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We study the problem of joint registration and deformation analysis of endometrial tissue using 3D MRI and 2D Trans-vaginal
Ultrasound (TVUS) measurements. In addition to the different imaging techniques involved in the two modalities, this problem is
complicated due to: (1) different patient pose during MRI and TVUS observations, (2) the 3D nature of MRI and 2D nature of TVUS
measurements, (3) the unknown intersecting plane for TVUS in MRI volume, and (4) the potential deformation of endometrial tissue
during TVUS measurement process. Focusing on the shape of the tissue, we use expert manual segmentation of its boundaries in the
two modalities and apply, with modification, recent developments in shape analysis of parametric surfaces to this problem. First, we
extend the 2D TVUS curves to generalized cylindrical surfaces through replication, and then we compare them with MRI surfaces
using elastic shape analysis. This shape analysis provides a simultaneous registration (optimal re-parameterization) and deformation
(geodesic) between any two parametrized surfaces. Specifically, it provides optimal curves on MRI surfaces that match with the
original TVUS curves. This framework results in an accurate quantification and localization of the deformable endometrial cells for
radiologists, and growth characterization for gynecologists and obstetricians. We present experimental results using semi-synthetic
data and real data from patients to illustrate these ideas.

Index Terms—Elastic geodesics, 3D-2D registration, elastic deformation, generalized cylinders, re-parametrization, shape analysis,
endometriosis, multi-modal registration.

I. INTRODUCTION
Endometriosis is a complex gynecological medical disease

in which endometrial cells (glands and stroma) appear outside
their usual locations in the uterine cavity, as illustrated using
Fig. I(a). The main symptoms of endometriosis may depend on
the site of active endometriosis and are influenced by hormonal
changes. This disease affects approximately 10% of women
in the reproductive age group and may cause chronic pelvic
pain, severe dysmenorrhea, and several digestive problems
including diarrhea, occasional constipation, rectal bleeding and
infertility. The endometriosis can be found in the pelvic cavity
region, specifically in the pelvic peritoneum and pelvic organs.
Currently there is no ethologic cure for endometriosis, but
it can be treated in a variety of ways, including using pain
medication, hormonal treatments, and laparoscopic surgery in
severe cases.
As shown in Fig. I(a), the endometriosis tissue frequently

penetrates into other tissues and organs. An accurate diagnosis
must be made in order to obtain important medical infor-
mation, such as the depth of infiltration and exact location.
Several methods have been used for the purpose of assessing
whether a patient has endometriosis. These methods use mul-
tiple imaging modalities, such as MRI, transvaginal ultrasound
(TVUS), pelvic ultrasound, and laparoscopy to determine the
stage of endometriosis in a patient. If MRI and ultrasound
techniques fail to detect endometrial lesions, then laparoscopy
becomes necessary. Laparoscopy involves minor surgery under
general anesthesia and, for many years, laparoscopy was the
only method to diagnose endometriosis [1]. However, there are
some limitations in this approach. First, it does not provide any
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information about the depth of infiltration. Second, it might not
detect the endometrial lesions which are located under other
organs. Finally, the place of insertion of the laparoscope into
the patient’s body depends on the prediction of the location
of endometriosis by gynecologists. To avoid these drawbacks,
an attractive solution is to combine information collected from
TVUS and MR imaging and reach a comprehensive inference
on endometrial lesions.
The MRI provides a global map of a nodule’s location and

gives a good contrast between normal and malignant tissues,
as shown in Fig. I(c). However, MR imaging does not include
information about the elasticity of endometrial lesions [1].
On the other hand, TVUS imaging can provide information
about the depth of infiltration and, importantly, about the
tissue deformation resulting from the transducer’s pressure. An
example of a TVUS image is shown in Fig. I(b). The resulting
nonlinear deformation is highly dependent on the transducer’s
position, area, shape, and pressure. This scheme of imaging
is depicted in Fig. 2 where a surface (shown in the left) is
observed using a transducer that changes the surface shape
locally (in the middle) and captures a planar image shown in
the right. The limitations of TVUS imaging include limited
field of view and low signal to noise ratio [2]. Due to their
different operating principles, TVUS and MRI can provide
complementary information for diagnosing endometriosis. In
order to counter the individual limitations of MR and TVUS
imaging modalities, the registration and fusion of MR/TVUS
data must be performed. The main advantage of MR/TVUS
fusion is the combination of accurate localization (from MR)
and estimation of the depth of infiltration (from TVUS), which
can help the surgeon accurately remove pathological tissues.
However, registration of this imaging data across modalities is
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(a) Tissues (b) TVUS (c) MRI (d) Surface
Fig. 1. Example of endometrial tissue localization outside the pelvic cavity
shown in laparoscopic (a), TVUS (b), and MR (c) images.

challenging due to differences in the tissue’s intensity, dimen-
sionality, patient positioning (translation, rotation, and scaling)
and the organ’s elasticity (re-parametrization) introduced by
the transducer’s pressure. Furthermore, registration and fusion
of these two images is a challenging task due to the disparity
in gray-level intensities, the existence of artifacts including
deformation and noise, and the large non-overlapping fields
of view. Therefore, shape analysis of structures becomes an
important tool in this context. Before we describe our shape-
based approach to registration of the two modalities, we
summarize related research from past literature.

A. Related Work
The general problem of registering 2D or/and 3D images

is especially hard because: (1) often data are derived from
different modalities, (2) they represent deformable organs
with different shapes in different images, and (3) there is no
initial correspondence between shapes contained therein. The
problem of 3D-2D registration is a special case of the general
image registration problem, with a high interest to clinicians.
In a radiological context, the precise knowledge of position
and elasticity of some specific organs is very important.
With the help of 3D-2D registration methods the surgeon can
obtain such knowledge, and benefit in time efficiency and
safety during the laparoscopic intervention. In this section,
we provide a short summary of some relevant works in
3D-2D registration in the context of diagnosis, treatment,
and guided-intervention. A large majority of existing ideas
are concerned with registering pre-operative data such as
MRI, CT, MR Angiography (MRA), Digital Subtracted
Angiography (DSA), etc., to the inter-operative data, i.e. data
available during the surgery. Although our problem context
is different, some of these methods are relevant as they have
the same goal, i.e. register a 3D object to a 2D one. Based
on the representations used for registration, one can roughly
categorize the most common approaches into feature-based
and intensity-based.

Intensity-based methods: Intensity-based registration
methods are quite common in medical image analysis as
they can use pixel/voxel values to register single or multiple
modalities. Most of the intensity-based methods consist
of minimizing a cost function with two terms: (1) a data
term that consists of one of the following measures: mutual
information, entropy, cross correlation or others, and (2) a
regularization term that represents a regularization of the
deformation of the first or second order [3]. A common
approach is to integrate similarity metrics to match image

representations. There are two classes of such methods: first,
images are represented by their intensity distribution on
the whole images [4] or on some characteristic subregions
[5]. This is the case when a surface is deformed using a
parametric model to simulate mammographic compression
[6], or when a probabilistic model is defined to estimate a
cutting plane as a registration between 3D MRAs and 2D
X-ray DSAs [7]. The other types of methods represent both
images in an artificial modality using morphological tools
[8], color variances [9], gradient directions [10], etc. The
main drawback of methods of the first type is that they are
highly dependent on the images’ intensity correlation. A big
difference between intensity values, such as in TVUS and
MRI of endometriosis, can make those approaches prone
to large errors. Methods of the second type are even more
challenging for TVUS images, which vary significantly in
their appearance due to multiple echoes and repetition times.

Feature-based methods: Feature-based methods are those
that make use of landmarks or other extracted geometric
features to register images. Such methods rely on low-
dimensional transformations, such as rigid or affine, for regis-
tration. For example, Cosse et al. [11] proposed an ICP-based
algorithm to register MR/US prostate and rectum surfaces.
Vermandel et al. [12] used a hybrid approach by combining
both intensity and skeleton-based methods to register 3D
MRAs and 2D DSAs. The registration process consists of
estimating the six (rigid-body) motion parameters between the
2D image and the projected views of the 3D structure. More
recently, Biesdorf et al. [13] used a combination of 3D model-
based segmentation and elastic image registration to quantify
the aortic arch. Their method consists of minimizing an energy
functional corresponding to a segmented 3D cylindrical tubular
model as a first term and a 2D registered circular cross-section
as a second term. However, they used a parametric spline
model to ensure smoothness of the resulting displacement
field, which makes the method lose its generality in function
spaces. Although this paper has a similar setting to the current
paper, the focus is somewhat different. In that paper, one
assumed the knowledge of projection from 3D to 2D and
used this information to segment a 3D volume. In our case,
the cutting plane for TVUS is unknown and the projection is
not available. Furthermore, we have an unknown deformation
between the 3D and 2D objects. We assume the availability
of segmentation to estimate the cutting plane, the registration,
and the deformation between objects.
Some of the current approaches consider registration using

locally-affine transformations. Here, one splits the deformation
vector field into small regions. For example, Zikic et al. [14]
used Markov random fields to estimate affine transformations
that align 3D to 2D data by comparing the 2D projected
views of the volume and the available 2D images. Also,
this way the deformations can be computed locally and then
interpolated. Buerger et al. [15] exploited the same idea by
using an adaptive region-based method to estimate whole-
thorax deformations during a respiratory motion. They split
the 3D volume into hierarchical structures including adaptive
sub-blocks. A local affine transformation is then estimated
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on each block and a multilevel B-spline interpolation is used
to estimate a full displacement (a deformation field on the
whole volume). To cope with the limitations of intensity-
based approaches, Zhang et al. [16] combine intensity and
uncertainty weighted surfaces to register 3D CBCT and 3D
FBCT prostate images. Their cost function includes three
terms: the similarity between images, the similarity between
spherical surfaces including uncertainty, and the regularization
term.
Among all intensity or hybrid based techniques, the methods

relying on mutual information have been shown to robustly
align images from different imaging modalities. However,
matching two image distributions assumes that they are suf-
ficiently correlated which is not the case when images are
produced from very distinct modalities, resulting in different
data dimensions.

B. Our Approach
Since the main goal of this paper is to study endometriosis,

we focus on this anatomical structure directly. The purpose
of this work is to characterize endometrial tissues in MR
images and, since the nodules can be deformed in the TVUS
images, there is no automatic correspondence between features
in both modalities. Thus, we propose a new method based on
shape analysis, since a shape feature is invariant to translation,
scale, rotation, and re-parametrization. We assume that we
can extract, manually or automatically, the boundaries of
endometrial tissue in MRI and TVUS images. In case of 3D
MRI images, we obtain a 2D surface as the boundary, while
for TVUS images we get a simple closed curve. Although
the boundary of an endometrium forms a closed surface,
the MRI image is collected at such a low resolution that in
the absence of the closing slices on both ends, the resulting
surfaces are topologically cylindrical. So, our modified goal
is now to focus on the shapes of these two objects – a
cylindrically-parameterized surface from MRI and a planar
closed curve from TVUS – and perform registration of these
extracted structures. When comparing two objects in different
dimensions, as is the case here, there are two possibilities.
One is to project the higher-dimensional object to the lower
space and then compare with the other object. However, the
parameters of projection (or the plane of intersection) are
unknown and can make a big difference in the final result. The
other possibility is to extrapolate the lower-dimensional object
to the higher space and perform a more exhaustive comparison.
Although this approach can be computationally expensive, it
is more stable with respect to the choice of parameters. So,
we will take this approach by extending the TVUS curve into
a generalized cylinder and comparing the two shapes. In this
setup, we pose the following questions:
1) Which closed curve on the MRI surface optimally cor-
responds to the TVUS curve?

2) What is the optimal deformation between the two curves
and how to quantify the elasticity of endometriosis using
a measure of this deformation?

3) Can we extend this deformation from the optimal curve
to the full MRI surface to help a physician in locating
and assessing endometrium shape variability?

Fig. 2. An illustration of the mapping from an MRI surface fMRI to the
TVUS curve βUS . Left: an open cylinder depicting an MRI surface fMRI .
Middle: Φ(T (fMRI )) after a nonlinear deformation Φ and its intersection
with a cutting plane. Right: Resulting in βUS .

To answer these and related questions, we propose a surface-
based elastic registration and deformation method for this task.
This approach is a modification of shape analysis of certain
parametric surfaces developed by Kurtek et al. [17], [18] in
previous papers. While previous papers dealt with spherical
and quadrilateral surfaces, the current paper will extend that
mathematical framework to cylindrically-parameterized sur-
faces. The main strength of this framework is that it solves
the problems of registration and optimal deformation in a joint
framework.
We summarize the goal of this paper in precise mathemat-

ical form. As stated above, the variability between TVUS
and MRI images results from two transformations. Firstly,
there is a change in patient position due to the fact that MR
imaging is performed in supine position, whilst TVUS imaging
is performed in lithotomy position. As shown in Fig. 2, the
first transformation, denoted by T , introduces a change in
translation and rotation of the 3D MRI surface fMRI (depicted
as a cylinder). Secondly, there is a nonlinear deformation Φ
due to the ultrasound transducer’s pressure, resulting in the
deformed surface Φ(T (fMRI)). Thus, a planar curve on the
MRI surface may be transformed to a non-planar one on
Φ(T (fMRI)), and vice versa. Let βUS be a planar curve
observed using the intersection of a cutting plane P with
Φ(T (fMRI)), i.e. βUS = P ∩ Φ(T (fMRI)). The problem of
interest is: Given βUS and fMRI , estimate a closed curve
β̂MRI ∈ fMRI that optimally corresponds to βUS under
elastic deformations. Note that T , Φ, and P are unknown
nuisance variables and one needs to estimate them, at least
partially, in the estimation process.
The rest of the paper is organized as follows. We describe

a conceptual overview of our framework in Section 2 and
the mathematical framework for registration of cylindrically-
parametrized surfaces in Section 3. We use that framework to
compute optimal deformations (geodesics) between surfaces in
Section 4. The application of this framework to analyze MRI
surfaces and TVUS curves is presented in Section 5, with some
validation analysis in Section 6. We close this paper with a
brief conclusion in Section 7.

II. MATHEMATICAL FRAMEWORK
Let βUS : S1 → R2 represent a closed, planar curve coming

from the TVUS image. Also, let fMRI : S1 × [0, 1] → R3

be the surface obtained from the MRI image. We will de-
velop a novel Riemannian framework for shape analysis of
cylindrically-parametrized surfaces. In particular, the devel-
oped tools will give us a principled approach for registra-
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tion and deformation of surfaces. Furthermore, the resulting
distance (that satisfies symmetry and triangle inequality) will
be based on an elastic metric, which explicitly captures the
amount of ”stretching” and ”bending” needed to deform one
surface into another. In order to use this framework, we form
an ultrasound surface using fUS : S1×[0, 1] → R3 by replicat-
ing βUS in the axial direction, i.e. fUS(u, v) = βUS(u), ∀ v ∈
[0, 1]. This surface represents all of the information provided
by βUS coming from the ultrasound image. Our approach
will be to compare shapes of fUS and fMRI in an elastic
framework. This requires the definition of the elastic metric
and a set of tools to register and compute geodesics (and
geodesic distances) between surfaces. We present these details
next.

A. Representation of Surfaces
Let F be the space of all smooth embeddings of a cylin-

der in R3 and let Γ be the set of all boundary-preserving
diffeomorphisms from S1 × [0, 1] to itself. It acts naturally
on F by composition: (f, γ) = f ◦ γ, where ◦ represents
the composition of f and γ. In other words, it is a re-
parametrization of the surface f using γ. Since F is a
vector space, the tangent space at f ∈ F , Tf (F), is F
itself. Using two tangent vectors v1, v2 ∈ Tf(F) we can
define the standard inner product on F as follows ⟨v1, v2⟩ =∫
S1×[0,1] ⟨v1(s), v2(s)⟩ ds, where ds is the standard Lebesgue
measure on S1 × [0, 1] and the L2 norm between any two

surfaces f1, f2 ∈ F is
(∫

S1×[0,1] |f1(s)− f2(s)|2ds
) 1

2 . As
was previously shown in many works ([19], [20], [18], [17]),
such a framework is not appropriate for analyzing shapes of
surfaces because the action of Γ does not preserve distances,
i.e. ∥f1 − f2∥ ̸= ∥f1 ◦ γ − f2 ◦ γ∥. One solution is to
restrict the analysis to area-preserving diffeomorphisms [21],
but this is very limiting in practice. Another approach, taken
by [19], [20], [18], [17], is to utilize a different representation
of surfaces such that the action of Γ preserves L2 distances.
Such representations are motivated by Riemannian metrics
that: (1) make the action of Γ on F by isometries, and (2)
help quantify deformations needed to transform surfaces into
each other. Jermyn et al. [19] defined a specific Riemannian
metric and the corresponding mathematical representation to
perform registration of spherical and quadrilateral surfaces; in
this framework, the registration of points across surfaces is
accomplished by re-parameterization of surfaces. The use of
this metric is very intuitive in our application as one of our
goals is to define a measure of elasticity of the ultrasound
surface. We extend their work by considering cylindrically-
parametrized surfaces, and in addition, we define a numerical
technique termed path-straightening to compute geodesic paths
and distances in F similar to [17].
Let n(s) = ∂f

∂u (s)×
∂f
∂v (s) ∈ R3 denote the normal vector to

the surface at the point s = (u, v) ∈ S1 × [0, 1]. Using n(s),
we define a mathematical representation of surfaces termed
square-root normal fields (SRNFs) [19].

Definition 1. For a surface f : S1 × [0, 1] → R3 define a
mappingQ : F → L2 and the square root normal field (SRNF)

q : S1 × [0, 1] → R3 as Q(f)(s) = q(s) = n(s)√
|n(s)|

.

The L2-norm of q equals the surface area of f and thus the
space of SRNFs is a subset of L2(S1× [0, 1],R3) from now on
referred to as L2. This representation of surfaces has a number
of important properties:

1) As shown in [19], a complicated elastic metric on
F simplifies to the standard L2 metric on the space
of SRNFs. This greatly simplifies the development of
certain shape analysis tools such as registration and
deformation. It also provides explicit interpretations of
the types of deformations measured by the distance
function introduced later.

2) The SRNF q does not depend on a translation of f , since
it only depends on spatial derivatives of f .

3) SO(3) is the special orthogonal group, which contains
all 3× 3 rotation matrices. For O ∈ SO(3) and f ∈ F ,
the SRNF of a rotated surface Of is Oq. Γ is the re-
parameterization group. For a γ ∈ Γ and f ∈ F , the
SRNF of a re-parameterized surface f ◦ γ is (q, γ) =
(q◦γ)

√
Jγ , where Jγ is the determinant of the Jacobian

of γ. Furthermore, the actions of SO(3) and Γ on L2

commute.
4) The action of the product group SO(3) × Γ on L2

is by isometries. In other words, if we rotate and re-
parametrize any two surfaces in the same way, the L2-
norm between their SRNFs remains unchanged: ∥q1 −
q2∥ = ∥(Oq1, γ)− (Oq2, γ)∥ [19].

Since our notion of shape is invariant to translation, scale,
rotation and re-parameterization, we need to ensure these
invariances. The SRNFs are already invariant to translations
and we can achieve scale invariance by re-scaling all surfaces
to have unit surface area. The re-sclaling is problematic in
our application because we do not know the relative scale of
βUS and the third coordinate in fUS . Thus, we take a different
approach. We re-scale all of the surface coordinates of fUS

individually to lie in [0, 1]. In order to define a rotation and
parameterization invariant distance on L2 we first define an
equivalence class of an SRNF as all possible rotations and
re-parameterizations of this function: [q] = {(Oq, γ)|O ∈
SO(3), γ ∈ Γ}. The distance between shapes of surfaces
is then given by:

d([q1], [q2]) = inf
(O,γ)∈SO(3)×Γ

∥q1 − (Oq2, γ)∥. (1)

Note that while this distance is important in quantifying
differences between shapes of surfaces it defines an extrinsic
distance. It does not provide a recipe for computing geodesic
paths between surfaces due to difficulties in computing the
inverse mapping of Q.
It is also important to point out that the distance in Eqn. 1

is fundamentally different from the distance proposed in [18].
The distance in [18] is based on a different representation of
surfaces termed the q-map (defined as q(s) =

√
|n(s)|f(s)).

The advantages of the SRNF representation compared to the
q-map representation are described in more detail in [19].
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Fig. 3. Examples of basis elements of Tγid (Γ) that are used in incremental
optimization over Γ. For each example we display the full vector field (top)
and a zoom-in on a specific part (bottom).

B. Registration of Cylindrical Surfaces
The computation of d in Eqn. 1 requires solving the joint

optimization problem on SO(3) × Γ. This procedure, albeit
with different mathematical representations of surfaces, has
been previously provided in [20], [18], [19] for different
parameter domains (unit sphere, unit square, etc.) and we
give a brief summary next for convenience. The novelty of
this paper lies in extending these methods to the case of the
cylindrical domain S1 × [0, 1].
For a fixed γ ∈ Γ, the minimization over SO(3) can be eas-

ily performed directly using Procrustes analysis. Let q̃2 denote
(q2, γ); then, the optimal value of O is obtained as follows.
Compute the 3×3 matrix A =

∫
S1×[0,1] q1(s)q̃2(s)

Tds. Using
singular value decomposition A = UΣV T , we can define the
optimal rotation as O∗ = UV T (if the determinant of A is
negative, the last column of V changes sign).
In order to solve the optimization problem over Γ (for a

fixed rotation), we will use a gradient approach. To specify
the gradient for iterative updates, we define the cost function
at any iteration to be: E : Γ → R, E[γ] = ∥q1 − (q2, γ)∥2 =
∥q1 − φ(γ)∥2, where φ : Γ → [q2] is defined to be φ(γ) =
(q2, γ). Let b be a unit vector in Tγid(Γ) for γid(s) = s. The
tangent space Tγid(Γ) is the set of all smooth vector fields
tangent to the cylinder with appropriate boundary conditions.
Using an orthonormal basis for Tγid(Γ) we can compute the
full gradient of E at γid and use it to update the current
estimate of the optimal parameterization of q2. In principle,
this tangent space is infinite dimensional, but we restrict
to a finite number of basis elements. This basis is formed
by considering the coordinates on S1 and [0, 1] separately.
Tangent vector fields on S1 can be written as {sin(k1u), 1−
cos(k1u), u, 1 − u | k1 = 1, . . . , n1, u ∈ S1}. Tangent
vector fields on [0, 1] can be written as {sin(2πk2v), 1 −
cos(2πk2v) | k2 = 1, . . . , n2, v ∈ [0, 1]}. We take all possible
products of the elements of these two sets and orthonormalize
them using Gram-Schmidt. Similar basis construction for the
sphere and unit square domains is described in [18], [20].
Some basis elements (vector fields on the cylinder) are shown
in Fig. 3. With a basis of Tγid(Γ) , the directional derivative of
E at γid, in the direction of b, is given by ⟨q1−φ(γid),φ∗(b)⟩b,
where φ∗ : Tγid(Γ) → Tq2([q2]) is the differential of φ. (An
expression for φ∗ can be found in [18]. ) Furthermore, the full
gradient can be approximated using

∑
b⟨q1 − φ(γid),φ∗(b)⟩b.

To solve the joint minimization problem in Eqn. 1, we
alternate between minimizing over SO(3) and Γ and stop

0 100 200 300

0.3

0.4

0.5

f1 f2 f2 ◦ γ∗ cost γ∗

Fig. 4. Using identical colors to denote registration, the figure shows
improvement in registration of similar features across the two surfaces during
optimization over Γ.

when we converge to a solution. Fig. 4 shows an example
of this optimization for two surfaces – these surfaces have
two bumps each but the bumps are placed at different points
along the axial coordinate. The final registration provides a
better matching of features, as depicted using identical color
maps, across the two surfaces. The importance of registration
is further emphasized later in the bottom row of Fig. 5 where
we show geodesic paths between the same two surfaces, before
and after the registration.

III. GEODESICS BETWEEN CYLINDRICAL SURFACES
As mentioned earlier, it is not a simple task to compute

the inverse mapping of Q. This prevents us from computing
the geodesic between surfaces by simply mapping the straight
line path from the space of SRNFs to F . For this reason,
we develop a numerical technique, termed path-straightening,
to compute geodesic paths and geodesic distances (these will
now be intrinsic distances between surfaces) directly in F . We
will do this using the pullback metric from L2.
In order to define the pullback metric on F we begin by

defining the differential of Q, Q∗ : Tf(F) → TQ(f)(L2) (for
w ∈ Tf(F)):

Q∗,f(w)(s) =
d

dϵ
Q(f + ϵw)(s)|ϵ=0

=
nw(s)√
|n(s)|

− (n(s) · nws)n(s)

2|n(s)|5/2
,

(2)

where nw(s) = ∂f
∂u (s) ×

∂w
∂v (s) +

∂w
∂u (s) ×

∂f
∂v (s). Note that

w represents a vector field on the surface f . Using this
expression, we can define a Riemannian metric on F for
w1, w2 ∈ Tf(F) as follows:
⟨⟨w1, w2⟩⟩f = ⟨Q∗,f (w1), Q∗,f (w2)⟩ =∫

(nw1 (s) · nw2(s))
|n(s)| − 3

4

∫
(n(s) · nw1(s))(n(s) · nw2(s))

|n(s)|3
(3)

In order to compute a geodesic path between two given
surfaces f1, f2 ∈ F , we begin by defining the length of a
path given by F : [0, 1] → F , F (0) = f1, F (1) = f2 using
the pullback metric (all arguments have been suppressed for
brevity):

L(F ) =

∫ 1

0

√
⟨⟨Ft, Ft⟩⟩F dt =

∫ 1

0

√
⟨Q∗,F (Ft), Q∗,F (Ft)⟩dt

=

∫ 1

0

√∫

[0,1]×S1

[
−3(N ·Nt)2

4|N |3 +
|Nt|2
|N |

]
dsdt.

(4)

In the above expression, we use N(t) to denote ∂F (t)
∂u (s) ×

∂F (t)
∂v (s). N(t) is a normal vector field on the surface f =
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F (t). Also, we denote partial derivatives using subscripts (i.e.
Nt). It is a well known result that a critical point of this
path energy provides a geodesic between f1 and f2 in F .
Equivalently, one can consider the following energy, which is
computationally easier to work with:

Ẽ(F ) =

∫ 1

0
⟨⟨Ft, Ft⟩⟩F dt =

∫ 1

0
⟨Q∗,F (Ft), Q∗,F (Ft)⟩ dt

=

∫ 1

0

∫

[0,1]×S1

[
−3(N ·Nt)2

4|N |3 +
|Nt|2

|N |

]
dsdt.

(5)

Thus, a geodesic path between two surfaces f1 and f2 is the
solution to the following minimization problem:

F ∗ = argmin
F :[0,1]→F , F (0)=f1, F (1)=f2

Ẽ(F ). (6)

We will compute the solution to this problem using a gradient
descent approach. We will approximate ∇Ẽ using directional
derivatives ∇ẼF (G) where G ∈ G and G is an orthonormal
basis that spans all possible perturbations of a path F . We
begin by computing ∇ẼF (G):

∇ẼF (G) =
d
dϵ

Ẽ(F + ϵG)|ϵ=0 =
∫ ∫

[
−3(N · δGNt +Nt · δGN)(N ·Nt)− 2|Nt|2(N · δGN)

2|N |3

+
9(N · δGN)(N ·Nt)2

4|N |5 +
2(Nt · δGNt)

|N | ]dsdt,

(7)
where δGN = Gu ×Fv +Fu ×Gv and δGNt = Gtu ×Fv +
Ftu×Gv+Gu×Ftv+Fu×Gtv (subscripts are used for time
and spatial derivatives here). Then, in order to approximate
the gradient we will use a finite number of basis elements
Gi, i = 1, ..., B: ∇Ẽ ≈

∑B
i=1 ∇ẼF (Gi)Gi. We will update

the current estimate of the geodesic path according to F =
F−η∇Ẽ, where η > 0 is a small step size. Once the algorithm
has converged, it results in the geodesic path (F ∗) as well as
the unique shooting vector field (Ft(0)), which can be used to
optimally deform f1 to f2 under our metric.
The basis set {Gi} is created as follows. Each element

G : (S1×[0, 1])×[0, 1] → R3 has three arguments u, v, t where
(u, v) are the spatial coordinates on S1 × [0, 1] and t is the
time index along the path. We first form bases for each of the
u, v, t components separately: P 1(u) = {sin(iu), cos(iu) −
1, u, 1 − u | i = 1, . . . , n1, u ∈ S1}, P 2(v) =
{sin(2πjv), cos(2πjv), 1 | j = 1, ..., n2, v ∈ [0, 1]}, P 3(t) =
{sin(2πkt), cos(2πkt) − 1 | k = 1, . . . , n3, t ∈ [0, 1]}. In
order to define the basis P̃ : (S1×[0, 1])×[0, 1]→ R we utilize
all possible products of the three component bases P 1(u),
P 2(v) and P 3(t). The final step in forming the full basis is to
utilize a copy of P̃ for each of the Euclidean coordinates (in
R3) and to orthonormalize this basis using the Gram-Schmidt
procedure.
Fig. 5 shows examples of minimization of Ẽ using path

straightening between surfaces before (top) and after (bot-
tom) registration. Fig. 6 shows a geodesic between two
cylindrically-parametrized surfaces f1 and f2 at the end points
and uniformly spaced samples along the optimal path F ∗.

Fig. 5. Geodesic computation using path straightening between surfaces
before (top) and after (bottom) registration.

Fig. 6. Geodesic between two cylindrically-parametrized surfaces.

IV. APPLICATION TO 2D-3D REGISTRATION

Now that we have laid out tools for registering and deform-
ing cylindrically-parameterized surfaces, we return to the four
major goals outlined earlier and show how they are achieved
using this framework. Starting with a surface fMRI and a
curve βUS , we first form a generalized cylinder fUS from
βUS . Then, we perform a registration of fUS and fMRI using
the framework outlined in Sections II-A and II-B. Given this
optimal registration, we compute the geodesic distance and
geodesic path between these surfaces using tools developed
in Section III. This provides an optimal deformation between
fUS and fMRI under the elastic metric and the shooting
vector field on fUS (we always use fUS as the source surface
and fMRI as the target surface). We then define a function
H : [0, 1] → R+ as H(v) =

∫
u∈S1 |F

∗
t (0)(u, v)|2du, where

Ḟ ∗
t (0) is the initial velocity vector of the geodesic path from

fUS to the re-parameterized fMRI . We remind the reader that
the shooting vector is sufficient to characterize the geodesic
path or the deformation from one shape to the other. Let
v∗ = argminv∈[0,1]H(v). The quantity H(v∗) represents our
estimate of a quantification of the elasticity of the ultrasound
surface. We also use v∗ to find the curve on fMRI that most
corresponds to βUS , as follows. Select the curve on fMRI

that registers with fUS(·, v∗) under the optimal registration
obtained above and call it βMRI . It is important to note
that βMRI can be non-planar. This is a reasonable possibility
because the corresponding transformation to optimally register
the ultrasound and MRI images is often nonlinear.
Figure 7 provides a depiction of the entire pipeline of our

framework and presents results for one of the subjects in our
study. In this case, we found that the measure of elasticity
of the endometrial tissue was given by H(v∗) = 13.54 (it
corresponds to the red point in Figure 7(a)).
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Fig. 7. Pipeline of our framework. The curve βUS leads to a generalized
cylinder fUS that is registered and deformed into fMRI using elastic shape
geodesic. The geodesic provides (a) H(v), the magnitude of the shooting
vector field at each level of the US surface, with its minimum value H(v∗)
marked using a red dot, (b) a visualization of the magnitude of this vector
field on fUS (hot colors correspond to higher magnitude), (c) the deformation
vector field on the selected βUS and (d) its magnitude, (e) the optimal curve
βMRI on the MRI surface, and (f) the deformation between the βUS and
βMRI curves.

V. EXPERIMENTAL RESULTS
Now we apply our framework on real data to estimate the

quantities of interest – βMRI , elasticity measure H(v∗), etc. –
and to achieve the stated goals. However, since an important
part of the experimentation is the evaluation of results, we
are interested in quantifying our estimation performance. The
difficulty in this evaluation comes from the fact that the ground
truth is unknown. It is even difficult to visually evaluate the
registration due to the complexity introduced by different
dimensions (2D versus 3D) and different modalities (TVUS
versus MRI). Therefore, it is important to generate some semi-
synthetic data where the ground truth is known by construction
and one can easily compare the estimated quantities with the
ground truth. In terms of evaluating inferences on real data, we
will rely on annotations made by the experts, for βMRI , and
compare them with the estimated βMRI . These experimental
results and their evaluations are described next.

A. Validation on Semi-Synthetic Data
As stated earlier, the non-rigid deformation Φ is due to

the transducer’s pressure and, thus, the deformation location
and magnitude depend on: 1) the position of the transducer,
especially the surface of contact between the transducer and
the organ; 2) the magnitude and the direction of its pressure.
In order to imitate the real-world process, we choose an elastic
deformation model that follows these physical principles and
generate a controlled deformation as follows:
1) Pick up a random point on the surface around which
we define a contact area between the transducer and the
organ.

2) Apply different strengths of deformations, ranging from
weak to strong, controlled by the deformation model.

3) Choose random directions to simulate the direction of
pressure.

Once the original surface fMRI is deformed, using one of the
deformation fields Φ described above, we randomly choose

(a) (b) (c) (d)
Fig. 8. An illustration of semi-synthetic data. (a) fMRI , (b) a deformation
vector field generating Φ, (c) the deformed surface Φ(fMRI ), and (d) a
cutting plane P resulting in βUS .

a point on the deformed surface Φ(fMRI) and a normal
vector to define an intersecting plane P . The intersection
P ∩ Φ(fMRI) is a planar curve βUS , which plays the role
of a manually extracted curve from the TVUS image. Fig.
8 illustrates the experimental design for the construction of
synthetic deformations, for which the correspondence between
surfaces is known. In the process, we generate an estimate
β̂MRI of βMRI on the original surface fMRI . An example
of geodesic paths between the original MRI-surfaces and the
reconstructed TVUS-surfaces is given in Fig. 9.

Fig. 9. The geodesic between fUS and fMRI surfaces, with the estimated
curve β̂MRI marked in black on fMRI .

Since we have the original curve βMRI and its estimate
β̂MRI , we can quantify the estimation performance quite
naturally. In the top panel of Fig. 10, we present an evaluation
of the differences between these curves for ten simulated cases
under four different metrics – root-mean squared (RMS or
STD), supremum norm, and fiducial registration error (FRE).
As we can see, especially using the supremum norm, the error
between the curves is very small in most of the cases and our
framework is able to estimate βMRI faithfully. For comparison
purposes, we have applied the same experimental protocol
to register fMRI and fUS using an ICP-based approach and
present these results in the bottom panel of Fig. 10. Our
approach significantly outperforms this method.

B. Qualitative Validation
We start by displaying results of geodesic deformations

between two surfaces in Fig. 11. In each example, we display
the geodesic path, and the deformation between the ultrasound
curve and the optimal MRI curve chosen using our method.
The correspondence of points across surfaces is mapped onto
the whole geodesic where points corresponding to each other
are shaded with the same colors. In addition, we plot the
optimal curves along the geodesic path in black color.
As a main qualitative approach to validation of our esti-

mation, we investigate results on real data from ten patients.
As described earlier, we obtained fMRI and βUS for each
of these cases using expert segmentation and used them to
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Fig. 10. Estimation error between βMRI and β̂MRI for ten examples using
semi-synthetic data under several metrics (FRE (black), RMS (green), L∞
(red), and L2 (blue)) using our method in the first row and an ICP-based
method in the second row. Columns range from weak deformations (left) to
strong deformations (right).

(a)
(b)

(a)
(b)

Fig. 11. For two different patients, we display (a) the geodesic between
US and MRI surfaces, with the optimal curve marked in black, and (b) the
corresponding deformation between curves with the deformation vector field
on the US curve.
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Fig. 12. Qualitative evaluation by two experts. For each patient, the perfor-
mance is evaluated by a score from 1 (bad) to 5 (excellent).

compute the estimate β̂MRI . In this case, the ground truth
(βMRI) is not available and we asked two experts to evaluate
the results. The experts were shown the estimated curve β̂MRI ,
the deformation between βUS and the estimated curve, and
a plane that contains as much of β̂MRI as possible. The
evaluation is given in Fig. 12, and examples of H(v) (with
H(v∗) highlighted in red) and the estimated magnitude of the
vector field on βUS are shown in Fig. 13.
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Fig. 13. Estimation of β̂MRI : for each patient, we display (a) H(v) and (b)
the corresponding magnitude of the deformation vector field on βUS .

To evaluate the performance of the proposed method, we
setup a registration quality score ranging from 1 (bad) to 5
(excellent). The experts rated eight out of ten as 4, one as
3, and one as 5 – a very high evaluation of the estimation
performance. We note that the experts’ evaluation is based on
the anatomical features, tissue structures, and the surrounding
organs, like the uterus. We observe that the deformation
magnitude provides a nice display of elasticity along the
curve. Such information is very useful when coupled with the
localization of the tissue (surrounding organs) as it will help
a surgeon evaluate the phase of the disease and the tissue’s
mobility.

VI. DISCUSSION

(a) (b) (c) (d)
Fig. 14. (a) The MRI surface, (b) the TVUS image, (c) the overlap between
βUS from (b) and the estimated curve β̂MRI on (a), and (d) β̂MRI on the
estimated intersecting plane P .

Since our approach provides the optimal curve β̂MRI on
the MRI surface that matches the original TVUS curve, we
can locate β̂MRI in the MRI volume. In Fig. 14, we show
this result on one patient. Given the segmented MRI surface
fMRI (Fig. 14(a)) and the TVUS image (Fig. 14(b)) we
describe the clinical utility of our approach as following: first,
we have constructed fUS and then applied our approach to
register them and to estimate β̂MRI on fMRI ; second, we have
computed its barycentre and its normal to define the cutting
plane P ; third, we have interpolated the corresponding plane
PMRI between the MRI volume and P ; finally, we have pro-
jected β̂MRI on PMRI with small changes to show its closest
position on PMRI (Fig. 14(d)). To show the performance of
the registration, Fig. 14(c) displays the overlap of the original
curve βUS and the estimated curve β̂MRI .
As stated in the introduction, our clinical goals in this

work were to combine complementary information from MRI
and TVUS (transvaginal ultrasound) images of rectovaginal
endometriotic nodules, to locate the US intersecting plane in
the MRI volume as shown in Fig. 14(d), and to quantify the de-
formability of endometrial tissues and surrounding structures
as shown in Fig. 13. These goals were reached using two
models: (1) a clinical model from TVUS and MRI images (10
patients) and (2) a semi-synthetic model (original data were
deformed using a biomechanical model to simulate physical
deformations). A segmentation (delimitation) of the nodule
was performed in the two modalities (MRI and TVUS) and a
recent shape analysis approach was applied, with appropriate
modifications. The study resulted in an accurate quantification
and localization of the deformable endometriotic tissues.
In short, using both semi-synthetic simulated data and the

original real data from ten patients, we were able to visually
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improve the preoperative diagnosis by facilitating interpreta-
tion of ultrasound data. Specifically, combining images from
MRI and TVUS allows us to compensate for differences
in patient positioning during MRI and TVUS observations,
and the potential deformation of endometrial tissue during
the TVUS measurement process (transducer’s pressure). An
immediate impact of these results will be in improving the
planning of surgical procedures. Furthermore, we believe that
combining complementary information from both modalities,
by locating the US plane inside the MRI volume, and quan-
tifying deformability of endometriosis under a given level
of applied stress can open new avenues for diagnosing and
monitoring complex cases.
Nevertheless, there are some limitations in the performed

study. One is the use of boundaries that were manually
extracted by the experts to represent the true shape of the
endometrial tissue. As a consequence, the deformation vector
field depends on the quality of the segmentation. This can
introduce a bias when the quality of the imaging modalities
decreases or when the endometrial tissues are present in very
small areas. Another application of this methodology (with
sufficient adaptation to the new problem) can be the regis-
tration of cylindrical representations of the colon in different
modalities to prevent the development of advanced colorectal
cancer. Such study will allow practitioners to quantify the
uncontrolled cell growth in the colon or rectum that may cause
colorectal cancer.

VII. SUMMARY

In this work, we have proposed an elastic shape analysis
framework for 2D-3D TVUS-MR registration to localize and
characterize endometrial tissues. The information is available
in the form of parametrized surfaces in the 3D MRI data
and segmented closed curves in the 2D TVUS images. Our
approach extrapolates the US curve into a generalized cylinder
and applies an elastic shape analysis technique to obtain
registration and deformation between the two surfaces. This
way, we obtain the optimal curve on the MRI surface that
corresponds to the original TVUS curve. We also obtain de-
formations and quantification of the deformations as measures
of elasticity at different regions on the tissue.
Using both semi-synthetic and real data, we are able to vali-

date the estimation results and demonstrate the appropriateness
of elastic shape analysis in this context. In the semi-synthetic
data, the closeness of estimated quantities (curves and defor-
mations) with the ground truth underscore the success of this
framework despite a loss of information inherent in the 2D
nature of US imaging. A qualitative evaluation by two experts,
that involves more syntactical information, generally rated the
estimation results from very good to excellent.
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