t)).
Since the cut locus is closed [dC92, corollary 13.2.10], this expression is well defined for all t in a
neighborhood of 0 and all s ∈ [0, 1]. Denote c′p = d

ds
cp(s, t) and ċp = d

dt
cp(s, t). We know that

d(p, α(t)) = ‖c′p(s, t)‖ is independent of s. We have successively

1

2

d

dt
d2(p, α(t)) =

1

2

d

dt

〈

c′p(s, t), c
′
p(s, t)

〉

which does not depend on s,

=

〈

D

dt
c′p(s, t), c

′
p(s, t)

〉

=

〈

D

ds
ċp(s, t), c

′
p(s, t)

〉

6



which still does not depend on s, thus

=

∫ 1

0

〈

D

ds
ċp(s, t), c

′
p(s, t)

〉

ds

=

∫ 1

0

d

ds

〈

ċp(s, t), c
′
p(s, t)

〉

ds

since D
ds

c′p(s, t) = 0 (geodesic property),

=
〈

ċp(1, t), c′p(1, t)
〉

since ċp(0, t) = 0,

=
〈

α̇(t),− exp−1
α(t) p

〉

.

Since 1
2Dd2(p, ·)(q)[ξ] = 1

2
d
dt

d2(p, α(t))
∣

∣

t=0
, the result follows.

In view of this result, we have that the derivative of fi at γ along w ∈ Tγ(Γ1) is

Dfi(γ)[w] = 〈w(ti), vi〉 ,

where
vi = − expγ(ti)(pi),

provided that γ(ti) is not in the cut locus of pi. This is a mild condition, since the cut locus has
measure zero [GHL04, lemma 3.96]. Finally, the derivative of Ed is given by

DEd(γ)[w] =

N
∑

i=0

〈w(ti), vi〉 .

3.2 Gradient of Ed

The gradient of fi at γ, with respect to the first-order Palais metric (7), is the unique element gi

of TγΓ1 such that, for all w ∈ TγΓ1,

〈〈gi, w〉〉1 = Dfi(γ)[w].

The next theorem gives an expression for gi.

Theorem 3.2. The gradient of the function fi : Γ1 → R : γ 7→ d2(γ(ti), pi) evaluated at γ ∈ Γ1

is the vector field gi along γ defined by

gi(t) =

{

(1 + t)ṽi(t), 0 ≤ t ≤ ti
(1 + ti)ṽi(t), ti ≤ t ≤ 1

,

where vi = − exp−1
γ(ti)

(pi) ∈ Tγ(ti)M and ṽi is the parallel transport of vi along γ.

Proof: See Appendix A.1.1.
Observe that gi is covariantly linear from 0 to ti, and is covariantly constant from ti to 1. In

other words, the covariant derivative of gi is covariantly constant (ṽi) until ti, and it is 0 after
that. Note also that ṽi(ti) = vi.

Once we have the gradient for each of the terms in Ed, the gradient of Ed, under the first-order
Palais metric, is simply their sum

G1 =

N
∑

i=0

gi. (11)
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3.3 Derivative of Es,1

The derivative and gradient of Es,1 (2) can be readily deduced, e.g., from [Tro77, §6] or [KS06,
Th. 1]. We give a full development here for convenience.

Recall that

Es,1(γ) =
1

2

∫ 1

0

〈γ̇(t), γ̇(t)〉 dt.

Define a variation of γ to be a smooth function h : [0, 1] × (−ε, ε) → M such that h(t, 0) = γ(t)
for all t ∈ [0, 1]. The variational vector field corresponding to h is given by w(t) = hs(t, 0) where
s denotes the second argument in h. Thinking of h as a path of curves in M , we define F (s) as
the energy of the curve obtained by restricting h to [0, 1]× {s}. That is,

F (s) =
1

2

∫ 1

0

〈ht(t, s), ht(t, s)〉 dt .

We now compute,

F ′(0) =

∫ 1

0

〈

Dht

ds
(t, 0), ht(t, 0)

〉

dt =

∫ 1

0

〈

Dhs

dt
(t, 0), ht(t, 0)

〉

dt =

∫ 1

0

〈

Dw

dt
(t), γ̇(t)

〉

dt,

since ht(t, 0) is simply γ̇(t). Hence the derivative of Es,1 at γ along w is given by

DEs,1(γ)[w] =

∫ 1

0

〈

Dw

dt
(t), γ̇(t)

〉

dt.

3.4 Gradient of Es,1

In view of the above expression for the derivative of Es,1, the following result directly follows from
Section A.1.2.

Theorem 3.3. The vector field H1 along γ that provides the gradient of the function Es,1 with

respect to the first-order Palais metric satisfies the equation:

DH1

dt
(t) = γ̇(t), H1(0) = 0. (12)

In the case M = R
n, the gradient vector field is simply H1(t) = γ(t) − γ(0).

3.5 Gradient of E1

Since E1 = Ed + λEs,1, the gradient of E1 follows directly from the gradients of Ed and Es,1

computed above. We thus have that ∇E1 = G1 + λH1, with G1 given (11) and H1 given by (12).

4 Gradient of E2 in the second-order Palais metric

Recall that E2 = Ed + λEs,2 is defined on Γ2 (10) by

E2(γ) =
1

2

N
∑

i=0

d2(γ(ti), pi) +
λ

2

∫ 1

0

〈

D2γ

dt2
,
D2γ

dt2

〉

dt. (13)

The purpose of this section is to obtain an expression for the gradient of E2 with respect to the
second-order Palais metric (5).
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4.1 Gradient of Ed

The derivative does not depend on the metric, in contrast to the gradient. Thus we have, as in
Section 3,

Dfi(γ)[w] = 〈w(ti), vi〉 ,

where fi denotes the function γ → 1
2d2(γ(ti), pi) and vi = − exp−1

γ(ti)
(pi).

Theorem 4.1. The gradient of the function fi : Γ2 → R : γ → d2(pi, γ(ti)) at γ ∈ Γ2 with respect

to the second-order Palais metric (5) is given by the vector field gi along γ defined by

gi(t) =

{

(1 + tit + 1
2 tit

2 − 1
6 t3)ṽi(t) 0 ≤ t ≤ ti

(1 + tti + 1
2 tt2i −

1
6 t3i )ṽi(t) ti ≤ t ≤ 1,

where ṽi is the parallel transport of vi along γ.

Proof: See Appendix A.2.1.
This gradient function is a cubic polynomial before ti and is a linear polynomial after ti. The

total gradient is given by G2(t) =
∑N

i=0 gi(t). Another way of writing this summation is: for
ti−1 ≤ t ≤ ti, we get

G2(t) =
i−1
∑

j=0

(1 + ttj +
1

2
tt2j −

1

6
t3j )ṽj(t) +

N
∑

j=i

(1 + tjt +
1

2
tjt

2 −
1

6
t3)ṽj(t). (14)

4.2 Derivative of Es,2

Let γ(s, t) be a collection of curves indexed by s; for a fixed s we have a curve parameterized by

t. For s = 0 that curve is simply called γ(t). Define w = ∂γ(s,t)
∂s

|s=0 as the tangent vector at γ.

Then DEs,2(γ)[w] = d
ds

F (s)
∣

∣

s=0
, where

F (s) =
1

2

∫ 1

0

〈

D

dt
(
∂γ

∂t
),

D

dt

∂γ

∂t
)

〉

dt.

Taking the derivative with respect to s:

d

ds
F (s) =

∫ 1

0

〈

D

ds
(
D

dt
(
∂γ

∂t
)),

D

dt
(
∂γ

∂t
)

〉

dt

=

∫ 1

0

〈

[R(w,
∂γ

∂t
)(

∂γ

∂t
) +

D

dt
(
D

ds
(
∂γ

∂t
))],

D

dt
(
∂γ

∂t
)

〉

dt,

where R is the Riemannian curvature tensor defined as:

R(
∂γ

∂s
,
∂γ

∂t
)(v) =

D

ds

D

dt
(v) −

D

dt

D

ds
(v).

(Note that the curvature tensor is sometimes defined with the opposite sign in the literature.)
Since D

ds
(∂γ

∂t
) = D

dt
(∂γ

∂s
), the desired derivative at s = 0 becomes:

d

ds
F (s)|s=0 =

∫ 1

0

〈

[R(w, γ̇)(γ̇) +
D2

dt2
(w)],

D

dt
(γ̇)

〉

dt

=

∫ 1

0

〈

R(w, γ̇)(γ̇),
D

dt
(γ̇)

〉

dt +

∫ 1

0

〈

D2

dt2
(w),

D

dt
(γ̇)

〉

dt. (15)

This is the sought expression for DEs,2(γ)[w].
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4.3 Gradient of Es,2

We will analyze the two terms in (15) separately.
The Riemannian curvature tensor has certain symmetries: for vector fields a, b, c, d along γ,

〈R(a, b)(c), d〉 = −〈R(b, a)(c), d〉 = −〈R(a, b)(d), c〉 = 〈R(c, d)(a), b〉 ,

which allows us to rewrite the first term of (15) as

∫ 1

0

〈

R(
D2γ

dt2
(t), γ̇(t))(γ̇(t)), w(t)

〉

dt ≡

∫ 1

0

〈A(t), w(t)〉 dt .

Note that this equation defines a vector field A along the curve γ. We need a vector field H2 with
the property that 〈〈H2, w〉〉2 = 〈A, w〉. In view of Appendix A.2.2, the solution is given by

H2(t) = Ĥ(t) − [−S̃(t) + t(Q̃(t) − S̃(t)) +
1

2
t2(Q̃(t) − S̃(t)) +

1

6
t3S̃(t)], (16)

where Ĥ is the four times covariant integral of A (so that it satisfies D4Ĥ
dt4

(t) = A(t)) with initial

conditions Ĥ(0) = DĤ
dt

(0) = D2Ĥ
dt2

(0) = D3Ĥ
dt3

(0) = 0, and where Q̃ and S̃ are the parallel transport

along γ of Q = D2Ĥ
dt2

(1) and of S = D3Ĥ
dt3

(1).

We now consider the second term in (15), that is,
∫ 1

0

〈

D2

dt2
(w), D

dt
(γ̇)

〉

dt. In view of Sec-

tion A.2.3, this term can be written as 〈〈H3, w〉〉2, where H3 satisfies

D2H3

dt2
=

D2γ

dt2
, H3(0) =

DH3

dt
(0) = 0, (17)

that is, H3 is two times covariant integral of D2γ
dt2

with initial conditions H3(0) = DH3

dt
(0) = 0.

In case M = R
n, the two terms are simply H2(t) = 0 and H3(t) = γ(t) − γ̇(0)t − γ(0) for all

t ∈ I .

4.4 Gradient of E2

Combining the two gradient terms, we get the gradient of E2 under the second-order Palais metric:

∇E2 = G2 + λ(H2 + H3),

where G2 is given in (14), H2 in (16), and H3 in (17).

5 Steepest-descent algorithm on the curve spaces

Let E stand for E1 (6), resp. E2 (4), Γ for the set Γ1 (9), resp. Γ2 (10), of curves on the Riemannian
manifold M , and let Γ be endowed with the first-order Palais metric (7), resp. second-order Palais
metric (5). We propose the steepest-descent method for E described in Algorithm 1.

The algorithm creates a sequence of curves (γk)k=0,1,... ⊂ Γ with decreasing energy E(γk). The
initialization step consists in choosing an arbitrary curve in Γ to be the starting curve γ0. Then,
given the current iterate γk, the algorithm computes the gradient ∇E(γk) and updates the curve
to γk+1 according to

γk+1(t) = expγk(t)(−ρ̂k∇E(γk)(t)), t ∈ I,

where ρ̂k is a step size chosen using some step size selection rule (see, e.g., [Ber95]). We have chosen
a modified version of Armijo backtracking procedure by imposing strong Wolfe conditions [Wol69];
see Algorithm 2. The algorithm is stopped when a certain pre-determined stopping criterion is
satisfied. The criterion can be a threshold on the norm of ∇E(γk), for example.

Whereas analyzing the convergence of steepest-descent type methods on finite-dimensional

manifolds is relatively simple (see [AG09]), the convergence analysis of steepest-descent methods
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Algorithm 1 Gradient descent

1: Given a scalar ε ∈]0, 1[ and an initial curve γ0, arbitrary element of Γ;
2: k := 0;
3: repeat

4: k := k + 1;
5: Compute E(γk) and ∇E(γk);
6: Find the step size ρ̂k using algorithm 2;
7: Set γk(t) = expγk−1(t)

(−ρ̂k∇E(γk)(t));
8: until ‖∇E(γk)‖ ≤ ε
9: return γ̂ := γk

Algorithm 2 Step size selection

1: Given scalars ρ0 ∈]0, 1[, ε > 0 very small, 0 < σ1 < σ2 < 1, a function f and a descent
direction q of f at x;

2: set k = 0 and set βk = ρ0;
3: until (βk ≤ ε) or (f(x + βkq) ≤ f(x) + σ1βk 〈〈∇f(x), q〉〉 and | 〈〈∇f(x + βkq), q〉〉 | ≤

σ2| 〈〈∇f(x), q〉〉 |) do

4: k := k + 1;
5: βk = βk−1ρ0;
6: end

7: return ρ̂ := βk

on infinite-dimensional spaces is no trivial matter; see [SZ04] and references therein. Analyzing
the convergence of Algorithm 1 is the object of ongoing research. Nevertheless, it is reasonable to
expect that the algorithm behaves like steepest-descent methods in finite dimension: the sequence
of iterates γk has a single limit (see [AMA05]) which, unless the initial curve is maliciously chosen,
is a local minimizer of the objective function E. These expectations are corroborated by our
numerical experiments; see Section 6.

6 Illustration on some specific manifolds: M = R
2, S

2

In this section we present some illustrations of our gradient descent approach to finding optimal
curves. In the case of Euclidean spaces, it is sometimes possible to derive expressions for the
optimal curves under E1 and E2 directly. In those situations, we can compare our numerical
solutions to the analytical expressions, and characterize the performances. In the remaining cases,
where the analytical solutions are not readily available, we will simply illustrate the results obtained
using our procedures. Examples involving the analytical expressions will have M = R

n and while
the other cases will have M = S

2.

6.1 Analytical solution of E1 in R
2

As the first example we will consider the problem of finding the optimal curves under E1 when
M = R

2. For simplicity, we will take λ = 1 in (6). This case is simple enough to seek an analytical
expression as follows. Let N = 2 and the three data points be given by p0 = (−A, 0), p1 =
(0, B), p2 = (A, 0), at the time instants t0 = 0, t1 = 0.5, t2 = 1, respectively; here A, and B be
two real variables. Using the symmetry of the given points, we will note that q0 = (−a, c), q1 =
(0, b), q2 = (a, c) will be the control points of an intermediate curve given by the gradient descent
method. Our goal is to find the values of variables a, b, and c such that the piecewise geodesic
curve connecting q0, q1, q2 is a minimum of E1. By computing Ed and Es,1 manually we get
E1 = 2(A − a)2 + 2c2 + (B − b)2 + 4(a2 + (b − c)2). The critical points are given by the equation
∇E1 = 0, i. e. in terms of partial derivatives we have ∂E1

∂a
= ∂E1

∂b
= ∂E1

∂c
= 0. This system has

11
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Figure 1: (a) and (b): The minimum of E1 in M = R
2 reached by the gradient descent method with

respect to Palais metric using different starting curves for λ = 1, (c): the step length variation, and (d):
the energy evolution versus iterations for the example shown in (a).
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Figure 2: The minimum of E1 in M = R
2 reached by the gradient descent method with respect to

first-order Palais metric using different values of λ.

only one solution given by a = 1
3A, b = 3

7B, and c = 2
7B, and the minimum of E1 is given by the

piecewise geodesic curve connecting points q1 = (−A/3, c), q2 = (0, 3B/7), and q3 = (A/3, 2B/7).
Shown in Figures 1((a) and (b)) are two optimal curves under E1 obtained by our algorithm,

for two different initial conditions. In each case, the green curve shows the initial condition and the
black curve shows the final result obtained numerically. The red curves show the optimal obtained
using the analytical solution. The coincidence of black and read curves shows the accuracy and the
stability of our algorithm. In Figures 1((c) and (d)) we show the variation of the step length, and
the variation of the cost function E1, respectively versus iterations, corresponding to the example
shown in Figure 1(a).

In Figure (2) we present some additional results for R
2, this time restricting only to our

numerical solutions. These examples use a random set of points and different values of λ to
demonstrate the strength of the algorithm. Each of these solutions are piecewise geodesics and
the end points of the geodesic segments depend on the value of λ.
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6.2 Analytical solution of E2 in R
n

Next we derive the optimal curves under E2 for Euclidean spaces. It is interesting to note that
in this case the cost function has n components, each corresponding to a coordinate in R

n. In
other words, the problem breaks down into n independent problems, each being one-dimensional.
Therefore, it is sufficient to illustrate the analytical solution for the one-dimensional case.

To derive an analytical solution to the one-dimensional problem, we will first estblish a number
of relations that this curve must satisfy and then use those relations to solve for the unknowns.
We start with the fact that γ̈(t) = Ḧ3(t) for all t. Therefore, γ takes the form:

γ(t) = H3(t) + rt + s ,

where r and s are two constants. Next, since γ is a critical point of E2, we have G2(t) = −H3(t)
(assuming λ = 1) for all t which makes γ(t) = −G2(t)+rt+s. Enumerating the different conditions
on γ, we obtain the following constraints.

1. Since H3(0) = 0, we have G2(0) = 0 which implies:

G2(0) =

n
∑

j=1

vj = 0 ,

where vj is as defined in Section 4.1.

2. Also, since Ḣ3(0) = 0, we have Ġ2(0) = 0 which means:

Ġ2(0) =

n
∑

j=1

vjtj = 0 .

3. Finally, since we know that γ(ti) = vi + pi, we get:

−G2(ti) + rti + s = vi + pi ,

which give us the relations: for i = 0, . . . , N

−
N

∑

j=0

(1 + tjti +
1

2
tjt

2
i −

1

6
t3i )vj −

i−1
∑

j=1

(1 + titj +
1

2
tit

2
j −

1

6
t3j )vj + rti + s = vi + pi . (18)

Rearranging this equation, we reach

n
∑

j=1

βj,ivj + rti + s = pi ,

where

βj,i =







−[(1 − 1
6 t3j ) + (tj + 1

2 t2j )ti] j < i
−[(2 + tjti + 1

2 tjt
2
i −

1
6 t3i )] j = i

−[(1 + tjti + 1
2 tjt

2
i −

1
6 t3i )] j > i

Taking these three types of relations, we form a linear system of equations. We have N + 3
equations and N + 3 unknowns:













1 1 . . . 1 0 0
t0 t1 . . . tN 0 0

β0,0 β1,0 . . . βN,0 t0 1
. . .

β0,N β1,N . . . βN,N tN 1

































v0

v1

v2

. . .
vN

r
s





















=

















0
0
p0

p1

. . .
pN

















. (19)
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Figure 3: The panels (a) and (b) show two examples of optimal curves under E2 obtained using our
numerical approach (black curve) and the analytical solution (red curve). The panels in (c) and (d) plot
the evolutions of E2 versus iterations for the cases (a) and (b), respectively. The curves in green are used
as the initial curves for the optimization.
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Figure 4: The optimal curves under E2 for different combinations of data points and λs.

After solving for the vjs, r and s, we can evaluate the optimal curve γ(t) = −G2(t) + rt + s.
We present some examples for comparing the numerical solutions with this analytical solution

for n = 2. In the panels Figure 3 (a) and (b), we present two examples with three points each and
solve for the optimal curves under different λs. In each case, the green line shows the initial curve,
the black line shows the optimal curve obtained numerically, and the red line shows the analytical
solution. We have used a dotted pattern for the black curve since the two optimal curves match
perfectly and one hides the other. As predicted by the theory, the optimal solution resembles a
straight line when λ is sufficiently large, and an interpolating spline when λ is sufficiently small.
The plots in panels (c) and (d) show the corresponding evolution of E2 versus iterations.

In Figure 4, we present some additional examples of optimal curves (obtained using our nu-
merical method) under E2 in R

2 for a variety of data points and λs. Each panel in this figure
shows the optimal γs for different (mostly small) values of λ but with the same data points. In
each case the initial curve for the gradient process is given by the green curve.

14



(a) (b) (c) (d)

Figure 5: Optimal curves under E1 for M = S
2 obtained by our gradient descent method with respect to

the first-order Palais metric. (a): λ = 100, (b): λ = 1, (c) and (d): λ = 10, 1, 0.1, and 0.0001. In each
case the green curve shows the initial condition.

(a) (b)

Figure 6: The evolution of curves under the gradient iterations for minimizing E1. (a): λ = 10−5, (b):
λ = 100.

6.3 Optimal Curves on the Unit Sphere

In this section we consider the case of M = S
2 where the analytical expressions for the optimal

curves are not readily available, and we apply our numerical approach to find the solutions. In
these experiments, we first generate N +1 data points p0, p1, . . . , pN randomly on S

2 and associate
them with different instants of time 0 = t0 < t1 < t2 < . . . tn ≤ t1 = 1. Then, we initialize our
algorithm by an arbitrary continuous curve γ0 ∈ Γ, and finally apply our gradient descent method
to search for the optimal curve γ̂ that minimizes E.

1. Case 1: In the case E = E1 we apply our algorithm as described in Section 3 and examples
are shown in Figure 5. Similar to the Euclidean case, the solutions are piecewise geodesic
curves. Since geodesics on S

2 are arcs that lie on great circles, these optimal curves are
piecewise arcs. The panels (a) and (b) show examples of optimal γ for N = 2 (three data
points) and N = 3 (four data points) with λ values being 100 and 1, respectively. For
λ = 100, the resulting optimal curve looks like a point. The remaining two panels (c) and
(d) show several optimal curves, each corresponding to different λs, for the same set of data
points. As earlier, the initial condition for the gradient descent is given by the green curve.

The Figure 6 shows two examples of the actual optimization process where the iterative
updates for γ under the gradient of E1 are shown. The process starts with the green curves
as the initial conditions and the updates are shown in black. The final curves in each case
are shown in red.

2. Case 2: In the case E = E2, we need to obtain an expression for the tangent vector field
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(a) (b) (c) (d)

Figure 7: Optimal curves under E2 for M = S
2 obtained by our gradient descent method with respect to

the second-order Palais metric. (a): λ = 0.01, (b): λ = 10−8, (c) and (d): λ = 0.01, 0.001, 10−4, and
10−6. In each case the green curve shows the initial condition.

A defined in Section 4.3, which involves the Riemannian curvature tensor R on M . To this
end, we rely on the extrinsic expression of R given in Section B, which we particularize to
the case of the sphere S

2 embedded in R
3. The orthogonal projector onto the tangent space

to S
2 at x ∈ S

2 is given by

Px = (I − xxT ),

hence

II(ηx, ξx) = (Dηx
P )ξx = −ηT

x ξx x

and

Uηx
(vx) = (Dηx

P )vx = −xT vx ηx,

and thus, by (26),

R(ξx, ηx)ζx = (ηT
x ζx)ξx − (ξT

x ζx)ηx.

Then, for the vector field A defined in Section 4.3, we have the expression

A = 〈γ̇, γ̇〉
D2γ

dt2
−

〈

D2γ

dt2
, γ̇

〉

γ̇. (20)

Using this expression, we first integrate A(t) covariantly to determine the term H2 of the
gradient of E2, and then use the gradient descent method of Algorithm 1 to minimize E2.
Shown in Figure 7 are some examples of our approach applied to different sets of points
generated randomly on S

2. The pictures in (a) and (b) show examples of optimal curves for
three and five points with λs as indicated there. The remaining two panels show examples
of optimal curves obtained for fixed data points under different λs. Curves in different
colors are obtained by using different values of λ. The values of λ used in (c) and (d) are
0.01, 0.001, 10−4, and 10−6. As the value of λ increases, we can see the optimal curves
straightening and shortening into single arcs.

Figure (7) shows two examples of the iterative process by displaying the intermediate curves
also. The initial curves are shown in green, the iterations are shown in black and the final
curves are shown in red.

Asymptotics on λ: Our numerical experiments corroborate the following theoretical results
mentioned in Section 1.1:
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Figure 8: Evolutions of γ under the gradient of E2. The green curves are the initial conditions and the
red curves are the final states.

• If λ is very small, we have E ' Ed. When E = E1 (6), the optimal curve is the piecewise
geodesic passing through the given points. When E = E2 (4), the optimal curve is a
piecewise cubic polynomial (in the sense of [NHP89]) interpolating the given set of points
when E = E2.

• If λ is very large, then E ' Es. When E = E1, the optimal curve shrinks to one point in
M , precisely the Karcher mean of the given set of points p0, p1, . . . , pN . When E = E2, the
optimal curve approaches the best least-squares geodesic fit to the given points.

7 Concluding remarks

We have addressed the problem of fitting a curve to data points on a Riemannian manifold M by
means of a Palais-based steepest-descent algorithm applied to the weighted sum of a fitting-related
and a regularity-related cost function. As a proof of concept, we have used the simple regularity
cost function (2) based on the first derivative. We have also considered the more challenging case
of the regularity cost function (3), whose derivative involves the Riemannian curvature tensor
on M , and for which the optimal curves are generalized cubic splines. We have illustrated the
proposed method on fitting problems in R

2 and S
2. In future work, we will consider other nonlinear

manifolds with applications in pattern recognition and image analysis.
An important feature of our approach is that the discretization takes place as late as possible

in the implementation. The gradient of the cost function at a curve γ is a (continuous-time) vector
field along γ expressed by means of the Riemannian logarithm, parallel transport, covariant differ-
entiation, and covariant integrals. It is these operations that are approximated by discretization in
the algorithm implementation. The advantage of using a continuous formulation is that tools from
functional analysis become available. We are able to use the Palais metrics and, thus, simplify the
gradient vector fields only because of this continuous formulation. An alternate approach would
be to consider a discretization γ̂ of γ using P points and discretize the function E accordingly to
obtain a new objective function Ê : MP → R : γ̂ 7→ Ê(γ̂) that we would optimize on the finite-
dimensional product manifold MP using, e.g., a steepest-descent method described in [AMS08].
The two approaches yield considerably different expressions for the gradient. In particular, in the
approach on Ê, the gradient of the fitting term d2(γ(ti), pi) vanishes everywhere except at time
ti, whereas with the approach proposed here the influence of the ith fitting term is spread along
the whole curve in the expression of its gradient. Although we have not compared the results, one
should expect a better performance with the approach where the discretization is delayed until
the implementation step.
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A Dictionary of Gradients in Palais Metrics

In a number of instances in this paper, we reach an expression for the derivative of an energy term
and we want to deduce an expression for the gradient in terms of one of the Palais metrics (7), (5).
In order to simplify this conversion, we derive a set of formulas for the expressions we come across
in this paper.

We will use the following setup. For j = 1, 2, we are given a linear map Lγ : TγΓj → R : w 7→
Lγ(w), and we seek an expression for G ∈ TγΓj such that 〈〈G, w〉〉j,γ = Lγ(w) for all w ∈ TγΓj .

A.1 First-Order Palais Metric

We first consider the case j = 1, i.e., 〈〈·, ·〉〉1 is the first-order Palais metric (7) and Γ1 is as in (9).

A.1.1 Pointwise L

For a fixed ti, let vi ∈ Tγ(ti)M be an arbitrary tangent vector and let Lγ(w) = 〈w(ti), vi〉γ(ti)
.

Our goal is thus to find a vector field gi along γ such that 〈〈gi, w〉〉1 = 〈w(ti), vi〉. We start with
the left side:

〈〈w, gi〉〉1 = 〈w(0), gi(0)〉 +

∫ 1

0

〈

Dw(t)

dt
,
Dgi(t)

dt

〉

dt

= 〈w(0), gi(0)〉 +

∫ ti

0

〈

Dw(t)

dt
,
Dgi(t)

dt

〉

dt +

∫ 1

ti

〈

Dw(t)

dt
,
Dgi(t)

dt

〉

dt

Integrating the middle term by parts, we get:

=

〈

w(t),
Dgi(t)

dt
(t)

〉

|ti

0 −

∫ ti

0

〈

w(t),
D2gi(t)

dt2

〉

dt

=

〈

w(ti),
Dgi(t)

dt
(ti)

〉

−

〈

w(0),
Dgi(t)

dt
(0)

〉

−

∫ ti

0

〈

w(t),
D2gi(t)

dt2

〉

dt

Equating it with the right side, we get

〈w(ti), vi〉 = 〈w(0), gi(0)〉 +

〈

w(ti),
Dgi(t)

dt
(ti)

〉

−

〈

w(0),
Dgi(t)

dt
(0)

〉

−

∫ ti

0

〈

w(t),
D2gi(t)

dt2

〉

dt

+

∫ 1

ti

〈

Dw(t)

dt
,
Dgi(t)

dt

〉

dt

=

〈

w(0), gi(0) −
Dgi(t)

dt

〉

+

〈

w(ti),
Dgi(t)

dt
(ti)

〉

−

∫ ti

0

〈

w(t),
D2gi(t)

dt2

〉

dt

+

∫ 1

ti

〈

Dw(t)

dt
,
Dgi(t)

dt

〉

dt

Now comparing the different terms on both the sides, we get the following rules for establishing
the vector field gi:

Dgi

dt
(ti) = vi,

Dgi

dt
(0) = gi(0)

D2gi

dt2
(t) = 0, t ∈ [0, ti],

Dgi

dt
(t) = 0, t ∈ [ti, 1].

The solution is given by

gi(t) =

{

(1 + t)ṽi(t), 0 ≤ t ≤ ti
(1 + ti)ṽi(t), ti ≤ t ≤ 1

, (21)

where ṽi is the parallel transport of vi along γ. (Therefore, ṽi(ti) = vi.) gi is covariantly linear
from 0 to ti and is covariantly constant from ti to 1. In other words, the covariant derivative of gi

is covariantly constant (ṽi) until ti, after that it is 0.
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A.1.2 First-order L

Let γ ∈ Γ1, let A be a vector field along γ, and let Lγ be defined by Lγ(w) =
∫ 1

0

〈

A(t), Dw
dt

〉

dt.
We thus seek a vector field G along γ such that

〈w(0), G〉 +

∫ 1

0

〈

Dw(t)

dt
,
DG(t)

dt

〉

dt =

∫ 1

0

〈

A(t),
Dw

dt

〉

dt,

for all w ∈ TγΓ1. From this expression it is clear that G must satisfy the initial condition G(0) = 0
and the ordinary (covariant) differential equation DG

dt
= A(t).

A.2 Second-Order Palais Metric

We now consider the case j = 2, i.e., 〈〈·, ·〉〉2 is the second-order Palais metric (5) and Γ2 is as
in (10).

A.2.1 Pointwise L

For a fixed ti, let vi ∈ Tγ(ti)M be an arbitrary tangent vector and let Lγ(w) = 〈w(ti), vi〉γ(ti)
.

Hence our goal is to find a vector field gi along γ such that 〈〈gi, w〉〉2 = 〈w(ti), vi〉.
Using the fundamental theorem of calculus, we have:

〈vi, w(ti)〉γ(ti)
− 〈ṽi(0), w(0)〉γ(0) =

∫ ti

0

〈

ṽi,
Dw

dt
(t)

〉

γ(t)

dt .

Therefore,

〈vi, w(ti)〉γ(ti)
= 〈ṽi(0), w(0)〉γ(0) +

∫ ti

0

〈

ṽi,
Dw

dt
(t)

〉

γ(t)

dt

= 〈ṽi(0), w(0)〉γ(0) +

〈

tṽi(t),
Dw

dt
(t)

〉

γ(t)

|ti

0 −

∫ ti

0

〈

tṽi,
D2w

dt2
(t)

〉

γ(t)

dt

= 〈ṽi(0), w(0)〉γ(0) +

〈

tivi,
Dw

dt
(ti)

〉

γ(ti)

−

∫ ti

0

〈

tṽi,
D2w

dt2
(t)

〉

γ(t)

dt

Applying the fundamental theorem one more time, we get:

〈

tivi,
Dw

dt
(ti)

〉

γ(ti)

=

〈

tiṽi(0),
Dw

dt
(0)

〉

γ(0)

+

∫ ti

0

〈

tiṽi(t),
D2w

dt2
(t)

〉

dt .

Combining the last two results, we obtain

〈vi, w(ti)〉γ(ti)
= 〈ṽi(0), w(0)〉γ(0) +

〈

tiṽi(0),
Dw

dt
(0)

〉

+

∫ ti

0

〈

(ti − t)ṽi(t),
D2w

dt2
(t)

〉

dt .

Setting it equal to 〈〈w, gi〉〉2, we obtain the following properties for gi:

gi(0) = ṽi(0)

Dgi

dt
(0) = tiṽi(0)

D2gi

dt2
(t) =

{

(ti − t)ṽi(t) 0 ≤ t ≤ ti
0 ti ≤ t ≤ 1

Solving for gi, we obtain:

gi(t) =

{

(1 + tit + 1
2 tit

2 − 1
6 t3)ṽi(t) 0 ≤ t ≤ ti

(1 + tti + 1
2 tt2i −

1
6 t3i )ṽi(t) ti ≤ t ≤ 1 .

(22)
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A.2.2 Zeroth-order L

Given a curve γ ∈ Γ2 and a vector field A on M along γ, we seek a vector field H such that, for

all w ∈ TγΓ2, 〈〈H, w〉〉2 =
∫ 1

0 〈A, w〉γ(t) dt, that is,

〈H(0), w(0)〉 + 〈H ′(0), w′(0)〉 +

∫ 1

0

〈

D2H(t)

dt2
,
D2w(t)

dt2

〉

dt =

∫ 1

0

〈A(t), w(t)〉 dt.

We proceed by integrating by parts on the left twice, each time lowering the number of primes on
w and raising the number of primes on H in the integrand:

〈H(0), w(0)〉+ 〈H ′(0), w′(0)〉+ 〈H ′′(1), w′(1)〉−〈H ′′(0), w′(0)〉−〈H ′′′(1), w(1)〉+ 〈H ′′′(0), w(0)〉

+

∫ 1

0

H(4)(t) · w(t) dt =

∫ 1

0

A(t) · v(t) dt.

From this equation, it follows immediately that H must satisfy the ODE H (4) = A, with boundary
conditions H(0) + H ′′′(0) = 0, H ′(0)−H ′′(0) = 0, H ′′(1) = 0, and H ′′′(1) = 0. One can find such
an H explicitly as follows: First, covariantly integrate A(t) four times to obtain a vector field H̃
that satisfies H̃(4)(t) = A(t) with initial conditions H̃(0) = H̃ ′(0) = H̃ ′′(0) = H̃ ′′′(0) = 0. Note
that H̃ now satisfies the first two of the required boundary conditions on H , but not the third and
fourth. So we adjust it as follows. Define Q = H̃ ′′(1) and S = H̃ ′′′(1), extending each of these by
parallel transport to covariantly constant vector fields Q̃ and S̃ along γ. Then define

H(t) = H̃(t) − [−S̃(t) + t(Q̃(t) − S̃(t)) +
1

2
t2(Q̃(t) − S̃(t)) +

1

6
t3S̃(t)].

It is easy to verify that H now satisfies all four required boundary conditions.

A.2.3 Second-order L

Given a curve γ ∈ Γ2 and a vector field A on M along γ, we are interested in finding a vector field

G on M along γ such that, for all w ∈ TγΓ2, 〈〈G, w〉〉2 =
∫ 1

0

〈

D2w
dt2

, A(t)
〉

dt, that is,

〈G(0), w(0)〉 + 〈G′(0), w′(0)〉 +

∫ 1

0

〈

D2G

dt2
(t),

D2w

dt2
(t)

〉

dt =

∫ 1

0

〈

D2w

dt2
, A(t)

〉

dt.

It is readily checked that the solution G satisfies G(0) = 0, DG
dt

(0) = 0, and D2G
dt2

(t) = D2γ
dt2

(t) for
all t ∈ I .

B An extrinsic expression for the curvature tensor

The expression of the derivative of Es,2 obtained in Section 4.2 involves the Riemannian curvature
tensor of the Riemannian manifold M . This tensor is well defined regardless of any embedding
of the Riemannian manifold M in a Euclidean space. Nevertheless, when M is a Riemannian
submanifold of a Riemannian manifold N , the curvature tensor admits an extrinsic expression in
terms of the second fundamental form and of the Weingarten map, which turns out to be handy
in certain cases. In this section, we present this extrinsic expression, then we work out in detail
the particular case where N is a Euclidean space.

Let Dηξ denote the (Levi-Civita) covariant derivative of ξ along η on the embedding manifold
M , and let D denote that derivative on N . The curvature tensor R is defined by

R(ξ, η)ζ = DξDηζ − DηDξζ − D[ξ,η]ζ, (23)

where ξ, η, ζ are tangent vector fields on M and [ξ, η] denotes the Lie bracket. (Observe the sign
convention for R, which is not standard through the literature.) Given x ∈ M , let Px : TxN →
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TxM denote the orthogonal projector onto TxM . Let T⊥x M denote the normal space to M at x,
and let P⊥x : TxN → T⊥x M denote the orthogonal projector onto the normal space T⊥x M . The
shape operator (also called second fundamental form) is the object II defined as follows: for all
x ∈ M and all ξx, ηx ∈ TxM ,

II(ηx, ξx) := P⊥x Dηx
ξ, (24)

where ξ is any tangent vector field that extends ξx. This definition can be found, e.g., in [O’N83,
Cha06]. The Weingarten map is the object U defined as follows. For all x ∈ M , ηx ∈ TxM ,
vx ∈ T⊥x M ,

Uηx
(vx) := −PxDηx

v, (25)

where v is any normal vector field that extends vx. This definition can be found, e.g., in [Cha06,
p. 62]. Then the curvature tensor can be expressed as follows:

R(ξ, η)ζ = UξII(η, ζ) − UηII(ξ, ζ). (26)

Let us now assume that N is a Euclidean space. Then the projector field P can be viewed as
a matrix-valued function, the shape operator admits the expression

II(ηx, ξx) = (Dηx
P )ξx, (27)

where D now reduces to the classical derivative, and the Weingarten map takes the form

Uηx
(vx) = (Dηx

P )vx. (28)

We refer to [ATMA09] for details. These formulas are particularly useful when the projector field
P admits a simple expression.
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