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A modular Dynamic Sensorimotor Model for
affordances learning, sequences planning and

tool-use
Raphael Braud∗, Alexandre Pitti and Philippe Gaussier

Abstract—This paper proposes a computational model for
learning robot control and sequence planning based on the ideo-
motor principle. This model encodes covariation laws between
sensors and motors in a modular fashion and exploits these
primitive skills to build complex action sequences, potentially in-
volving tool-use. Implemented for a robotic arm, the model starts
with raw unlabelled sensor and motor vectors and autonomously
assigns functions to neutral objects in the environment. Our
experimental evaluation highlights the emergent properties of
such a modular system and we discuss their consequences from
ideomotor and sensorimotor-theoretic perspectives.

Index Terms—Sensorimotor Laws, Affordance, Sequences,
Tool-Use, Ideomotor principle, Robotics

I. INTRODUCTION

INspired from the study of infant development, conceptual
models of sensorimotor control have highlighted that be-

haviours are mostly goal-directed. In this view, the ideomotor
principle [1] postulates that action and action planning are con-
trolled by an anticipatory representation of the desired effect.
Common coding specifically proposes that actions are coded
in terms of their perceptual effects [2]. Considering the fact
that infants clearly grow through open-ended acquisition of
novel behaviours, the ideomotor principle suggests a coupling
with computational models that:

• Involve cost (or reward) functions that are not dedicated
to a particular task [3], [4]

• Favour reusable skills that are directly applicable to
unseen scenarios [5]

• Acquire new skills while retaining those that were ac-
quired through past experiences [6] (i.e., incremental
learning).

In this paper, we propose such a model, inspired by theo-
retical models developed by Pezzulo and Castelfranchi [7].

Goal-directed behaviours raise the question of going beyond
an immediate reaction to the environment, that is a mere
mapping of perceptions to actions. Pezzulo and Castelfranchi
formulate theoretical models based on the prediction of action
consequences, insisting on the close relationship between men-
tal imagery and the motor system. They aim to go beyond the
learning of forward and inverse models as distinct mechanisms
and suggest a bidirectional learning of actions and effects.
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The properties discussed above have to be combined with a
developmental perspective. First, it appears that infant devel-
opment entails systematic and radical changes in multimodal
experiences and sensory correlations. This favours the idea that
development requires to continuously extend existing skills
to new inputs [8]. A stronger argument states that sensory
input is initially unlabelled. That is, the specific role of each
modality is unknown a priori. The interplay between sensory
input must then be discovered through an enactive process.
This major concern has been well illustrated by Denett [9].
He invites us to imagine being imprisoned in a windowless
control center of a giant robot, where the surrounding walls
are covered with sensors (i.e., lamps) and effectors, none of
which are labelled. The final question is not only to create
meaningful labels, but also to control the robot’s behavioural
repertoire. More practically, Pierce and Kuipers consider a
learning agent equipped with an uninterpreted sensorimotor
apparatus [10]. The agent has no a priori knowledge about
the sensory and motor system, the sensors’ meaning or the
effect of motor signals. The apparatus is considered as a
raw sensory vector and a raw motor vector. The authors
claim that raw values are not directly suitable for describing
the structure of the world and for predicting the effect of
actions on sensors, thus requiring an abstraction stage. The
latter is obtained by generating features (e.g., using PCA),
assuming approximately linear relationships between action
magnitudes and feature derivatives [10]. A similar hypothesis
is explored in the ASAMI model [11] or in information-
theoretic frameworks [12], [13].

Second, it remains unclear to what extent low-level skills
(e.g., sensorimotor mappings) and higher-level cognitive abil-
ities (e.g., action planning, tool-use) share common learning
mechanisms. The internal dynamics of the agent and the
dynamics of the environment, coupled during the acquisition
of sensorimotor skills, may allow both low- and high-level
skills to share a common metric space [14]. This advocates
that a continuous development between different levels of
cognitive abilities can lead to complex behaviours such as
the use of tools [15], [16]. In a developmental framework,
low-level behaviours can clearly form atomic components of
high-level learning [11], [17].

This paper proposes a computational model that starts with
raw sensors and motors and provides; (i) an incremental learn-
ing of the derivative effect motors have on sensors (forward
control model) and (ii) an open-ended mechanism that uses
the forward model to solve unseen tasks on-the-fly and on
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demand. The proposed model acquires low-level and higher-
level skills through identical learning mechanisms.

This work provides a novel instantiation of concepts de-
veloped by Pezzulo and Castelfranchi. The proposed model
predicts sensor variations based on sensor-based contexts
and motor magnitudes, where all values are continuous. The
sensors are not categorised according to their sensor space and
its topology. Rather they categorised through actions in order
to learn sensorimotor laws. We propose a common coding
between motor and sensor variations, such that a hierarchical
encoding and planning is achieved, allowing the generation of
action sequences.

The paper is organised as follows. Related works and prin-
ciples are presented in section II. In section III, we describe
a novel control architecture called Dynamic Sensori-Motor
model. In section IV we report on our experimental results,
whereas in section V we discuss related approaches before
concluding the paper.

II. RELATED WORK

A. Tool-Use: a key example

Tool-use is a good illustration of the issues we have identi-
fied, as it addresses a wide range of problems.

Regarding low-level issues, tool-use involves body schema
extension1 as well as reaching or grasping tasks. It also
deals with much higher level cognitive skills and abstraction
capabilities [20], such as the ability to make sequences [21],
[22], [23]. In addition, it is strongly related to language
issues [24], [25], [26], [27].

In Fagard et al experiments, children have to use a rake-
like tool to touch toys out of their reach. The results indicate
that it is only between 16 and 20 months when infants start to
intentionally try to bring the toy closer with a tool, suggesting
that a true understanding of the use of a tool is not fully
acquired before that age [28]. Among the striking capabilities
an infant develops during its early infancy, we notice the
means-end behaviour that appears approximately between 8 to
12 months and involves the deliberate and planned execution
of a sequence of steps in order to achieve a goal. The behaviour
occurs in situations where an obstacle must be first removed
in order to achieve the goal [29]. This behaviour constitutes
a very important step towards the use of tools, rendering it a
requirement. Despite the high-level cognitive capabilities that
are necessary for the means-end behaviour to occur, they are
not yet sufficient to accommodate tool-use.

Experimental results from brain imaging on subjects that
learn to make stone tools show that abstract conceptualisation
or strategic action planning are not the central factors for
developing tool-use, rather it implies that the sensorimo-
tor adaptation and affordances perception play an important
role [30]. In that context, tool-use can be deemed as a
continuous developmental achievement where the main issue
is to detect and relate affordances (please see [16] and [31]
for an implementation on a real robot).

1Please see [18] and [19] for a review on how a body schema can be
encoded in a robot.

Thus, this work focuses on the ability to encode sensorimo-
tor skills in a way that an open-ended use of affordances and
sequences of actions become feasible.

B. Sensorimotor encoding in the Robotic field

In robotics, the effectiveness of tackling the problem of
encoding sensorimotor information is well illustrated by en-
coding both motor and end-effector coordinates (e.g., for the
completion of a reaching task). Roboticists are faced with the
motor equivalence problem, which states that a redundant arm
has an infinite number of ways to reach towards a given target.
That is, a defined target can be reached using multiple motor
trajectories. The latter holds for any effector system with a
higher dimensionality than the target specification. Two main
strategies for sensorimotor encoding of both motor and end-
effector coordinates are considered for accomplishing reaching
tasks [32], [33].

The first one relies on learning mappings between motor
and end-effector coordinates. The effector system can then
reach a given target XB by activating the motor coordinates
θB associated with the desired end-effector coordinates.

θB = f(XB) (1)

We call this strategy the absolute strategy, because absolute
mappings are learned. An absolute strategy algorithm can for
example be used as a homoeostatic system: after learning
the associations, regardless of noise, the system is forced to
stabilise its output to an equilibrium point based on the learned
associations (or categories). Stabilisation occurs every time
there is a conflict within its associated inputs. These categories
can then become visio-motor attractors, for example, with both
vision and proprioceptive inputs, as seen in [34], [35]. Here,
it is worth noticing that in absolute strategies an algorithm
dedicated to the minimisation of the distance between the
current and the desired position is required (e.g., a PID). If
a robot has to perform a continuous sequence of end-effector
coordinates (forming an “8” for example), it can generate a
continuous sequence of motor configurations.

The second strategy depends on the learning of mappings
between each spatial direction of the end-effector and the
changes in the joint angles that cause the movement in the
spatial direction. Typical approaches involve a direct model,
through the Jacobian matrix J :

Ẋ = J(θ)θ̇ (2)

We call this a relative strategy. Unlike the absolute one, the
relative strategy allows an effector system to reach a target by
utilising the direction from the end-effector XA to the target
XB . This direction is associated with the learned variation
required to be applied to the joint angles.

θ̇B = f(XB −XA) (3)

Such function is usually estimated by the use of dedicated
inverse learning algorithms. Typical methods compute a gen-
eralised inverse of the Jacobian matrix [36], [37] and [38] to
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ultimately select one particular solution among all those that
are available, in order to perform a defined task.

θ̇ = J+(θ)Ẋ (4)

An advantage of the relative strategy is seen in the way it
addresses the geometry transformations of a robot such as the
extension of the arm that occurs in tool-use [32], [33]. Most
importantly for this work, the relative strategy does not directly
learn the target sensor configuration, rather it learns the whole
diversity of means available to the system in order to achieve
a reaching task. This is highly beneficial, as the system is
capable of reusing what it has previously learned with any
action selection mechanism as a repertoire of valid means
for different ends. This strategy fosters a clear separation
between what is learned and how learning can be used.

Based on the idea that the world is modular, Wolpert
and Kawato proposed a model based on paired forward and
inverse models [39]. According to their proposition, forward
models learn the causal relationship between actions and
their consequences, and in turn can be used as predictors or
simulators of the consequences of actions [40].

A modular representation of the world is efficient when
there is a clear independence between modules. This typically
holds in linear systems. However, as most components of real-
world systems exhibit non-linear and dynamic interactions,
defining a specific modularity pattern affects the dynamics of
the whole system. Although modules are defined according
to task-related factors (e.g., the interactions with a particu-
lar object or within a particular environment), they can be
employed for closely related tasks. However, modules may
become less effective when the factors that define them are
not met in a particular task and exhibit different non-linear
dynamic interactions. In this case the utilisation of previously
defined modules may render the system less accurate and, in
turn, may become a problem during the modulation of the
contribution of the inverse models.

It is argued that predictive learning of sensorimotor infor-
mation plays a key role in cognitive development, and may be
able to produce a continuous development between different
levels of cognitive abilities [15]. Rolf and Asada also point
out the interesting role of goals in developmental robotics
and autonomous mental development [41]. Goals are often
handcrafted and chosen by a designer: they materialise the cen-
tral question for open-ended development, particularly when
goals cannot be known in advance. It raises questions about
how they could be learned autonomously, through perceptions.
For Rolf and Asada, goals can often be easily interpreted in
terms of underlying affordances. They describe discrepancies
between a present state and an imagined and desired state,
while affordances describe general possibilities that can be
positively valued by goals. This mechanism is described in
the next section.

C. Sensorimotor encoding, goals and affordances in psychol-
ogy and neuroscience fields

As regards the ideomotor principle [1], goals are seen as
anticipatory representations of the expected action effects,

and voluntary actions are represented and controlled by their
anticipated action effects. This idea of encoding actions in
terms of goals is further developed in the common coding
theory [2], where perceived events and actions generated by
distal events are coded and stored together in one common
representational domain. In the Theory of Event Coding [42],
perceiving a stimulating object and planning a voluntary action
are not distinct processes operating on completely different
codes. Rather, they are functionally equivalent, because both
are dealing with an internal representation of external events.
Hommel also defends that such coding is somehow hierarchi-
cal and relies on events that could be segmented into several
meaningful units.

In fact, planning an action raises the question of how se-
quences of meaningful units of actions are organised. Seminal
works [43], [44] argue for a hierarchical structure in human
action. A computational model of a hierarchically organised
network of action schemas, mapping onto the structure of
the relevant task domain (e.g., task of coffee-making) was
proposed by Cooper and Shallice [45]. A review is found
in [46]. In neuroscience, hierarchical architectures that drive
their inspiration from the prefrontal cortex (but relying on
multiple neural circuits) are proposed for planning goal-
directed sequences [47], [48]. Similarly in the robotics field,
there exist several works that propose models of a hierarchical
structure of behaviour [49], [50], [51], [52]. For Bonini et
al., ventral premotor and inferior parietal neurons together
with the prefrontal cortex can code the goal of intentional
actions at different levels of motor abstraction. In addition,
parieto-premotor circuits along with the prefrontal cortex are
responsible for the organisation of motor acts into action
sequences and for keeping the internal representations of the
individual motor intention active [53].

Moreover, the discovery of mirror neurons on macaque
monkeys in brain area F5 (considered as homologous to human
posterior inferior frontal cortex) point to a mechanism of repre-
sentation of an action goal (see [54], [55] for a review). In fact,
mirror neurons not only respond to specific actions, e.g., the
grasping of objects, but also they respond to the observation of
another monkey or a human performing the same goal-directed
action. More precisely, mirror neurons respond differently
when the same observed act is embedded in a specific action,
with a different motor chain (grasping for eating, grasping
for placing, etc.) and a different intention, suggesting that
they are sensitive to goals at different levels (proximal or
distal goals) [56]. Canonical neurons are also discovered in
the same brain area. In addition to responding to specific
actions like grasping an object, they also respond to the mere
observation of an object [54]. This suggests a mechanism of
affordances. The concept of affordances was first introduced
by Gibson [57], as resources that the environment offers to any
animal that has the ability to perceive and make use of them.
From this ecologist perspective the perception of affordances
is direct, unmediated by neural or mental representations.
From the representationalist perspective however, affordances
are internalised through mental representations for use by
computational processes, for example with a sensorimotor
agent interacting with the world. Tools, for instance, are
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manipulable objects that elicit multiple affordances, in relation
to their shape or their function ([58], [59]). Interestingly, Ellis
and Tucker proposed the concept of micro-affordances, for
possible interactions not with the whole object but with rather
specific action components. For example a given size, shape
or orientation of an object will trigger partial activations of
the motor patterns required to interact with it [60]. Since
the environment continuously provides the brain with a great
number of opportunities for actions, it highlights the problem
of interference between them, and more specifically the prob-
lem of selecting among them. In the affordance competition
hypothesis developed by Cisek [61], [62], the brain processes
sensory information and specifies several potential actions
that are currently available, i.e., the affordances, in parallel.
Another major pathway in the brain is supposed to bias the
selection among the available affordances, which compete
against each other. In a recent work, Thill et al. review
such mechanisms and their related computational models, and
put emphasis on the role of goals and more specifically the
importance of the prefrontal cortex in this selection [63].

Considering the idea that affordances depend on actions
from the observer, Moller et al. assume that affordances
are revealed by a process of internal simulation of action
consequences [64]. In order to perform such simulation, the
ability to anticipate is necessary. Anticipation is a basic
computational mechanism in the brain and plays an significant
role [65], [66]. The anticipation of the effects of an action
is usually done through internal, both forward and inverse,
models. A forward model requires the integration of perceptual
states and efferent copies of motor commands in order to
predict the sensory consequences of the actions, whereas the
inverse model requires the actual and desired states in order
to generate motor commands to achieve the desired state
(see [67], [68], [69], [70]). Morover, models with simulated
inputs can be used for internal simulations. In the simulation
theory, it is argued that thanks to such mental simulations, the
same neural structures can underlie sensorimotor, cognitive
and social abilities (such as self-detection, self-other distinc-
tion, planning, perception, mindreading, and imitation) [71],
[72], [73], [74], [75]. For Moller, affordances are simulations
of actions through a learned forward model. It is possible
to predict and choose actions based on such simulations.
Nevertheless, the multitude of sensorimotor sequences is too
rich to be explored, so an inverse model is learned in order to
reduce the exploration and to allow the immediate proposition
of actions. Due to an evaluation of predicted situations, actions
are labelled as “good” or “bad”, and subsequently the inverse
model is able to provide a restricted subset of promising
sequences [64].

The simulation theory not only provides an explanatory
mechanism for affordances [64], but it also consists of a way
to interpret the bidirectional links between goal representations
and motor actions, as outlined by the ideomotor principle,
extended through the common coding theory. For Pezzulo and
Castelfranchi, thinking consists in the control of imagination,
as the capability to control mental simulations to set up
interactive subgoals and plans that achieve intentions beyond
the here-and-now of perception [7]. Similarly to [64], they

propose a parallel extraction of many affordances available in
the environment by running internal simulations of possible ac-
tions. As in [61], they also propose a mechanism for selecting
one of the available affordances based on the their values and
achievability. They finally suggest two inhibition mechanisms;
i) one that inhibits responses that are automatically triggered
by affordances, and ii) one that allows the temporary suppres-
sion of both control commands and external inputs, and instead
utilise internally generated (simulated) stimuli [7]. They also
point to a working memory mechanism responsible for storing
distal goals and subgoals, over time.

In line with the described ideomotor principles and with
the sensorimotor theory [76], we combined an action based
perception mechanism with a common coding between mo-
tors and sensors, by encoding sensor variations as motor
magnitudes through locally linear associations of the two.
In the Dynamic Sensorimotor Model (DSM), presented in
the next section, a “motor” is defined as having two distinct
characteristics. First, a motor is a magnitude and thus is able to
drive changes in the sensor space. Second, this magnitude can
possibly be manipulated by the robot. The first motors to be
considered are the actuators of the robot, and their magnitudes
are given by motor commands, e.g., in velocity. However, a
sensor variation magnitude is tautologically making a change
in the sensor space. Hence, once a control model is able
to cause such a variation, it is the sensor variation that is
considered as a motor in the context of DSM. Perceiving
a motor as a sensor variation allows the robot to possibly
consider any predictable sensor variations as motors, internal
(e.g., proprioception) or external (e.g., the visual perception
of a tool).

III. THE DYNAMIC SENSORIMOTOR MODEL

In order to be able to perform high-level tasks in an open-
ended manner, it is argued that a robot should have the ability
to recombine simple skills in order to perform a new task.
Based on this, we propose a model where only basic skills
are learned. In DSM, a basic skill describes the ability to
control only one sensor. We then provide a mechanism to allow
different skills to be combined on-the-fly, with respect to the
constraints of both the task and the context.

In the next sections, III-A and III-B, we describe how a
basic skill is built. In section III-C we show how they can be
combined to achieve a task.

A. Encoding basic skills: the Sensorimotor Law Encoder

Following the ideomotor principle, the aim is to make sen-
sory variations perceived as equivalent to motor magnitudes.
We propose a relative strategy (described in section II-B)
by which our Sensorimotor Law Encoder (SLE) learns how
to predict sensory variations dS based on motor magnitude
M , assuming a locally linear relationship between them. A
comparable idea is exploited in previous research, where
joint distribution of sensorimotor variables, known as gain-
field neurons, are used to encode sensory variation based on
prediction errors [77]. Considering that our model only tries to
reduce dS to M , it is assumed that all observed changes in the
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Fig. 1. Sensorimotor Law Encoder of sensor i. A learning predictor of the
variation of sensor i that takes as input the vectors S and M of all sensors and
motors, respectively. A categorisation of S is done to encode the contexts for
each motor. The recruitment of a new context is based on the prediction error.
The winning context is multiplied by one motor in a neuron. This neuron is
then associated with the prediction of the variation of the sensor i.

environment are possibly a result of the robot’s actions within
it (see [10], [12] for examples of more developed works that
consider this issue). In fact, DSM is based on the idea that
there is no a priori separation between the robot’s body and
the world, which is shown to be beneficial when interpreting
a tool as an extension of its body.

Considering the above, the input vector S is populated with
sensors that concern both internal (e.g., proprioception) and
external (e.g., vision) sensory data.

DSM’s predictors, SLEs, build on the pioneering works of
Bullock et al. [32], [78], [79]. There are three fundamental
differences, which are designed to overcome difficulties found
in the previously proposed models. First, DSM allows the
learning of as many SLEs as sensors in the system, in order
to be able to ultimately act on their corresponding sensors
individually and change them independently, a technique
which promotes the generation of different combinations of
sensor variations. Next, each SLE should, in theory, receive
all sensors as input. Although not all sensors are relevant
to the prediction of just one sensor variation, in early stages
of autonomous development, unexpected inputs can have the
potential of being key predictors in the future. For instance, in
our experiment tactile information is used to predict a variation
of the hand position (with a tool). The importance of the tactile
sensory information is not obvious when predicting the hand
position, but during development a priori irrelevant input may
be used to learn sensorimotor laws, due to unpredictable cir-
cumstances. In a similar vain, we also except that at some point
during the development, a wrong, imprecise or incomplete
law can be learned (e.g., tactile information is probably not
enough, whereas vision should probably be taken into account
when recognising a tool). This mechanism, although prone to
generating laws that consider irrelevant sensors at early stages,
it conceptually aligned with the effect developmental learning

is expected to be [80]. Finally, the last difference is that
our SLEs do not learn an inverse model, rather a simulation
mechanism is used. The latter is discussed in detail in later
sections.

In more detail, each SLE is dedicated to one sensor and is
responsible for predicting its variation, i.e., δsi for the sensor
i. M is a copy of the vector of the N motor magnitude that
is being currently executed: each motor mn can potentially
predict a variation of si depending on the context given by
S, the vector of input sensors. As depicted in fig. 1, the N
motors are processed as follows. To start with, S is categorised
using a Selective Adaptative Winner (SAW) neural network.
The activation rule of the SAW is given by:

Ak = 1− 1

N

∑
j

|wkj − ej | (5)

where Ak is the activity of the kth neuron of the output
layer of the SAW, wkj the weight of the connection between
an output neuron k and the jth neuron of the input layer
whose activity is ej . The connection’s weight is set to ej
when the recruitment occurs (line 7 in Algorithm 1). There is
no adaptation in our experiments, however an adaptation rule
based on the K-Means algorithm may be added to adapt the
weights of the winner. Considering eq.5, the closest the current
inputs are to the learned inputs, the highest the activity Ak.
Handling a recruitment is depicted in algorithm 1 lines 6 to 8.
Note that for a recruitment to occur two conditions need to be
met. An error is detected on sensor i and one unique motor na
has been activated since the time previous sensor values were
stored (in sStored). A new category is then recruited within
the corresponding SAW (sensor i, motor na).

The second step of processing of the motors consists of the
selection of the most appropriate sensory category, using a
Winner Takes All (WTA) neural network.

Finally, once selected, the winning neuron is multiplied by
the scalar motor activity mn. Each of those N multiplied
neurons is then used as a conditional signal to learn the linear
relationship between the motor mn and the unconditional
δsi input. This is achieved by utilising a least mean square
(LMS) algorithm. The contributions of each motor activity are
then summed in the LMS to compute the predicted variation
δsPred

i .
Notice that the learning signal, coming from the prediction

error, is used both for the recruitment of the SAW and for
the learning of the LMS. In addition, the triggering of the
learning signal does not depend on the input sensor space
but on a threshold Th1 applied to the prediction error of each
SLE (see fig. 1). Moreover, to avoid noise on instant derivative
measures of the sensors, the error is not measured at every time
iteration. Rather, it is only measured when enough change
to the predicted sensor has been noticed, given an arbitrary
threshold ThStep

1 . If the latter is too low, SLEs may be too
sensitive to noisy input sensors and may recruit too many
neurons. If the threshold is too high, the learning may not be
accurate enough. The derivative sensor value to learn ∆sReal

i ,
in input of each SLE, is then integrated on a meaningful
period.
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Algorithm 1 : SLEi ( i, SReal, MReal )
1: sStored

i ← sReal
i ; ∆sPred

i ← 0 ; ∀n, Mn ← 0
2: loop
3: ∆sReal

i ← sReal
i − sStored

i

4: if |∆sReal
i | > ThStep

1 or |∆sPred
i | > ThStep

1 then
5: if |∆sPred

i −∆sReal
i | > ThErr

1 then
6: // Error: Recruitment for the (unique) activated

motor na, i.e. where Mn 6= 0, of the kth neuron
in SAWna, and learning in LMSna

7: ∀j, wSAWna

kj ← sReal
j

8: wLMSna

k ← ∆sReal
i

Mna

9: end if
10: // New step: re-initialisation of the predictor
11: sStored

i ← sReal
i ; ∆sPred

i ← 0 ; ∀n, Mn ← 0
12: end if
13: // Perform current prediction
14: ∀n, Mn ←Mn +mn

15: ∀n,
{
∀k, An

k ← 1− 1
N

∑
j |wSAWn

kj − ej |
∀k, Bn

k ← mnA
n
k

16: δsPred
i ←

∑
n

∑
k

wLMSn

kn Bn
k

17: ∆sPred
i ← ∆sPred

i + δsPred
i

18: end loop

The internal mechanisms of the SLE of the sensor i are
shown in Algorithm 1. Here, S is the vector of values si
of all sensors, and M is the vector of values mn of all
motors. The SLE is performing a prediction sPred

i of the
variation of a sensor i. The predictor is initialised with a
short term memory of the real value, sStored

i , which takes
the current value sReal

i . Given an arbitrary threshold ThStep
1 ,

chosen empirically, when the sensor moves enough, i.e.,
|∆sReal

i | > ThStep
1 , or the predicted value moves enough, i.e.,

|∆sPred
i | > ThStep

1 , the SLE evaluates the goodness of the
prediction given another smaller arbitrary threshold which we
empirically defined as ThErr

1 =
ThStep

1

2 . Then, the predictor is
re-initialised. Considering that learning requires that the robot
has only one motor activated at a time, named na, if the
prediction is found not good enough, then the SLE recruits a
new neuron in the SAWna (related to the activated motor na)
and learns the subsequent weight in the LMSna (also related
to the same motor na). This method allows it to predict the
real observed variation ∆sReal

i . The learning is contextualised
by the current sensor configuration S and is linear to the
accumulation of motor magnitude Mm of the motor n since
the last initialisation. At each iteration, the motor magnitude
and the predicted sensor variation are accumulated until the
next initialisation step.

B. Using basic skills : the Sensorimotor Law Simulator

The SLE is the only learning mechanism in DSM, which
simply learns predictive sensorimotor laws of covariation be-
tween sensors and motors. In turn, this predictive mechanism is
used to provide actions [81], independently from the learning
process. Since no inverse model is learned, the problem
of learning one unique solution among an infinite set (see

Inhibition
mechanism
"123123..."

"noise"

Proposal
selection

1

2

3

1

2

3

Input
selector

Output
selector

Learning signal

SLE input
simulator

"1"

Target Proposals

Proposals

Priority Priority

Fig. 2. Sensorimotor Law Simulator for sensor i. An inhibition mechanism
allows three various inputs to be sent to an SLE, coming from either real
inputs, simulated motor inputs or both sensor and motor simulated inputs.
For a given target, the SLS computes the desired sub-goals S and motor
commands M , based on results of the simulations (notice that no learning is
involved).

Sec. II-B), is successfully tackled. Equally, the problem of
learning multiple inverse models that are found to be useful
only in some contexts, rendering them difficult to be learned
and to be selected, is avoided (see [39]).

In DSM, an action is selected based on an affordance
mechanism. The idea is that the inversion of the learned
action-effect associations (theoretically possible according to
the ideomotor principle) leads to several action possibilities,
i.e., the affordances. Here, we deem affordances as a desire to
apply the sensory variations offered by some simulated inputs
of the SLE. Hence, the simple observation of the world triggers
affordances, which are then used for goal oriented actions.

In line with Moller et al. [64], we define affordances as
being the predictions computed by the SLE when motor inputs
M match MSim, a vector generated by the simulator, and
not the real vector MReal. Since the SLE explores the local
linearity between the predicted sensor and motor inputs and
given the vector MSim, it is possible to compute the precise
motor magnitude in order to achieve a goal in the current local
context.

Extending this work further, we propose the use of the
same simulation mechanism with the other input of the SLE
being utilised, i.e., a simulated sensor input SSim. Now, the
result of the prediction is not an immediate affordance, where
acting in the current context triggers the predicted output. It
can be described as a “context-affordance” or a delayed one.
That is, an affordance of a context that leads to an immediate
affordance. In other words, a prediction based on SSim can be
used to trigger a desired sub-goal SDes, that, when achieved, it
allows the robot to experience a previously simulated context
and access any further actions associated with it.

Instead of learning an inverse model, we propose a Senso-
rimotor Law Simulator (SLS), depicted in fig. 2. Most of the
mechanisms involved in SLS are similar to those described
by Pezzulo and Castelfranchi in [7] (more specifically in
stage 2). First, we propose an inhibition mechanism that
facilitates the use of multiple input vectors with SLE. In-
hibitory mechanisms are found to be common in the brain.
As Pezzulo and Castelfranchi suggest, inhibitory mechanisms
can act as switches. Nevertheless, as the in-depth development
of a complex inhibitory mechanism is out of the scope of
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this work, a simple switching mechanism capable of offering
combinations of different inputs, is employed. As mentioned
in Sec. III-A, the considered inputs for making a prediction
are the sensor and motor vectors S and M, respectively.

The simulator populates the simulated sensor and motor
vectors SSim and MSim. Due to the local linearity of the
learning, non-zero values (i.e., 1) are sufficient for all elements
in the vector MSim, whereas the sensor vector SSim is
arbitrarily filled with noise. The inhibitory mechanism in
SLS switches between the following three input combinations
(depicted also in fig. 2):

1 Using real inputs MReal and SReal. This is used for
learning. The output δsPred

i is the predicted sensory
variation of sensor i.

2 Using real sensors SReal but simulated motors MSim.
The output is the so-called “affordance” value δsM

Sim

i ,
and corresponds to the sensory variation of the sensor
i, assuming the robot executed the motor command
MSim. Note that a high value of δsM

Sim

i indicates a
high correlation between the corresponding motor and the
sensor i, within the current context. Later in the paper,
this value is reflected to an efficiency parameter E.

3 Using simulated inputs MSim and SSim. The output
δsS

Sim

i reflects the suitability of the simulated context
(i.e., the “context-affordance”), that is, a context in which
the motor command MSim triggers the desired sensory
variation to the sensor i.

Considering the two simulated outputs given by 2 and 3 ,
a mechanism termed Proposal Selection determines the simu-
lated MSim and SSim relevant for the desired δsDes

i . This
is seen as a type of affordances’ competition but between
immediate and delayed, “context-affordances”. In the imple-
mentation used in this work, only one desired output is sent
(i.e., MDes or SDes). If the immediate affordance using MSim

is strong enough, then a motor command MDes is desired.
Otherwise, if the delayed affordance using SSim is strong
enough, a sub-goal SDes is desired. A threshold Th2 is used
to determine whether the affordance is strong enough. More
specifically, when this threshold is too low, the corresponding
desired motor command is always triggered. On the contrary,
when the threshold is too high, neither the corresponding
desired motor command nor the sensor pattern are triggered.

On the first hand, if δsM
Sim

i is above the threshold Th2

(i.e., if the efficiency E is high enough), we then compute and
send the appropriate motor command, using the local linearity
between sensors and motors as shown below:

MDes =
δsDes

i

δsM
Sim

i

(6)

This motor command may become inaccurate as a result of
inaccurate learning or due to changes to the contexts. However,
MDes is updated at each iteration step and is continuously
adapted.

On the other hand, if δsM
Sim

i is less than the threshold
Th2, the model tests the efficiency of the context that gives
the highest delayed affordance. At each iteration, the proposed
selection mechanism checks whether δsS

Sim
Max

i has the highest

GOAL

SUB-GOALS

Distance
Computation

Efficiency
Weighting

Selected Selected

Working
Memory

Priority
Selection

(PS)

(DC)

Fig. 3. The Dynamic Sensorimotor Model. For an initial given goal, DSM
generates sub-goals and selects the most efficient motor commands, resulting
from multiple SLSs. It employs a selection mechanism (depicted as priority
mechanism PS) in order to choose between sub-goals and the initial goal,
when the latter is directly feasible. It then sends the desired variation of each
sensors for achieving the selected goal to the corresponding SLSs. A working
memory is in use to keep track of the selected goal.

value ever encountered. If a higher value is experienced
instead, it updates the couple formed by {SSim

Max, δs
SSim

Max
i } with

the current values {SSim, δsS
Sim

i }. Then, if δsS
Sim
Max

i exceeds
the threshold Th2, the corresponding simulated input is sent;
SDes = SSim

Max. The flowchart related to SLS in fig. 4 illustrates
those internal mechanisms of DSM.

C. Dynamic Sensorimotor Model architecture

The Dynamic Sensorimotor Model deals with various de-
sired goals and motor commands. The idea is that for one goal,
DSM uses multiple SLSs in order to find the most appropriate
motor commands and sub-goals and allow the robot to act by
implementing sequences of actions that have not been learned,
per se, in the past.

A goal is a vector SDes of l sensors, with l being less
or equal to the total number of sensors in the system. The
distance between the current sensor values SReal and SDes

reflects the distance between the actual and desired contexts,
and is calculated in order to obtain l different δsDes

i that are
then delivered to the l corresponding SLSi, see fig. 3.

The latter send sub-goals SDes or motor commands MDes.
Here, a selection mechanism is required to deal with the
selection of goals and recursive sub-goals, and with the various
motor commands that might happen to control the same
robotic motors. In our implementation, we propose a priority
mechanism where each goal (or sub-goal) is coupled with
a priority value P . For the initial goal, PGoal = 1. The
mechanism selects the priority with the maximum value and
sends the selected SDes and MDes. The SDes coupled with
its priority P = p is then sent to the distance computation
mechanism. The couple is then received by all related SLSs,
which eventually send SDes or MDes coupled with a priority
P = p+ 1.

Once the priority selection mechanism has completed, it is
still possible for motor commands to have values that negate
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each other on the same motors since each SLS can send
MDes on all values with the same priority. To overcome
this, another selection mechanism for all the MDes, called
the efficiency mechanism, is used. Motor commands coming
from SLSs are individually coupled with efficiency values
E. In terms of calculating E, one can argue that the value
δsM

Sim

i (see Sec. III-A) that corresponds to the affordance
value, can be enough. However, it does correspond to the
immediate efficiency and is not computed with respect to the
“usefulness” of this affordance. In this work, we propose that
E = δsM

Sim

i ∗δsDes
i , so the efficiency finally becomes related

to the potential amount of work that needs to be done in order
to achieve the current goal. As E is strongly related to the
affordances in the current context, a selection method based
on E values is close to the idea of affordance competition
(see [61]). Although there exist different ways to compute the
motor commands M values based on the efficiency E, such
as linear combinations, etc., in this work the winner motor
command is the one with the maximum efficiency. This is
to ensure precision in the desired motor magnitudes in the
system.

In fig. 4, a flowchart of a proposed implementation of the
DSM is shown, including the main equations that are used for
the internal mechanisms. Notice that for the sake of simplicity,
the flowchart has no efficiency weighting mechanism.

Goals, i.e., pairs of a vector of desired sensor pattern and
priority values, are sent to the priority selection module which
in turn selects the goal with the highest priority. The distance
computation module then sends the required sensor variations,
coupled with their priority, to the corresponding SLS. The
latter then uses simulations within its SLE in order to compute
the sensor variation related to a motor movement in the current
or in another context. Given a threshold, it sends either a motor
command or a desired context (i.e., a sensor pattern) as a new
sub-goal with a higher priority.

DSM allows motor commands to be performed as soon as
possible, with sequential behaviours emerging on the fly. For
instance, if the goal consists of reaching to a given point,
the SLS corresponding to the hand sends motor commands
MDes to get the hand closer to the target (it sends no SDes

at this point). If the hand cannot get close enough to the
target, the SLS sends a SDes to have the tool in the hand,
considering the tool is perceived as an extension of the arm.
It corresponds to a sub-goal “having the tool in the hand”.
Then, through implementing commands from other SLSs (see
next section for more details on this experiment), the hand’s
SLS can be assigned a new δsDes

i in order to reach towards
the tool. Here, the following problem is encountered. After
the new assignment, the previous sub-goal “having the tool in
the hand” is no longer sent, rather it is somehow forgotten.
The problem originates from the fact that in this particular
sequence hierarchy, the SLS of the hand is found twice in
the hierarchy of goals. Pezzulo and Castelfranchi suggest
that a working memory is needed in order to maintain distal
goals [7]. Adapting their suggestion, all sDes

i of the vector
SDes are stored in a working memory within the priority
selection module, which is also responsible for pruning them,
one by one, when |sDes

i − sReal
i | < Th2.

...

Motor command

GOAL

...
Priority selection

Distance computation

Working
Memory

Yes

No

Yes

No

+

Fig. 4. Flowchart of the implementation of DSM used in this work.

IV. EXPERIMENTS

A. Simulation experiment: SLE performances

In previous works, we demonstrate that the SLE is able
to efficiently predict sensory variations and can be used for
reaching tasks. In [33], we simulate a four degree of freedom
(DoF) Katana arm to test the SLE’s learning performance
for reaching tasks in a 3D space. We also compare its
performance against an absolute and a control strategy model.
Each strategy performs a motor babbling that explores random
arm configurations and redundancies. On a regular basis, we
test the reaching performance; a continuous sequence of target
coordinates in 3D space has to be reached by the hand of the
Katana arm, and the mean distance in meters from the hand
to the target is computed during the whole task. The same
sequence of target is repeated for each test. The results show
that the model based on SLEs is the fastest to decrease. In fig. 5
the mean error curve at different steps of the development
is seen. A comparison with other models and results on
performances when the body schema is changed through a
tool is found in [33].

B. Real robot experiment: DSM on the fly sequences

A real robot is used in order to evaluate the efficiency of
DSM and its ability to make sequences of actions on the
fly. The aim is to maximise a reward signal, by reaching a
given target with the hand of a robot. Two different tools
are available in the experiment, with different affordances.
They both have the property to extend the body schema,



IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 9

Fig. 5. Mean error of a sequence of reaching tasks repeated at different step
of development, in simulation with a 4-DoF Katana arm. Between each trials,
a babbling phase is performed for learning with the three SLE for axes X, Y
and Z.

i.e., geometry of the arm, but not in the same direction.
Tool 1 extends the arm vertically whereas tool 2 extends it
horizontally. In order to show various functions of those tools,
we block the articulation of the arm so both tools can be useful
in different situations for a reaching task. Tools are useless
when the target is already reachable, but tool 1 becomes useful
when the target is out of reach on the Y axis, while tool 2
becomes useful when the target is out of reach on the X axis.
Basic sensorimotor rules are learned through different SLEs
and we see how our model is able to maximise its reward
thanks to the ability of DSM to generate and utilise sequences.

Apart from the Katana arm and its hand, the experimental
set up consists of a camera, two tools and a target, see fig. 6.
The camera is used to recognise and localise the arm, the
tools and the target on the image. This is achieved by the
use of a previously developed bio-inspired object recognition
algorithm, based on local points of interests (see [82]). It
gives the robot a 12-neuron vector, 4 for the presence of
the different objects and 8 for their positions on the X and
Y axes. In this experiment, the target is out of reach hence
the robot is expected to reach towards the tool and ultimately
grasp it. When the tool is grasped by the robotic hand, the
robot perceives its hand position as being extended to the tool
position. A reward signal is also given to the robot. This signal
increases as the perceived distance from the hand to the target
sH→Target decreases.

We determine the values of the two DSM thresholds em-
pirically. That is, Th1 = 0.1 and Th2 = 0.05 as in our
implementation sensors vary globally between 0 and 1.

We make use of three SLEs. Each of them is dedicated to
the prediction of one sensor variation and receives sensors and
motors as its input (see fig. 1):
• SLEHx

predicts the variation of the perceived position
of the hand on the X axis. It takes the proprioception
θ1 of the first degree of freedom as its sensor input.
Since the Katana arm has its own PID, we do not have
direct control of the motor command. The variation of the
proprioception δθ1 is then used as a motor input. Another
couple of sensor and motor is used to predict the variation
induced by tool 2. It takes the distance sH→Tool2 from
the hand to the tool 2 as a sensor input, and the grasping
motor command δGrasp as a motor input.

• SLEHy
predicts the variation of the perceived position

of the hand on the Y axis. It takes the proprioception θ2

Fig. 6. Experimental setup.

of the second degree of freedom as its sensor input. For
the same reason stated above, δθ2 is the motor input.
Another couple of sensor and motor is also used for
this SLE to predict the variation induced by tool 1. The
distance sH→Tool1 from the hand to the tool is used as
a sensor input, and the grasping motor command δGrasp

as a motor input.
• SLEReward predicts the variation of the reward signal.

Using the common coding property, we use as motor
input the variation of the perceived distance between the
hand and the target δsH→Target. This distance is directly
linear with the reward and is not context dependant, so no
context is needed (notice that one linear law is enough).
Nevertheless, since a SLE needs a sensor input we also
take the distance δsH→Target as the sensor input.

In the whole DSM architecture, the SLEs are the only
learning modules. They learn independently from each other
and regardless of any future task. Each SLE is associated
with a corresponding SLS that runs in parallel and also
independently from others. The learning of the three SLEs
is then performed.

No major differences are reported when running DSM on a
real robotic platform as compared to the simulations. However,
due to the lack of explored redundancies and the noisy visual
input streams (see estimated positions of the hand while
performing smooth movements in fig. 7 and 8), meaningful
threshold values have to be higher and, as a result, the system
becomes less sensitive to capturing a rich set of sensorimotor
laws. Although the system is capable of learning, it is found
to acquire just a few minimal rules about covariations between
proprioception and visual positions. Importantly, both SLEs of
the hand are able to learn a context, i.e., a proprioception area
on θ1 or θ2 encoded in the SAW) where the hand could not
move more (supposing articulations limits).

Note that even if all SLEs have to compute their predictions
at each iteration (which is computationally heavy), they learn
independently from each other and in our implementation they
run in parallel and use asynchronous communications.

Here we describe sequence of events of the experiment. The
only input, in DSM, is an external goal concerning the reward
(see fig. 3).
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Phase 1: Reaching the target. We give to DSM the goal
Reward = 1. Being an external goal, it is associated with
the priority 1 (P = 1) in the priority selection (PS) module.
The distance from the current value of the reward value to 1
is computed by the Distance Computation (DC) module and
it is sent to SLSReward. This SLS sends a motor command
δsH→Target to PS, associated with the P = 2, which is
interpreted as putting the hand on the target. This is done
at each iteration of the DSM model. DC computes distances
δsH→Target on X and Y axis and sends them to SLSHx

and SLSHy
, associating them with P = 2. Both SLS then

send motor commands on θ1 and θ2, associated with P = 3.
Here, no other motor commands are sent so the Efficiency
Weighting module is not necessary. A reaching behaviour is
then observed.

Since the SLE has learned that there is a point where
δsPred

Hy
< Th2, when a target is out of reach because it is

on top of the hand in the Y axis, the SLS checks if a SSim

exists where δsS
Sim

Hy
> Th2 (see III-C). If no rule associated

with tool 1 has been learned by SLEHy
, the arm simply does

not move and the robot stays in phase 1. If a rule associated
with the tool 1 that extends the arm, hence causes a variation
on the Y axes, has been learned (note that it can happen at
any time, independently of other learning or behaviours), then
δsS

Sim

Hy
can have a value beyond the threshold. Typically this

holds when SSim corresponds to having the hand close enough
to the tool 1. The same mechanism applies with SLSHx and
tool 2.

Phase 2: Reaching of the tool. What we describe here
applies for both tool 1 and tool 2. In this phase, the target is
not reachable because it is too far from the hand in the Y axis,
and δsS

Sim

Hy
> Th2 in the SLSHy

. The SLS sends a sub-goal
on sH→Tool1 associated with P = 3. This time, PS receives
2 desired values for Hx and Hy , since it had also received
δsH→Target with P = 2 from SLSReward. The desired value
with the highest priority is then selected: DC computes the
distance from the hand to the tool 1, and sends it to SLSHx

and SLSHy
, associating it with P = 3. As in phase 1, the

SLS sends motor commands and the hand tries to reach tool
1. Note that unlike phase 1, PS does not receive sH→Tool1

at each iteration. Instead, it is received only once, since after
setting a sub-goal SLSHy

just sends motor commands. This
justifies the need of a working memory in PS, in order to
keep this sub-goal in memory until it is met.

Phase 3: Reaching of the target with the tool in the hand.
The hand grasps the tool and the arm is perceived as being
extended. The hand is now perceived at the tool position on
the X and Y axes. The sub-goal is erased from the working
memory in PS. The system then behaves as in phase 1.

On fig. 7 and fig. 8, we present results of experiments
where the targets are unreachable along the Y and X axes.
In both cases, the task is the same, i.e., increasing the robot’s
signal reward. Both tools present to the robot during the whole
experiment. The results show the trajectory of the arm as
perceived by the object recognition algorithm. We can observe
the 3 phases described above; i) the robot tries to reach the
target, ii) it reaches a point in its proprioception space where
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Fig. 7. Hand trajectory of the Katana arm (as perceived by the object
recognition algorithm) with a target out of reach along the Y axis. The robot
makes a detour to grasp the adapted tool 1.
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Fig. 8. Hand trajectory of the Katana arm (as perceived by the object
recognition algorithm) with a target out of reach along the X axis. The robot
makes a detour to grasp the adapted tool 2.

it move further along the X or Y axis, and iii) it makes a
detour on-the-fly in order to select the tool, most suitable for
its problem.

In fig. 9, we show more detailed results of an experiment
performed with just tool 1. In a), the positions of the hand (in
blue), the tool (in green and dotted) and the target (in red and
dashed) are depicted for both X and Y axes, during the course
of the experiment. In b), motor commands given by θ1 and
θ2 are in dashed blue and green, respectively. In c), we show
the priority values received by the SLSReward in red, by the
SLSHx in dashed blue and by the SLSHy in dashed green.
During the phase 1, the SLSReward sends desired values for
the hand in order to reach the target, with priority P = 1.
Those values are sent to both SLSHx

and SLSHy
which in

return send desired motor commands θ1 and θ2 with priority
P = 1+1 = 2. In fig. 9 a), we observe that the hand (in blue)
is trying to reach the target (in red).

In terms of the second phase, the target is out of reach
on the Y axis and the arm is within the proprioception area
where no further upward movements are possible (previously



IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 11

Reaching the Target Reaching the Tool Reaching the Target
with the Tool in the Hand

a)

b)

c)

Sub-goal : Reach the tool

Goal : Increase Reward

Sub-goal : Reach the target Sub-goal : Reach the target Sub-goal : Reach the target

Goal : Increase RewardGoal : Increase Reward

Competition in PS

Phase 2 :Phase 1 : Phase 3 :

Fig. 9. In a), the hand appears in blue, the tool in dotted green and the target is depicted as dashed red on the X and Y axis, as a function of time (in seconds
of the experiment). In b), motor commands given by θ1 and θ2 are depicted as dashed blue and green respectively. In c), we see the priority values received
by the SLSReward in red, the SLSHx in dotted blue and the SLSHy in dotted green.

learned by the SLE): δsPred
Hy

< Th2. Due to the eq. 6, the
motor commands on θ2 is 0 at this exact moment (see fig. 9
b) in green). The SLSHy

then sends a sub-goal on sH→Tool

associating it with P = 2 + 1 = 3. Moreover, SLSHx and
SLSHy

send motor commands θ1 and θ2 in order to reach the
tool with priority P = 3. In fig. 9 a), we can observe that the
hand (in blue) is trying to reach the tool (in green).

Once the tool is grasped, the sub-goal is erased from the
working memory and like in phase one, the desired value
coming from SLSReward is selected again. The robot tries
to reach the target but this time with the tool in its hand. In
fig. 9 a), we observe that the hand (in blue) and the tool (in
green) have merged, and are trying to reach the target (in red).

The delay between motor commands and the hand position
is caused by the object recognition algorithm. The difference
in amplitude between the two motor commands is due to
the sensorimotor laws learned by SLSHx and SLSHy . The
efficiency is higher on the X axis with our Katana arm, so
less motor magnitude is needed in order to move on this axis.

Note that the PID of the arm changes the real command sent
to the effector.

V. DISCUSSION AND CONCLUSION

As mentioned before, the only learning mechanism in DSM
is in fact the SLE, dedicated to making predictions related
to sensory variations. The SLS, through its simulation and
inhibition mechanisms, uses SLE’s predictions to perceive
affordances. The affordances are ultimately used to determine
what should be performed in order to fulfill a given goal.
Motor simulation leads to desired motor commands, while
sensor simulations lead to desired sensory patterns, i.e., sub-
goals. Desired motor and sensor values are either inhibited or
taken into account, thanks to a priority mechanism. Temporary
inhibition of previous goals enables the robot to perform
intermediate tasks and to generate sequences of them. A
working memory is responsible for storing sub-goals without
depending on the SLS, allowing the latter to send only desired
motor commands or sensory patterns in connection to the
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current desired shift. Consequently, each couple of SLE and
SLS is unaware of the current hierarchy or sequence of event,
even though they both result from what the SLE has previously
learned. Even with lack of planning, this approach allows a
cascade of sub-goals to occur and to be calculated on-the-
fly. A sequence of various sub-goals may occur depending
on the experiment, as we illustrated with the experiments of
two different tools. Moreover, such sequences may occur even
if they were neither learned nor observed before, as in our
experiments.

Sequences depend entirely on what each SLE has learned
during the robot development, and on the situations it has
faced. With our approach, sequences are not meant to be put
at the top of existing elementary behaviours, rather they are the
direct consequences of specific low-level sensorimotor laws.
For instance, in our experiment the detour to the tool is due to
the way the robot has learned the law of the tool, that is, the
robot must have the capacity to learn in a continuous fashion,
and to be able to change previously learned laws.

A. Comparison with related approaches

Tool-use raises the problem of kinematic adaptation. In [83],
a single recurrent neural network is used to learn the inverse
kinematics of different tools, with no relearning or forgetting
of the body schema. However, the length of the tool is a pa-
rameter of this neural network and must be known in advance.
Considering this problem, in [84] Jamone et al. show how the
kinematics could be adapted to tool-use when no information
is given about the tool at hand. They used the IMLE model
which allows the incremental learning of different solutions
to similar input locations, and thus represents the relations
from an input vector to an output vector in specific unknown
contexts. During both the learning and the using phase, the
algorithm automatically deals with an appropriate set of local
linear models and this knowledge is exploited for a reaching
task.

However, Nabeshima et al. [85] claim that the real problem
might actually be related to the detection of the body alter-
ations based on the sensory data, and they propose a model
for adapting the body schema of the robot with a tool. The
robot (a 2-joint planar arm and a camera) learns the mapping
between the spatial and temporal integration of visual and
tactile information when the hand of the robot hits a target. The
mapping is then stored in an associative memory. When the
robot touches the target with a tool (a stick), a new mapping
of visual and tactile information is learned in the associative
memory, and the kinematics controller of the arm is adapted.

Although preliminary results are given in [33], the kine-
matic adaptation during tool-use is out of the scope of this
paper. However, this is considered as a subject for further
investigation by using a new categorisation layer. Concerning
the problem raised by Nabeshima et al., the learning process
of the SLE is dedicated to the detection of alterations of
the predictions (and, in case of body predictions like the
movement of the hand, of the body) based on sensory data.
This detection relies on the accumulated error during the
duration of a movement (until δs is beyond a threshold).

However, the main difference is seen when we focus on how
such a knowledge can be used to change the behaviour of the
robot in a reaching task, by making a self-generated detour.

In [86], a dynamic neural field (DNF, see [87]) method is
proposed to bridge the gap between the lower level senso-
rimotor dynamics and the higher cognitive processes, as in
planning. The authors propose elementary behaviours such
as “look for an object with colour X” or “move arm to
position Y”, associated with DNF conditioning initiation and
termination (condition of satisfaction) for those behaviours.
Each behaviour is also associated with a motivation field
responsible for triggering it and a precondition field which
defines the conditions that need to be met. Once the motivation
field is triggered, the DNF of initiation is triggered but can also
be inhibited, in case that the precondition field is not satisfied.
In this case, the precondition field can trigger the motivation
field that belongs to other elementary behaviour. Subsequently,
once its condition of satisfaction field is met, it stops inhibiting
the precondition field of the first elementary behaviour.

This mechanism is close to the one described in DSM. The
categorisation layer in the SLE is used (via simulations) to
send the desired sensory pattern (equivalent to a motivation),
when the motor commands are not efficient enough. This is
seen in cases when there is no affordance, i.e., an equivalent
to the precondition field. Similarly, when the desired sensory
pattern is reached (equivalent to the condition of satisfaction),
a motor command is executed (equivalent to the initiation
field).

The two approaches differ at the sub-task initiation or
termination. In DSM, the equivalent to the condition of
satisfaction is not given by the sub-task, but by the SLS
which initially expresses a desire for it. The problem of
initiation and termination of a sub-task is not related to a
behavioural achievement, but to the learned sensorimotor laws.
More precisely, it depends on the categorisation layer of the
SLE. Thus, the request is not made for a behaviour but directly
for a low-level sensory pattern. Our approach is designed to
directly bridge low-level sensorimotor skills to higher level
sequence abilities, boosting the latter’s characteristic of being
very plastic. In fact, all SLS can send desired sensory patterns
and create a specific order of sequence on-the-fly, without
doing any planning. Due to a working memory, remote to SLS,
they are able to indirectly change their own pursued goals, as
shown in tool-use experiments.

In [88], the authors describe a model that learns associations
between parameterised motor skills and their correspond-
ing parameterised tasks, based on a measure of competence
progress. They propose a way to optimise the ability of the
robot in solving tasks, based on artificial curiosity. In their
work, the robot explores the task space instead of performing a
motor babbling. However, their approach does not focus on the
ability to solve new tasks, or to solve them in a new manner.

In [89], a set of closed-loop dynamic controllers is linked
to a finite state machine whose states activate one or multiple
controllers. Each controller is driven by a primitive senso-
rimotor potential function. State transitions are triggered by
the convergence of each controller to a stable attractor. These
transitions are learned through Q-learning using a intrinsic
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motivation reward that detects the convergence (called qui-
escence) to such attractors. As a result, the system is able
to uncover affordances defined by the specific sensory areas
where each behaviour is stable, and can generate complex
sequences by following the learned transition rules guided
by controllers convergence. Note that this approach does not
directly predict the sensory consequences of actions, but rather
it exploits criteria related to behavioural stability in order to
drive controllers’ activation to achieve a particular task.

In [90] the authors investigate open-ended exploratory sys-
tems and goal-finding behaviours, and specifically choose
motor babbling behaviour (or even playing behaviour) to
drive learning instead of goal-driven methods. The authors are
interested in transitions between multiple stages of behaviour.
They show how selected constraints on the robot, coming
from developmental psychology, help reducing the complexity
of learning at each stage of development. Their results also
illustrate how the learning acquired during previous stages is
used to scaffold the learning during the later stages. However,
the learning is based on sensor and motors pairs, a method that
is discussed in the introduction as being an absolute learning
strategy.

In [91], Perotto proposed a model (CALM) where regulari-
ties are learned in schemas composed of three vectors: context
+ action → expectation. Each vector is composed of discrete
values, in contrast with the work proposed in this paper, where
the context, the motor and the expected sensor variation are
continuous values. However, those states can contain unde-
fined values, which offer a good generalisation property. The
learning is incremental, and schemas can go through several
operations such as they can produce more specific ones, they
can be corrected after a novel experiment, or they can even
fused with old schemas when necessary. Moreover, values are
not necessarily observable and can be “synthetic”, in order
to deal with partially unobservable environments or abstract
useful properties (also designed to bridge the gap between
high-level symbolic properties), or even to mark different steps
in a sequence of action. In DSM, such synthetic or hidden
sensors or motors may be useful when dealing with partially
unobservable and deterministic environments. Although the
CALM model is able to predict final states, it does not predict
changes which would offer a better generalisation property.

In [92], Ugur et. al. use affordance learning for plannifica-
tion. In their work, the robot learns associations between the
initial features of object perceived and the effects perceived
after a given behaviour, through a babbling phase. The result
is effectively the difference between the final and the initial
object’s features. Since the final states can be computed by
adding the effect of previous to the current state, it is possible
to create a search tree with nodes that are composed of
perceptual states, and edges which represent behaviour-object
pairs. Thus, for any given goal the robot creates such a tree and
gradually expands it by starting at where a state has a minimal
distance to the goal, and then selects a sequence from the tree
when a leaf node leads to a state which satisfies the goal.

This approach can be considered as close to the work
presented in this paper, since the robot learns associations
between continuous sensory contexts and effects through ac-

tions, and discovers sequences that minimise the distance to
the goal. However, there are important differences that set our
work apart.

Initially, in DSM, every input (sensors and motors) and
output (sensor variation) of the SLE is continuous. Motor
commands are not discrete, nor defined in advance as pre-
coded behaviours. The motor magnitudes are either low-level
commands or predictable sensor variations, thanks to the
hierarchical property. Next, the categorisation performed in
DSM is not determined by the sensor space and topology, but
it is triggered by the prediction error of the sensorimotor laws
during babbling (see Sec. III-A). Hence, the categorisation
depends on the action performed and not purely on the
sensors. Furthermore, categories are just used to contextualize
sensorimotor laws. Next, the effect space (sensor derivative)
and motor spaces (motor magnitudes) are not categorised,
but linearly associated. This linear association is useful when
considering the space of simulated contexts as a space wherein
motor actions are possible, i.e., the robot can possibly perform
actions towards a simulated context in the same way it would
act within the real environment. This allows the robot to
possibly act on the context space and obtain results that match
actions within the real environment.

Finally, in DSM sequences are generated without the use
of a dedicated planning module: the described mechanism
allows the creation of sub-goals without the use of a forward
chaining that is based on discrete states. Planning in DSM
directly enjoys low-level motor commands as output, and does
not consider any predefined list of behaviours. Sequences
are created on-the-fly, and each concerned SLE is able to
indirectly take advantage of other SLEs for achieving its sub-
goal. Unlike [92] and similar methods that depend on forward
chaining, DSM’s sequential step follow an inverse chaining
approach, overcoming any combinatorial exploration issues. It
is worth noting that even if our model allows planning to be
made only one step ahead, i.e., through the simulation of the
next step, there is already a creation of a sequence involving
sub-goals. Our future research efforts include the ability to
anticipate further steps, allowing for longer planning. That
is expected to require an inhibition mechanism in order to
use internal close loops of predictions and to anticipate sub-
goals. In the presented experiments for instance, the ability to
anticipate the need of the tool and reach it directly could be
possessed, instead of initially trying to reach the goal directly.

Finally, the fact that sensor variations and motor values
are jointly encoded, according to the hierarchical property of
DSM, SLEs are able to receive sensor variations as motor
inputs that allows them to deal with high-level input, and ulti-
mately bridge the gap between low-level and more conceptual
or symbolic learning, and in turn, planning.

In [93], Chaput proposes a constructivist model called CLA
based on a hierarchical property. As in our model, this hier-
archical property arises from the fact that CLA sensorimotor
schemas have inputs and outputs of the same representation
type. The first layer inputs are raw sensors, whereas the next
higher layers use the lower layers as their inputs. Chaput also
proposes an interesting mechanism to exploit the hierarchical
properties: the receiving layer could be prone to time delays,
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which can potentially lead to recurrent structures. Even if
when a new layer is created, a higher level layer is more
likely to be used as in input to it. Chaput way to tackle
this issue is by suggesting a fallback mechanism, by which
lower layers can be used as inputs of newly created layer, in
case when the robot receives a stimulation associated with an
new, unexperienced event. The outcome of Chaput’s work is
considered as a possible design enhancement for DSM.

“Object Action Complexes” (OAC) are designed to bridge
the gap between low-level sensorimotor representations, re-
quired for robot perception and control as well as high-
level representations that support abstract reasoning and plan-
ning [94]. Given discrete states, OAC is designed to learn
the final states that follow the execution of a motor program,
e.g., hard coded action reflexes, elicited by visual inputs. It
is worth noticing that the resulting states contain all avail-
able information, that can be either relevant or irrelevant for
predictions. The goal of the learning mechanism of OAC
is to abstract irrelevant information and in turn generate
states that contain only the information that is required to
successfully predict the effects of actions. This problem exists
in the context of DSM and is similar to the one describes
in [94], as all sensors are potentially relevant when predicting a
sensor variation. Furthermore, DSM needs to abstract only the
necessary inputs, not only for having more accurate predictors,
but more importantly to create sub-goals using only relevant
desired sensor patterns. In the experiments presented here, the
relevant inputs were pre-selected, however, this needs to be
done by DSM itself and will be addressed in future work.

B. Properties coming from ideomotor principle

Aligned with the ideomotor principle, the SLE is a propo-
sition for having sensory variations dS being perceived as
equivalent to motor magnitudes M (assuming locally linear
relationships exist between them). As mentioned in the intro-
duction, sec. , the input motor magnitude of a SLE can be a
given sensory variation dS. For instance, in our experiment we
used δsH→Target as a motor input for the SLEReward. This
unique characteristic for DSM highlights to two interesting
properties:

First, it allows the learning of the robot to be hierarchical
as described by Chaput, i.e., the first SLE has raw sensors
as in input, whereas the next higher level SLE can received
input from lower level SLEs. In the presented experiments for
instance, this feature allows the learning of possibly complex
laws between the movement of the arm and the environment,
which can be considered high-level but detached from the low-
level complexity associated with moving the arm. The latter is
in fact a result of the learning of another SLE (i.e., SLEHx

and
SLEHy

) that remains beneficial to the whole system. Thanks
to this feature, it is possible to start with SLEs for very low-
level predictions, and gradually scaffold the learning, step by
step, through a hierarchical construction.

Second, since the motor input can be a sensory variation,
learning by observation is possible as long as a SLE can make
use of it as its motor input. Since new SLEs can be added on-
line without changing the mechanism, we propose that, for

instance, a sensory variation could be considered as a motor
input of a SLE as long as the SLE predicting this sensor is
“good” enough. In this scenario, learning by observation could
happen when the robot has discovered the sensorimotor laws
that enable it to possibly reproduce the observed scene.

Such a design implies that new motors can be added on
SLEs and that new SLEs can be created and added on-the-fly.
This is feasible as a new couple of SLE and SLS is currently
used to add new desired motor commands or sensory patterns
to the priority selection mechanism. Adding a new motor in
a SLE is also possible, since it consists of adding a new
contribution on top of other in the LMS (see fig. 1). This
allows incremental learning, where previously acquired skills
are not removed as new ones are learned.

In the SLE, the S input should also be flexible in order to
accommodate new high-level sensors (in our experiments for
instance, the objects’ presence and coordinates). Similarly to
the CALM model [91], it would also be interesting to consider
using sensors that are equivalent to “synthetic” values, in
order to deal with partially unobservable and deterministic
environments. In the next section we discuss problems related
to these input sensors.

C. Current limitations and future works
As previously stated, in our approach a sequence is entirely

dependant on the sensorimotor laws that the robot learns
during its development, e.g., during its babbling phase when is
not necessary that a sequence or a specific task is performed.
The sensory inputs of the SLE are used when performing
simulations, so any desired sensory pattern sent by a SLSi

incorporates sensory information received by all relevant and
irrelevant inputs of the SLEi (see III-A).

Finally, when the system is mature enough to make se-
quences (in the DSM) and run simulations (in the SLS), the
resulting sequence will only depend on the learning which
is performed by the categorisation layer of the SLE. For
instance, if the categorisation layer fails to distinguish between
having or a tool in the hand or not, then a simulation with
any simulated input sensors will also fail. The problem of
distinguishing relevant context is highlighted by the fact that,
from a developmental perspective, new input sensors can be
added on-line, and possibly all sensors may be relevant (espe-
cially in the case of tool-use). Currently, if the model is given
irrelevant input sensors, they will equally participate to the
internal mechanisms of the SLS as the relevant ones, leading
to random configurations associated with them. Moreover,
since many categorisation layers are required (possibly one
per couple of motor and sensor), irrelevant inputs can rapidly
increase the computational cost. A potential solution is to have
a categorisation layer able to distinguish relevant inputs from
irrelevant ones (as in “Object Action Complexes” [94]), such
as those that constitute a context that has an impact on the
prediction of the SLE. Showing promising preliminary results,
such solution will be explored in the future. The aim is to
investigate the ability of the robot to act on its contexts and,
in turn, test the categorisation it autonomously creates.

In our approach, categorisation leads to specific sequences,
which is akin to further problems related to the misuse of
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affordances. For instance, affordances are usually linked with
the visual properties of objects. Although we did not tackle
this problem here, a possible way to deal with it in the context
of DSM, is to select appropriate visual primitives as inputs of
the categorisation layer of the SLE. Then, by exploiting the
direct links between what is categorised and the corresponding
affordances, a SLS can send desired values that are related
to the primitives, so that any object defined by them can be
desired.

For instance, in our experiment if we do not an object recog-
nition algorithm for determining the inputs of the SLEHy

, but
instead we use visual primitives able to distinguish a long-
shaped object, we could envision that the robot will then
desire to reach any object that complies with this particular
primitive, allowing the use of various objects as tools. The
visual properties of objects are associated with particular ways
to grasp them. For instance, if the handle of a cup is on
the right, the hand should approach it from the right. Such
planning is a problem with gradient descent methods like
ours, because in our model the robot tries to reduce the
distance from the hand to the targeted object, without any
other consideration. However, the ability of DSM to create
on-the-fly sequences based on delayed or context-affordances
may be combined with the possibility of internal simulation
loops in order to solve such problems. This is also discussed
in [79], where a mental rehearsal is used to tackle the problem
of obstacle avoidance. This is also considered as future work.
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[76] J. K. O’Regan and A. Noë, “A sensorimotor account of vision and visual
consciousness,” Behavioral and brain sciences, vol. 24, no. 05, pp. 939–
973, 2001.
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