Nicolas Basset
email: nicolas.basset@ulb.ac.be

Gilles Geeraerts
email: gilles.geeraerts@ulb.ac.be

Jean-François Raskin
email: jraskin@ulb.ac.be

Ocan Sankur
email: ocan.sankur@irisa.fr

Admissiblity in Concurrent Games

Keywords: /Program Verification, F.3.1 Specifying and Verifying and Reasoning about Programs, I.2.2 Program Synthesis Multi-player games, admissibility, concurrent games, randomized strategies

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

In a concurrent n-player game played on a graph, all n players independently and simultaneously choose moves at each round of the game, and those n choices determine the next state of the game [START_REF] Luca De Alfaro | Concurrent reachability games[END_REF]. Concurrent games generalise turn-based games and it is well-known that, while deterministic strategies are sufficient in the turn-based case, randomised strategies are necessary for winning with probability one even for reachability objectives. Intuitively, randomisation is necessary because, in concurrent games, in each round, players choose their moves simultaneously. Randomisation makes it possible to choose a good move with some probability without the knowledge of the moves that the other players are simultaneously choosing. As a consequence, there are two classical semantics that are considered to analyse these games qualitatively: winning with certainty (sure semantics in the terminology of [START_REF] Luca De Alfaro | Concurrent reachability games[END_REF]), and winning with probability one (almost sure semantics in the terminology of [START_REF] Luca De Alfaro | Concurrent reachability games[END_REF]). We consider both semantics here. * An extended version of this article is available in [START_REF] Basset | Admissibility in concurrent games[END_REF], http://arxiv.org/abs/1702.06439. † This work was partially supported by the ERC Starting grant 279499 (inVEST), the ARC project « Non-Zero Sum Game Graphs: Applications to Reactive Synthesis and Beyond » (Fédération Wallonie-Bruxelles), J.-F. Raskin is Professeur Francqui de Recherche.

123:2

Admissibility in Concurrent Games

s 0 s 1 s 2 Trg (b, b) (d, d)
(a, -), (-, a) (c, -), (-, c) (f, g), (g, f)

(f, f), (g, g) (-, -) Previous papers on concurrent games are mostly concerned with two-player zero-sum games, i.e. two players that have fully antagonistic objectives. In this paper, we consider the more general setting of n-player non zero-sum concurrent games in which each player has its own objective. The notion of winning strategy is not sufficient to study non zero-sum games and other solution concepts have been proposed. One such concept is the notion of admissible strategy [START_REF] Adam | Admissibility in games[END_REF].

For a player with objective Φ, a strategy σ is said to be dominated by a strategy σ if σ does as well as σ with respect to Φ against all the strategies of the other players and strictly better for some of them. A strategy σ is admissible for a player if it is not dominated by any other of his strategies. Clearly, playing a strategy which is not admissible is sub-optimal and a rational player should only play admissible strategies. While recent works have studied the notion of admissibility for n-player non zero-sum game graphs [START_REF] Berwanger | Admissibility in infinite games[END_REF][START_REF] Faella | Admissible strategies in infinite games over graphs[END_REF][START_REF] Brenguier | The complexity of admissibility in omega-regular games[END_REF][START_REF] Brenguier | Assume-admissible synthesis[END_REF][START_REF] Brenguier | Admissibility in Quantitative Graph Games[END_REF], they are all concerned with the special case of turn-based games and this work is the first to consider the more general concurrent games.

Throughout the paper, we consider the running example in Figure 1. This is a concurrent game played by two players. Player 1's objective is to reach Trg, while Player 2 wants to reach s 2 . Edges are labelled by pairs of moves of both players which activate that transition (wheremeans 'any move'). It is easy to see that no player can enforce its objective with or without randomisation, so, there is no winning strategy in this game for either player. This is because moving from s 0 to s 1 and from s 1 to s 2 requires the cooperation of both players. Moreover, the transitions from s 2 behave as in the classical 'matching pennies' game: player 1 must chose between f and g; player 2 between f and g ; and the target is reached only when the choices 'match'. So, randomisation is needed to make sure Trg is reached with probability one, from s 2 . In the paper, we will describe the dominated and admissible strategies of this game.

Technical contributions. First, we study the notion of admissible strategies for both the sure and almost sure semantics of concurrent games. We show in Theorem 8 that in both semantics admissible strategies always exist. The situation is thus similar to the turn-based case [START_REF] Berwanger | Admissibility in infinite games[END_REF][START_REF] Brenguier | The complexity of admissibility in omega-regular games[END_REF]. Nevertheless, the techniques used in this simpler case do not generalise easily to the concurrent case and we need substantially more involved technical tools here. To obtain 123:3 our universal existence result, we introduce two weaker solution concepts: locally admissible moves and strongly cooperative optimal strategies. While cooperative optimal strategies were already introduced in [START_REF] Brenguier | Admissibility in Quantitative Graph Games[END_REF] and shown equivalent to admissible strategies in the turn based setting, they are strictly weaker than admissible strategies in the concurrent setting (both for the sure and the almost sure semantics), and they need to be combined with the notion of locally admissible moves to fully characterise admissible strategies. In the special case of safety objectives, we can show that admissible strategies are exactly those that always play locally admissible moves. This situation is depicted in Figure 2.

Second, we build on our characterisation of admissible strategies based on the notions of locally admissible moves and strongly cooperative optimal strategies to obtain algorithms to solve the assume admissible synthesis problem for concurrent games. In the assume admissible synthesis problem, we ask whether a given player has an admissible strategy that is winning against all admissible strategies of the other players. So this rule relaxes the classical synthesis rule by asking for a strategy that is winning against the admissible strategies of the other players only and not against all of them. This is reasonable as in a multi-player game, each player has his own objective which is generally not the complement of the objectives of the other players. The assume-admissible rule makes the hypothesis that players are rational, hence they play admissible strategies and it is sufficient to win against those strategies. Our algorithm is applicable to all ω-regular objectives and it is based on a reduction to a zero-sum two-player game in the sure semantics. While this reduction shares intuitions with the reduction that we proposed in [START_REF] Brenguier | Assume-admissible synthesis[END_REF] to solve the same problem in the turn-based case, our reduction here is based on games with imperfect information [START_REF] Raskin | Algorithms for omega-regular games with imperfect information[END_REF]. In contrast, in the turn-based case, games of perfect information are sufficient. The correctness and completeness of our reduction are proved in Theorem 11.

Related works.

Concurrent two player zero-sum games are studied in [START_REF] Luca De Alfaro | Concurrent reachability games[END_REF] and [START_REF] Chatterjee | Qualitative concurrent parity games[END_REF]. We rely on the algorithms defined in [START_REF] Chatterjee | Qualitative concurrent parity games[END_REF] to compute states from which players have almost surely winning strategies. States where players have (deterministic) winning strategies can be computed by a reduction to more classical turn-based game graphs [START_REF] Alur | Alternating-time temporal logic[END_REF]. Nash equilibria have been studied in concurrent games [START_REF] Bouyer | Nash equilibria in concurrent games with Büchi objectives[END_REF], but without randomised strategies. None of those papers consider the notion of admissibility.

We use the notion of admissibility to obtain synthesis algorithms for systems composed of several sub-systems starting from non zero-sum specifications. Other approaches have been proposed based the notion of Nash equilibria (which suffer from the well-known limitation of non-credible threats): assume-guarantee synthesis [START_REF] Chatterjee | Assume-guarantee synthesis[END_REF] and rational synthesis [START_REF] Fisman | Rational synthesis. In Tools and Algorithms for the Construction and Analysis of Systems[END_REF][START_REF] Kupferman | Synthesis with rational environments[END_REF]. Those works assume the simpler setting of turn-based games and so they do not deal with randomised strategies.

Finally, in [START_REF] Damm | Automatic compositional synthesis of distributed systems[END_REF], Damm and Finkbeiner use the notion of dominant strategy to provide a compositional semi-algorithm for the (undecidable) distributed synthesis problem. However, the notion of dominant strategy is strictly stronger than the notion of admissible strategies, and dominant strategies are not guaranteed to exist, unlike admissible ones. We write Σ(s) = Σ 1 (s) × . . . × Σ n (s) for all s ∈ S. It is often convenient to consider a player p separately and see the set of all other players P \ {p} as a single player denoted -p. Hence, the set of actions of -p in state s is: Σ -p (s) = def q∈P \{p} Σ q (s). We assume that Σ i (s) ∩ Σ j (s) = ∅ for all s ∈ S and i = j. We denote by Succ(s, a) = {δ(s, a, b) | b ∈ Σ -p (s)} the set of possible successors of the state s ∈ S when player p performs action a ∈ Σ p (s). A particular case of concurrent games are the turn-based games. A game G = (S, Σ, s init , (Σ p) p∈P , δ) is turn-based iff for all states s ∈ S, there is a unique player p s.t. the successors of s depend only on p's choice of action, i.e., Succ(s, a) contains exactly one state for all a ∈ Σ p (s).

A history is a finite path

h = s 1 s 2 . . . s k ∈ S * s.t. (i) k ∈ N; (ii) s 1 = s init ; and (iii) for every 2 ≤ i ≤ k, there exists (a 1 , . . . , a n) ∈ Σ |P | with s i = δ(s i-1 , a 1 , . . . , a n).
The length |h| of a history h = s 1 s 2 . . . s k is its number of states k; for every 1 ≤ i ≤ k, we denote by h i the state s i and by h ≤i the history s 1 s 2 . . . s i . We denote by last(h) the last state of h, that is, last(h) = h |h| . A run is defined similarly as a history except that its length is infinite. For a run ρ = s 1 s 2 . . . ∈ S ω and i ∈ N, we also write ρ ≤i = s 1 s 2 . . . s i and ρ i = s i . Let Hist(G) (resp. Runs(G)) denote the set of histories (resp. runs) of G. The game is played from the initial state s init for an infinite number of rounds, producing a run. At each round i ≥ 0, with current state s i , all players p select simultaneously an action a i p ∈ Σ p (s i), and the state δ(s i , a i 1 , . . . , a i n) is appended to the current history. The selection of the action by a player is done according to strategies defined below.

Randomised moves and strategies. Given a finite set A, a probability distribution on A is a function α : A → [0, 1] such that a∈A α(a) = 1; and we let Supp(α) = {a | α(a) > 0} be the support of α. We denote by α(B) = a∈B α(a) the probability of a given set B according to α. The set of probability distributions on A is denoted by D(A). A randomised move of player p in state s is a probability distribution on Σ p (s), that is, an element of D(Σ p (s)). A randomised move that assigns probability 1 to an action and 0 to the others is called a Dirac move. We will henceforth denote randomised moves as sums of actions weighted by their respective probabilities. For instance 0.5f + 0.5g denotes the randomised move that assigns probability 0.5 to f and g (and 0 to all other actions). In particular, we denote by b a Dirac move that assigns probability 1 to action b.

Given a state s and a tuple β = (β p) p∈P ∈ p∈P D(Σ p (s)) of randomised moves from s, one per player, we let δ r (s, β) ∈ D(S) be the probability distribution on states s.t. for all s ∈ S: δ r (s, β)(s) = a|δ(s,a)=s β(a), where

β(a 1 , . . . , a n) = n i=1 β i (a i). Intuitively, δ r (s, β)(s)
is the probability to reach s from s when the players play according to β.

A strategy for player p is a function σ from histories to randomised moves (of player p) such that, for all h ∈ Hist(G): σ(h) ∈ D(Σ p (last(h))). A strategy is called Dirac at history h, if σ(h) is a Dirac move; it is called Dirac if it is Dirac at all histories. We denote by Γ p (G) the set of player-p strategies in the game, and by Γ det p (G) the set of player-p strategies that only use Dirac moves (those strategies are also called deterministic); we might omit G if it is clear from context. A strategy profile σ for a subset A ⊆ P of players is a tuple (σ p) p∈A with σ p ∈ Γ p for all p ∈ A. When the set of players A is omitted, we assume A = P . Let σ = (σ p) p∈P be a strategy profile. Then, for all players p, we let σ -p denote the restriction of σ to P \ {p} (hence, σ -p can be regarded as a strategy of player -p that returns, for all histories h, a randomised move from p∈P \{p} D(Σ p (s)) ⊆ D(Σ -p (last(h)))). We sometimes denote σ by the pair (σ p , σ -p). Given a history h, we let (σ p) p∈A (h) = (σ p (h)) p∈A .

Let h be a history and let ρ be a history or a run. Then, we write h ⊆ pref ρ iff h is a prefix of ρ, i.e., ρ ≤|h| = h. Given two strategies σ, σ ∈ Γ p , and a history h, we let σ h ← σ be the strategy that follows σ and shifts to σ as soon as h has been played (i.e. σ h ← σ is s.t. for all histories h :

σ h ← σ (h) = σ (h) if h ⊆ pref h ; and σ h ← σ (h) = σ(h) otherwise).
Probability measure and outcome of a profile. Given a history h, we let Cyl(h) = {ρ | h ⊆ pref ρ} be the cylinder of h. To each strategy profile σ, we associate a probability measure P σ on certain sets of runs. First, for a history h, we define P σ (Cyl(h)) inductively on the length of h: P σ (Cyl(s init)) = 1, and

P σ (Cyl(h s)) = P σ (Cyl(h)) • δ r (last(h), σ(h))(s)when |h| > 1 and h = h s .
Based on this definition, we can extend the definition of P σ to any Borel set of runs on cylinders. In particular, the function P σ is well-defined for all ω-regular sets of runs, that we will consider in this paper [START_REF] Vardi | Automatic verification of probabilistic concurrent finite state programs[END_REF]. We extend the Hist notation and let Hist(σ) be the set of histories h such that P σ (Cyl(h)) > 0. Given a profile σ we denote by Outcome(σ) the set of runs ρ s.t. all prefixes h of ρ belong to Hist(σ). In particular, P σ (Outcome(σ)) = 1. Note that when σ is composed of Dirac strategies then Outcome(σ) is a singleton. The outcome (set of histories) of a strategy σ ∈ Γ p , denoted by Outcome(σ) (Hist(σ)), is the union of outcomes (set of histories, respectively) of profile σ s.t. σ p = σ.

Winning conditions. To determine the gain of all players in the game G, we define winning conditions that can be interpreted with two kinds of semantics denoted by the symbols S for the sure semantics or and A for the almost sure semantics. A winning condition Φ is a subset of Runs(G) called winning runs. From now on, we assume that concurrent games are equipped with a function Φ, called the winning condition, and mapping all players p ∈ P to a winning condition Φ(p). A profile σ is A-winning for Φ(p) if P σ (Φ) = 1 which we write G, σ |= A Φ(p). A profile σ is S-winning for Φ(p) if Outcome(G, σ) ⊆ Φ(p) which we write G, σ |= S Φ(p). Note that when σ is Dirac, the two semantics coincide:

G, σ |= S Φ(p) iff G, σ |= A Φ(p). The profile σ is A-winning from h if h ∈ Hist(G, σ) and P σ (Φ(p) | Cyl(h)) = P σ (Φ(p) ∩ Cyl(h))/P σ (Cyl(h)) = 1 which we denote G, σ |= A h Φ(p). The profile σ is S-winning from h if {ρ ∈ Outcome(G, σ) | h ⊆ pref ρ} ⊆ Φ(p), which we denote G, σ |= S h Φ(p).
We often omit G in notations when clear from the context. Most of our definitions and results hold for both semantics and we often state them using the symbol ∈ {S, A} as in the following definition. Given a semantics ∈ {S, A}, a strategy σ for player p (from a history h) is called -winning for player p if for every τ ∈ Γ -p , the profile (σ, τ) is -winning for player p (from h). Note that a strategy σ for player p is S-winning iff Outcome(σ) ⊆ Φ(p). We often describe winning conditions using standard linear temporal operators and ♦; e.g. ♦S means the set of runs that visit infinitely often S. See [START_REF] Baier | Principles of Model Checking (Representation and Mind Series)[END_REF] for a formal definition.

A winning condition Φ(p) is prefix-independent if for all s 1 s 2 . . . ∈ Φ(p), and all i ≥ 1: s i s i+1 . . . ∈ Φ(p). When Φ(p) contains all runs that do not visit some designated set Bad p ⊆ S of states, we say that Φ(p) is a safety condition. A safety game is a game whose winning condition Φ is such that Φ(p) is a safety condition for all players p. Without loss of generality, we assume that safety games are so-called simple safety games: a safety game (S, Σ, s init , (Σ p) p∈P , δ) is simple iff for all players p, for all s ∈ S: s ∈ Bad p implies that no s ∈ Bad p is reachable from s. That is, once the safety condition is violated, then it remains violated forever at all future histories. (i) σ 1 is any strategy that plays a in s 0 ; (ii) σ 2 is any strategy that plays b in s 0 , d in s 1 and f in s 2 ; and (iii) σ 3 is any strategy that plays b in s 0 , d in s 1 , and 0.5f + 0.5g in s 2 . Clearly, σ 1 never allows one to reach Trg while some runs respecting σ 2 and σ 3 do (remember that there is no -winning strategy in this game). We will see later that the best choice of player 1 (among σ 2 , σ 3) depends on the semantics we consider. In the almost-sure semantics, σ 3 is 'better' for player 1, because σ 3 is an A-winning strategy from all histories ending in s 2 , while σ 2 is not. On the other hand, in the sure semantics, playing σ 2 is 'better' for player 1 than σ 3 . Indeed, for all player-2 strategies τ , either Outcome(σ 3 , τ) contains only runs that do not reach s 2 (hence, do not reach Trg either), or Outcome(σ 3 , τ) contains at least a run that reaches s 2 , but, in this case, it also contains a run of the form hs ω 2 that does not reach Trg (because, intuitively, player 1 plays both f and g from s 2). So, σ 3 is not S-winning against any τ , while σ 2 wins at least against a player 2 strategy that plays b in s 0 , d in s 1 and f in s 2 . We formalise these intuitions in the next section.

Admissibility

In this section, we define the central notion of the paper: admissibility [START_REF] Berwanger | Admissibility in infinite games[END_REF][START_REF] Brenguier | Assume-admissible synthesis[END_REF]. Intuitively, a strategy is admissible when it plays 'as well as possible'. Hence the definition of admissible strategies is based on a notion of domination between strategies: a strategy σ dominates another strategy σ when σ wins every time σ does. Obviously, players have no interest in playing dominated strategies, hence admissible strategies are those that are not dominated.

Apart from these (classical) definitions, we characterise admissible strategies as those that satisfy two weaker notions: they must be both strongly cooperative optimal and play only locally-admissible moves. Finally, we discuss important characteristics of admissible strategies that will enable us to perform assume-admissible synthesis (see Section 4).

In this section, we fix a game G, a player p, and, following our previous conventions, we denote by Γ -p the set {σ -p | σ ∈ Γ}.

Admissible strategies. We first recall the classical notion of admissible strategy [START_REF] Berwanger | Admissibility in infinite games[END_REF][START_REF] Adam | Admissibility in games[END_REF]. Given two strategies σ, σ ∈ Γ p , we say that σ is -weakly dominated by σ , denoted σ σ , if for all τ ∈ Γ -p : (σ, τ) |= Φ(p) implies (σ , τ) |= Φ(p). This indeed captures the idea than σ is not worse that σ, because it wins (for p) every time σ does. Note that is not anti-symmetric, hence we write σ ≈ σ when σ and σ are equivalent, i.e. σ σ and σ σ. In other words σ ≈ σ iff for every τ ∈ Γ -p , (σ, τ) |= Φ(p) ⇔ (σ , τ) |= Φ(p). When σ σ but σ σ we say that σ is -dominated by σ , and we write σ ≺ σ . Observe that σ ≺ σ holds if and only if σ σ and there exists at least one τ ∈ Γ -p , such that (σ, τ) |= Φ(p) and (σ , τ) |= Φ(p). That is, σ is now strictly better than σ. Then, a strategy σ is -admissible iff there is no strategy σ s.t. σ ≺ σ , i.e., σ is -admissible iff it is not -dominated.

Example 2. Let us continue our running example, by formalising the intuitions we have sketched in Example 1. Since σ 1 does not allow to reach the target, while some runs respecting σ 2 and σ 3 do, we have: σ 1 ≺ σ 2 and σ 1 ≺ σ 3 . Moreover, σ 2 ≺ A σ 3 because σ 3 is A-winning from any history that ends in s 2 while σ 2 is not because it does not A-win against a player 2 strategy that would always play g in s 2 (and both strategies behave the same way in s 0 and s 1). On the other hand, σ 3 ≺ S σ 2 since we saw in Example 1 that every profile containing σ 3 is not S-winning while some profiles containing σ 2 are. We will see later that σ 3 is A-admissible and σ 2 is S-admissible.

Values of histories. Before we discuss strongly cooperative optimal and locally admissible strategies, we associate values to histories. Let h be a history, and σ be a strategy of player p. Then, the value of h w.r.t. σ for semantics ∈ {S, A} is defined as follows. χ σ (h) = 1 if σ is -winning from h; χ σ (h) = 0 if there are τ ∈ Γ -p and τ ∈ Γ -p s.t. (σ, τ) |= h Φ(p), and (σ, τ) |= h Φ(p); and -1 otherwise.

Value χ σ (h) = 1 corresponds to the case where σ is -winning for player p from h (thus, against all possible strategies in Γ -p). When χ σ (h) = 0, σ is not -winning from h (because of τ in the definition), but the other players can still help p to reach his objective (by playing some τ s.t. (σ, τ) |= h Φ(p), which exists by definition). Last, χ σ (h) = -1 when there is no hope for p to -win, even with the collaboration of the other players. In this case, there is no τ s.t. (σ, τ) |= h Φ(p). Hence, having χ σ (h) = -1 is stronger than saying that σ is not winning-when σ is not winning, we could have χ σ (h) = 0 as well.

We define the value of a history h for player p as the best value he can achieve with his different strategies:

χ p (h) = max σ∈Γp χ σ (h). Last, for v ∈ {-1, 0, 1}, let Val p,v be the set of histories h s.t. χ p (h) = v.
Strongly cooperative optimal strategies. We are now ready to define strongly cooperative optimal (SCO) strategies. Recall that, in the classical setting of turn-based games, admissible strategies are exactly the SCO strategies [START_REF] Brenguier | Assume-admissible synthesis[END_REF]. We will see that this condition is still necessary but not sufficient in the concurrent setting.

A strategy σ of Player p is -SCO at h iff χ σ (h) = χ p (h); and σ is -SCO iff it is -SCO at all h ∈ Hist(σ). Intuitively, when σ is a -SCO strategy of Player p, the following should hold:

(i) if p has a -winning strategy from h (i.e. χ p (h) = 1), then, σ should be -winning (i.e. χ σ (h) = 1); and (ii) otherwise if p has no -winning strategy from h but still has the opportunity to -win with the help of other players (hence χ p (h) = 0), then, σ should enable the other players to help p fulfil his objective (i.e. χ σ (h) = 0). Observe that when χ p (h) = -1, no continuation of h is -winning for p, so χ σ (h) = -1 for all strategies σ. We see that σ 2 is S-SCO but it is not A-SCO because, for all profiles h ending in s 2 : χ A σ2 (h) = 0 while h ∈ Val A 1,1 . On the other hand, σ 3 is A-SCO; but it is not S-SCO. Indeed, one can check that, for all strategies τ ∈ Γ 2 : if Outcome(σ 3 , τ) contains a run reaching Trg, then it also contains a run that cycles in s 2 . So, for all such strategies τ , Outcome(σ 3 , τ) |= S Φ(1), hence χ S σ3 (h) = -1 for all histories that end in s 2 ; while χ S p (h) = 0 since χ S σ (h) = 0 for all Dirac strategies σ . Next, let us build a strategy σ 3 that is A-dominated by σ 3 (hence, not A-admissible), but A-SCO. We let σ 3 play as σ 3 except that σ 3 plays c the first time s 1 is visited (hence ensuring that the self-loop on s 1 will be taken after the first visit to s 1). Now, σ 3 is A-dominated by σ 3 , because (i) σ 3 A-wins every time σ 3 does; but (ii) σ 3 does not A-win against the player 2 strategy τ that plays d only when s 1 is visited for the first time, while σ 3 A-wins against τ . However, σ 3 is SCO because playing c keeps the value of the history equal to 0 = χ A 1 (h) (intuitively, playing c once does not prevent the other players from helping in the future).

I C A L P 2 0 1 7

123:8

Admissibility in Concurrent Games

As similar example can be built in the S semantics. Thus, there are -SCO strategies which are not admissible, so, being -SCO is not a sufficient criterion for admissibility.

Locally admissible moves and strategies. Let us now discuss another criterion for admissibility, which is more local in the sense that it is based on a domination between moves available to each player after a given history. Let h be a history, and let α and α be two randomised moves in D(Σ p). We say that α is -weakly dominated at h by α (denoted α h α) iff for all σ ∈ Γ p such that h ∈ Hist(σ) and σ(h) = α, there exists σ ∈ Γ p s.t. h ∈ Hist(σ), σ (h) = α and σ σ . Observe that the relation h is not anti-symmetric. We let h be the equivalence relation s.t. α h β iff α h β and β h α. When α h α but α h α we say that α is -dominated at h by α and denote this by α < h α . When a randomised move α is not -dominated at h, we say that α is -locally-admissible (-LA) at h. This allows us to define a more local notion of dominated strategy: a strategy σ of player p is -locally-admissible (-LA) if σ(h) is a -LA move at h, for all histories h.

Example 4. Consider the Dirac move f and the non-Dirac move 0.5f + 0.5g played from s 2 in the example in Figure 1. One can check that 0.5f + 0.5g < S s2 f . Indeed, consider a strategy σ s.t. σ(h) = 0.5f + 0.5g for some h with last(h) = s 2 . Then, playing σ(h) from h will never allow Player 1 to reach Trg surely at the next step, whatever Player 2 plays; while playing, for instance, f (Dirac move) ensures player 1 to reach Trg surely at the next step, against a Player-2 strategy that plays f . Thus, σ 2 is S-LA but σ 3 is not.

On the other hand, after every randomised move played in state s 2 , the updated state is s 2 or s 3 from which A-winning strategies exist, thus

f A h g A h λf + (1 -λ)g for all λ ∈ [0, 1] and all histories h s.t. last(h) = s 2 (so, in particular, λf + (1 -λ)g A h f and λf + (1 -λ)g A h g).
It follows that both σ 2 and σ 3 are A-LA. However, in the long run, player 1 needs to play λf + (1 -λ)g, with λ ∈ (0, 1), infinitely often in order to A-win. In fact, σ 3 is A-winning from s 2 while σ 2 is not. Thus, there are -LA strategies which are not admissible, so being -LA is not a sufficient criterion for -admissibility.

We close this section by several lemmata that allow us to better characterise the notion of LA strategies. First, we observe that, while randomisation might be necessary for winning in certain concurrent games (for example, in Figure 1, no Dirac move allows player 1 to reach Trg surely from s 2 , while playing repeatedly f and g with equal probability ensures to reach Trg with probability 1) randomisation is useless when a player wants to play only locally admissible moves. This is shown by the next Lemma (point (1)), saying that, if a randomised move α plays some action a with some positive probability, then α is weakly dominated by the Dirac move a. However, this does not immediately allow us to characterise admissible moves: some Dirac moves could be dominated (hence non-admissible), and some non-Dirac moves could be admissible too. Points (2) and (3) elucidate this: among Dirac moves, the non-dominated ones are admissible, and a non-Dirac move is admissible iff all the Dirac moves that occur in its support are admissible and equivalent to each other.

Lemma 5. For all histories h and all randomised moves α:

(i) For all a ∈ Supp(α): α h a; (ii) Dirac moves that are not -dominated at h by another Dirac move are -LA; (iii) A move α is -LA at h iff, for all a ∈ Supp(α):

1. a is -LA at h; and 2. a h b for all b ∈ Supp(α).

Example 6. As we have seen in Example 4, 0.5f + 0.5g < S s2 f . Note that a strategy σ s.t. σ (h) = 0.5f + 0.5g for all h with last(h) = s 2 has value χ S σ (h) = -1, while χ S 1 (h) = 0.

This example seems to suggest that the local dominance of two moves coincide with the natural order on the values of histories that are obtained when playing those moves (in other words x < h y would hold iff the value of the history obtained by playing x is smaller than or equal to the value obtained by playing y). This is not true for histories of value 0: we have seen that a and b are h -incomparable, yet playing a or b from s 0 yields a history with value 0 in all cases (even when s 1 is reached). The next Lemma gives a precise characterisation of the dominance relation between Dirac moves in terms of values: Characterisation and existence of admissible strategies. Equipped with our previous results, we can now establish the main results of this section. First, we show thatadmissible strategies are exactly those that are both -LA and -SCO (Theorem 8(i)). Then, we show that admissible strategies always exist in concurrent games (Theorem 8(ii)).

Theorem 8 (Characterisation and existence of admissible strategies). The following holds for all strategies σ in a concurrent game with semantics ∈ {S, A}:

(i) σ is -admissible iff σ is -LA and -SCO; in the special case of simple safety objectives, if σ is -LA then σ is -admissible. (ii) there is a -admissible strategy σ such that σ σ . In particular, point [START_REF] Alur | Alternating-time temporal logic[END_REF] implies that admissible strategies always exist in concurrent games.

Example 9. We consider again the example in Figure 1, and consider strategies σ 2 and σ 3 as defined in Example 1. Remember that these two strategies do their best to reach s 2 , and that, from s 2 , σ 2 plays deterministically f , while σ 3 plays f and g with equal probabilities. From Example 3, we know that σ 2 is S-SCO but not A-SCO; while σ 3 is A-SCO but not S-SCO. Indeed, we have already argued in Example 2 that σ 2 is not A-admissible, and that σ 3 is not S-admissible. However, from Example 4, we know that σ 2 is S-LA and that σ 3 is A-LA. So, by Theorem 8, σ 2 is S-admissible and σ 3 is A-admissible as expected.

Finally, we close the section by a finer characterisation of -admissible strategies. We show that:

(i) in the sure semantics, there is always an S-admissible strategy that plays Dirac moves only; and (ii) in the almost-sure semantics, there is always an A-admissible strategy that plays Dirac moves only in histories of values 0 or -1. The difference between the two semantics should not be surprising, as we know already that randomisation is sometimes needed to win (i.e., from histories of value 1) in the almost sure semantics:

Assume admissible synthesis

In this section we discuss an assume-admissible synthesis framework for concurrent games.

With classical synthesis, one tries to compute winning strategies for all players, i.e., strategies that always win against all possible strategies of the other players. Unfortunately, it might be the case that such unconditionally winning strategies do not exist, as in our example.

As explained in the introduction, the assume-admissible synthesis rule relaxes the classical synthesis rule: instead of searching for strategies that win unconditionally, the new rule requires winning against the admissible strategies of the other players. So, a strategy may satisfy the new rule while not winning unconditionally. We claim that winning against admissible strategies is well enough assuming that the players are rational; if we assume that players only play strategies that are good for achieving their objectives, i.e. admissible ones.

The general idea of the assume-admissible synthesis algorithm is to reduce the problem (in a concurrent n-player game) to the synthesis of a winning strategy in a 2-player zerosum concurrent game of imperfect information, in the S-semantics (even when the original assume-admissible problem is in the A-semantics), where the objective of player 1 is given by an LTL formula. Such games are solvable using techniques presented in [START_REF] Chatterjee | Qualitative concurrent parity games[END_REF].

More precisely, from a concurrent game G in the semantics ∈ {S, A} and player p, we build a game G p with the above characteristics, which is used to decide the assume-admissible synthesis rule. If such a solution exists, our algorithm constructs a witness strategy. For example, the game G 1 corresponding to the game in Figure 1 is given in Figure 3. The main ingredients for this construction are the following.

(i) In G p , the protagonist is player p, and the second player is -p. (ii) Although randomisation is needed to win in such games in general, we interpret G p in the S-semantics only. In fact, we have seen that for the protagonist, Dirac moves suffice in states of value 0; so the only states where he might need randomisation are those of value 1 (randomisation does not matter if the value is -1 since the objective is lost anyway). Hence we define winning condition to be Φ(p) ∨ ♦Val p,1 enabling us to consider only histories of values 0 in G p ; and thus hiding the parts of the game where randomisation might be needed. We also prove that we can restrict to Dirac strategies for -p when it comes to admissible strategies. (iii) In order to restrict the strategies to admissible ones, we only allow -LA moves in G p .

These moves can be computed by solving classical 2-player games ([2]) using Lemma 7. For example, in Figure 3, moves c and c are removed since they are not A-LA. (iv) Last, since -admissible strategies are those that are both -LA and -SCO (see Theorem 8), we also need to ensure that the players play -SCO. This is more involved than -LA, as the -SCO criterion is not local, and requires information about the sequence of actual moves that have been played, which cannot be deduced, in a concurrent game, from the sequence of visited states. So, we store, in the states of G p , the moves that have been played by all the players to reach the state. For example, in Figure 3, the state labelled by s 1 , (b, b) means that G has reached s 1 , and that the last actions played by the players were b and b respectively. However, players' strategies must not depend on this extra information since they do not have access to this information in G either. We thus interpret G p as a game of imperfect information where all the states labelled by the same state of G are in the same observation class. We can then encode that the players must play -SCO strategies in the new objective of the games, which will be given as an LTL formula, as we describe below. all states in the dashed rectangle; and d from s 1 , (b, b) . Observe that this strategy is compatible with o. From σ, we can extract an admissible player 1 strategy in G: always play b in s 0 ; always play d in s 1 ; and play a winning strategy from s 2 (which is of value 1), for instance: always play 0.5f + 0.5g from s 2 like σ 3 does.

We conclude by two remarks on simple safety games and on the choice of our semantics. First, note that assume-admissible synthesis is simpler in simple safety games, since the admissible strategies are exactly the -LA strategies in this case (see Theorem 8). So, one can build G p from G by pruning the actions which are not -LA (the labelling by actions is not necessary anymore), and look for a player p winning strategy. Second, in the semantics of concurrent games considered in this paper, players see, at each step, the transition taken but not the actual moves of the other player even once they are played. An alternative semantics could be that the players discover simultaneously the moves of other players after each step, as in the Rock-Paper-Scissors game. The former semantics is more general than the latter since moves played at the preceding round can always be encoded in the current state (as we did in the construction of G p). Our results remain meaningful in this simpler case (in particular the characterisation of admissible strategies), but assume-admissible synthesis can be performed by reducing to games with perfect information.

Figure 1 A

 1 Figure 1 A concurrent game where Player 1 and 2 want to reach Trg and s2 respectively.

Figure 2

 2 Figure 2The relationships between the classes of Admissible, LA, and SCO strategies for three families of games. All the inclusions are strict.

Example 1 .

 1 Let us consider three player-1 strategies in Figure1.

Example 3 .

 3 Consider again the example in Figure 1. For the almost-sure semantics, we have Val A p,1 = h | last(h) ∈ {s 2 , Trg} , and Val A p,0 = h | last(h) ∈ {s 0 , s 1 } . For the sure semantics, we have: Val S 1,1 = {h | last(h) = Trg}, and Val S 1,0 = {h | last(h) = Trg}. Consider again the three strategies σ 1 , σ 2 and σ 3 from Example 1.

Lemma 7 .

 7 For all players p, histories h with last(h) = s and Dirac moves a, b ∈ Σ p (s): a h b if, and only if the following conditions hold for every c ∈ Σ -p (s) where we write s (a,c) = δ(s, (a, c)) and s (b,c) = δ(s, (b, c)): (i) χ p (hs (a,c)) ≤ χ p (hs (b,c)); (ii) if χ p (hs (a,c)) = χ p (hs (b,c)) = 0 then s (a,c) = s (b,c) .

Proposition 10 .

 10 For all player-p strategies σ in a concurrent game: (i) If σ is S-admissible then there exists a Dirac strategy σ such that σ S σ . (ii) If σ is A-admissible then there exists a strategy σ that plays only Dirac moves in histories of value ≤ 0 such that σ A σ .

s 1 ,Figure 3

 13 Figure 3 The game G A 1 obtained from the game in Figure 1. Bold states s0, (a, b) and s1, (b, b) are the states of AfterHelpMove A 2 . There is a (b, b)-labelled transition from all states in the dashed rectangle to s1, (b, b) .

2 Preliminaries Concurrent games played on graphs. Let

	P = {1, 2, . . . n} be a set of players. A concurrent
	game played on a finite graph by the players in P is a tuple G = (S, Σ, s init , (Σ p) p∈P , δ)
	where,
	(i) S is a finite set of states; and s init ∈ S the initial state;
	(ii) Σ is a finite set of actions;
	I C A

L P 2 0 1 7 123:4 Admissibility in Concurrent Games (iii) For

 all p ∈ P , Σ p : S → 2 Σ \ {∅} is an action assignment that assigns, to all states s ∈ S, the set of actions available to player p from state s. (iv) δ : S × Σ × . . . × Σ → S is the transition function.

123:11

To ensure we can effectively solve subproblems mentioned above, we consider ω-regular objectives. We also restrict ourselves to prefix-independent winning conditions to simplify the presentation. In the case of ω-regular objectives, prefix-independence is not a restrictive hypothesis (we can always compute the product of the game graph with a deterministic parity automaton that accepts the ω-regular objective and consider a parity winning condition). The values of the histories depend thus only on their last states, i.e. for all pairs of histories h 1 and h 2 : last(h 1) = last(h 2) implies that χ p (h 1) = χ p (h 2). We denote by χ p (s) the value χ p (h) of all histories h s.t. last(h) = s. Last, we assume that a player cannot play the same action from two different states, i.e. ∀s 1 = s 2 , Σ s1 (p) ∩ Σ s2 (p) = ∅. Thus, we say that move a is -LA when a is -LA from all histories ending in the unique state where a is available.

The game G p . Let us now describe precisely the construction of G p . Given an n-player concurrent game G = (S, Σ, s init , (Σ p) p∈P , δ) with winning condition Φ considered under semantics ∈ {S, A}, and given a player p, we define the two-player zero-sum concurrent game G p = (S, Σ, s init , (Σ p , Σ -p), δ) where: Note that the game G p depends on whether = A or = S because the two semantics yield different sets of LA-moves. However, we interpret G p in the sure semantics, so both players can play Dirac strategies only in G p .

Let us now explain how we obtain an imperfect information game by defining an observation function o. Note that histories in G p are of the form:

Then, let o : S → S be the mapping that, intuitively, projects moves away from states. For example, in Figure 3, states with observation s 0 are in the dashed rectangle. That is: o(s, a) = s for all states s, and o(s init) = s init . We extend o to histories recursively:

To make G p a game of imperfect information, we request that, in G p , players play only strategies σ s.

We relate the strategies in the original game G with the strategies in G p , which we need to extract admissible strategies in G from the winning strategies in G p and thus perform assume-admissible synthesis. First, given a player-p strategy σ in G (i.e., σ ∈ Γ p (G)), we say that a strategy

The assume-admissible synthesis technique. As explained above, the assume-admissible rule boils down to computing a winning strategy σ for player-p in G p w.r.t. the winning condition Φ G p , and extracting, from σ, the required admissible strategy in G.

I C A L P 2 0 1 7 123:12 Admissibility in Concurrent Games

We will now formally define Φ G p . Let p be a player (in G); and let us denote by st(a) the (unique) state from which a is available, for all actions a. We define AfterHelpMove p as

That is, when (s, a) ∈ AfterHelpMove p , in G, player p has played a p from st(a p) and, due to player -p's choice, G has reached s. However, with another choice of player -p, the game could have moved to a different state s from which -p can help p to win as χ p (s) ≥ 0. Intuitively, in runs that visit states of value 0 infinitely often, states from AfterHelpMove p should be visited infinitely often for player p to play SCO, i.e. such runs might not be winning, but this cannot be blamed on player p who has sought repeatedly the collaboration of the other players to enforce his objective. Observe further that the definition of this predicate requires the labelling of the states (by actions) we have introduced in G p . For example, in Figure 3,

Theorem 11 (Assume-admissible synthesis). Player p has a -admissible strategy σ that is -winning against all player -p -admissible strategies in G iff Player p has an S-winning strategy in G p for the objective Φ G p . Such a -admissible strategy σ can be effectively computed (from any player p S-winning strategy in G p).

Let us explain how we build a strategy in G with the desired properties, from any player p strategy enforcing Φ G p in G p . Remember that G p ensures that the players play -LA moves only. We will use Φ G p to make sure that, when SCO strategies are played by -p (relying on the extra information we have encoded in the states), then p reaches a state of value 1. First, consider Φ 0 (q) for q = p. Runs that satisfy this formula are either those that visit states of value 0 only finitely often (♦¬Val q,0); or those that stay in states of value 0, in which case they must be either winning (Φ(q)) or visit infinitely often states where Player q could have been helped by the other players (♦AfterHelpMove q). This is a necessary condition on runs visiting only value 0 states for the strategy to be SCO. Next, observe that Φ 1 (q) states that if a history of value 1 is entered then Player q must win. This allows us to understand the left part of the implication in Φ G p : the implication can be read as 'if all other players play a -admissible strategy, then either p should win (Φ(p)) or a state of value 1 for player p should eventually be visited (♦Val p,1)'. Then a strategy σ (in G) that wins against admissible strategies can be extracted from a winning strategy σ (in G p) in a straightforward way, except when σ enforces to reach a state of value 1 (♦Val p,1 in Φ G p). In this case, σ cannot follow σ, but must rather switch to a winning strategy, which:

(i) is guaranteed to exist since the state that has been reached has value 1; and (ii) can be computed using classical techniques [START_REF] Chatterjee | Qualitative concurrent parity games[END_REF]. The strategy σ is not necessarily admissible but by Theorem 8 (1), there is an admissible strategy σ with σ σ. By weak domination, σ wins against more profiles than σ, in particular, against the profiles of admissible strategies of the other players.