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II. INTRODUCTION

In many drive chains, such as wind turbine drives [START_REF] Keller | Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads[END_REF]- [START_REF] Teng | Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform[END_REF], mechanical gearbox failure and maintenance increase operating costs, particularly in offshore locations. To improve drive train reliability, one potentially attractive solution consists of replacing the mechanical gearboxes by a magnetic gear [START_REF] Atallah | A novel high-performance magnetic gear[END_REF]. The topology of such a magnetic gear with a high torque density (Fig. 1) was proposed in [START_REF] Martin | Magnetic transmission[END_REF] and has been the subject of several studies [START_REF] Atallah | Design, analysis and realisation of a high-performance magnetic gear[END_REF]- [START_REF] Rasmussen | Development of a high-performance magnetic gear[END_REF]. The benefit of a magnetic gear over mechanical gearboxes is greater for high-torque application [START_REF] Gouda | Comparative study between mechanical and magnetic planetary gears[END_REF]. In this case, high pole numbers would be required. Moreover, cancellation of the ripple torque would necessitate the use of combinations of numbers of poles and slots with minimum magnetic symmetry [START_REF] Frank | Gearing ratios of a magnetic gear for wind turbines[END_REF], which leads to a very high computation time.

To demonstrate an economic improvement over mechanical gearboxes, a magnetic gear must be highly optimized with respect to both mechanical and magnetic criteria. Such an optimization would require a quick computation of the magnetic field distribution (on the order of one second) [START_REF] Desvaux | Design and Optimization of Magnetic Gears with Arrangement and Mechanical Constraints for Wind Turbine Applications[END_REF]. Then, an analytical magnetic field distribution model has been proposed in [START_REF] Lubin | Analytical computation of the magnetic field distribution in a magnetic gear[END_REF]. This model unfortunately does not allow for a quick computation of the magnetic field distribution like in Desvaux (e-mail: melaine.desvaux@ens-rennes.fr).

Color versions of one or more of the figures in this paper are available online at: http://ieeexplore.ieee.org.
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Fig. 1: Magnetic gear architecture proposed by [START_REF] Martin | Magnetic transmission[END_REF] in an exploded-view drawing with low pole numbers (i.e. 𝑝 𝑖𝑛𝑡 = 2, 𝑝 𝑒𝑥𝑡 = 7, and 𝑄 = 9). [START_REF] Penzkofer | Magnetic Gears for High Torque Applications[END_REF] due to the fact that the magnetic gears with high pole numbers yet without torque ripple do not display magnetic symmetry [START_REF] Atallah | Design, analysis and realisation of a high-performance magnetic gear[END_REF] and [START_REF] Frank | Gearing ratios of a magnetic gear for wind turbines[END_REF]. It then becomes necessary to find another method capable of computing magnetic field distribution.

For a global magnetic gear optimization that contains a magnetic part optimization and a structural part optimization, it could be interesting to include the yokes of the permanent magnet rings in the optimization procedure to minimize magnetic part mass and material costs. This paper therefore seeks to provide an analytical model that includes yokes with finite relative permeability while proposing a harmonic selection method capable of reducing computation time without lowering precision for high pole number magnetic gears.

III. PROBLEM DEFINITION

A. Magnetic gear behavior

The magnetic gear [START_REF] Atallah | A novel high-performance magnetic gear[END_REF] shown in Figure 1 is composed of three magnetic parts:

 An internal ring with 𝑝 𝑖𝑛𝑡 pole pairs of permanent magnets and a ferromagnetic yoke,  An external ring with 𝑝 𝑒𝑥𝑡 pole pairs of permanent magnets and a ferromagnetic yoke,  A ring with Q ferromagnetic poles between the two permanent magnet rings (an example is shown in Fig. 1 with low pole numbers, to improve readability: 𝑝 𝑖𝑛𝑡 = 2, 𝑝 𝑒𝑥𝑡 = 7, and 𝑄 = 9). The three ring pole numbers must respect the relation (1) [START_REF] Atallah | Design, analysis and realisation of a high-performance magnetic gear[END_REF]. It is then possible to define the ratio 𝜆 (2) and the Willis relation for a magnetic gear (3) like a planetary gear [START_REF] Mathis | A unified theory of epicyclic gear trains[END_REF], where 𝜔 𝑖𝑛𝑡/0 , 𝜔 𝑒𝑥𝑡/0 and 𝜔 𝑄/0 are the rotational speeds of the internal ring, the external ring and the pole piece ring, respectively. As a function of the fixed ring, the gear ratio 𝐺 𝑚 is given by (4).

𝑝 𝑖𝑛𝑡 + 𝑝 𝑒𝑥𝑡 = 𝑄

(1)

𝜆 = 𝜔 𝑖𝑛𝑡/0 -𝜔 𝑄/0 𝜔 𝑒𝑥𝑡/0 -𝜔 𝑄/0 = - 𝑝 𝑒𝑥𝑡 𝑝 𝑖𝑛𝑡 (2) 
𝜔 𝑖𝑛𝑡/0 -𝜆. 𝜔 𝑒𝑥𝑡/0 + (𝜆 -1). 𝜔 𝑄/0 = 0

{ 𝜔 𝑖𝑛𝑡/0 = 0 → 𝐺 𝑚 = 𝜔 𝑒𝑥𝑡/0 𝜔 𝑄/0 = (𝜆 -1) 𝜆 𝜔 𝑄/0 = 0 → 𝐺 𝑚 = 𝜔 𝑖𝑛𝑡/0 𝜔 𝑒𝑥𝑡/0 = 𝜆 𝜔 𝑒𝑥𝑡/0 = 0 → 𝐺 𝑚 = 𝜔 𝑖𝑛𝑡/0 𝜔 𝑄/0 = -(𝜆 -1) (3) 
To minimize the torque ripple, a cogging torque factor 𝐶 𝑓 has been defined in [START_REF] Atallah | Design, analysis and realisation of a high-performance magnetic gear[END_REF], which represents the number of system symmetries. It is thus possible to impose the relation [START_REF] Atallah | Design, analysis and realisation of a high-performance magnetic gear[END_REF] to ensure a minimum torque ripple, where 𝑁 𝑐 ( 2. 𝑝 𝑖𝑛𝑡 , 𝑄) is the smallest common multiple between 2. 𝑝 𝑖𝑛𝑡 and 𝑄. This relation also minimizes the number of magnetic symmetries.

𝐶 𝑓 = 2. 𝑝 𝑖𝑛𝑡 . 𝑄 𝑁 𝑐 ( 2. 𝑝 𝑖𝑛𝑡 , 𝑄) = 1 (5) 

B. Magnetic field resolution method

To compute a 2D magnetostatic field distribution, it is necessary to solve both Poisson's equation ( 6) and Laplace's equation [START_REF] Gouda | Comparative study between mechanical and magnetic planetary gears[END_REF] in different parts of the system [START_REF] Lubin | Exact analytical method for magnetic field computation in the air-gap of cylindrical electrical machines considering slotting effects[END_REF], where 𝑘 is the region number defined in Fig. 2, 𝐴 (𝑘) and 𝑀 (𝑘) the magnetic vector potential and radial magnetization distribution respectively, 𝑟 and 𝛼 the cylindrical coordinates, and 𝑅 𝑀 (𝑘) = 𝑅 𝑚 (𝑘+1) (in accordance with Fig. 2).

𝜕²𝐴 (𝑘) 𝜕𝑟² + 1 𝑟 𝜕𝐴 (𝑘) 𝜕𝑟 + 𝜕²𝐴 (𝑘) 𝜕𝛼² = 1 𝑟 𝜕𝑀 (𝑘) 𝜕𝛼 (6) 
𝜕²𝐴 (𝑘) 𝜕𝑟² + 1 𝑟 𝜕𝐴 (𝑘) 𝜕𝑟 + 𝜕²𝐴 (𝑘) 𝜕𝛼² = 0 (7) 
For the Poisson's and Laplace's equations, a general solution (8) can be found by applying the method of separation of variables, where 𝑋 0 (𝑘) , 𝑌 0 (𝑘) , 𝐶 𝑛 (𝑘) , 𝐷 𝑛 (𝑘) , 𝐾 𝑛 (𝑘) and 𝐸 𝑛 (𝑘) are integration constants, 𝑎 𝑛 (𝑘) and 𝑏 𝑛 (𝑘) are the particular solution of the equation ( 6). This expression shows that the number of integration constants increases as a function of the number of harmonics taken into account. For region III, which corresponds to the air space between pole pieces, the analytical solution is [START_REF] Desvaux | Design and Optimization of Magnetic Gears with Arrangement and Mechanical Constraints for Wind Turbine Applications[END_REF], where 𝛽 is the slot opening angle and 𝛼 𝑞 is described in [START_REF] Lubin | Analytical computation of the magnetic field distribution in a magnetic gear[END_REF] 

For the various problem boundaries, conditions should be given in one of the equations presented in [START_REF] Penzkofer | Magnetic Gears for High Torque Applications[END_REF]. From these boundary conditions, it is possible to define a matrix system 𝑍 to be inverted for determining the integration constants in several subdomains. Once the magnetic potential vector has been determined, the magnetic torque can be computed with [START_REF] Mathis | A unified theory of epicyclic gear trains[END_REF] and [START_REF] Lubin | Exact analytical method for magnetic field computation in the air-gap of cylindrical electrical machines considering slotting effects[END_REF], where: radius 𝑅 𝑚 (𝑘) < R <𝑅 𝑀 (𝑘) , 𝐵 𝑟 (𝑘) is the radial flux, 𝐵 𝛼 (𝑘) the tangential flux.

{ 𝜕𝐴 (𝑘) 𝜕𝑟 | 𝑟=𝑅 𝑚 (𝑘) = 0 𝜕𝐴 (𝑘) 𝜕𝛼 | 𝛼=𝛼 𝑞 = 0 𝜕𝐴 (𝑘) 𝜕𝑟 | 𝑟=𝑅 𝑀 (𝑘) = 𝜕𝐴 (𝑘+1) 𝜕𝑟 | 𝑟=𝑅 𝑚 (𝑘+1) 𝐴 (𝑘) | 𝑟=𝑅 𝑚 (𝑘) = 𝐴 (𝑘+1) | 𝑟=𝑅 𝑀 (𝑘+1) (11) 
𝑇 (𝑘) = 𝐿 𝑧 . 𝑅 2 µ 0 ∑ ∫ 𝐵 𝑟 (𝑘) (𝑅, 𝛼). 𝐵 𝛼 (𝑘) (𝑅, 𝛼) 𝑑𝛼 2𝜋 0 𝑛≥1 (12) { 𝐵 𝑟 (𝑘) = 1 𝑟 𝜕𝐴 (𝑘) 𝜕𝛼 𝐵 𝛼 (𝑘) = - 𝜕𝐴 (𝑘) 𝜕𝑟 (13) 

IV. ANALYTICAL MODEL WITH AN INFINITE RELATIVE PERMEABILITY OF YOKES (MODEL 1)

The first analytical model developed in this part of the paper is based on an infinite relative permeability of yokes; it was proposed in [START_REF] Lubin | Analytical computation of the magnetic field distribution in a magnetic gear[END_REF]. To determine the integration constants for the various subsystems for all harmonics, it becomes necessary to solve a matrix system 𝑍 1 with a number of equations (which come from the boundary conditions) equal to the number of integration constants.

When the model contains yokes with infinite relative permeability, the model is simplified and the total number of integration constants is reduced. Boundary conditions [START_REF] Aubry | Sizing optimization methodology of a surface permanent magnet machine-converter system over a torque-speed operating profile: Application to a wave energy converter[END_REF] have been used here to remove some integration constants given in the Appendix.

{ 𝜕𝐴 (𝐼) 𝜕𝑟 | 𝑟=𝑅 𝑚 (𝐼) = 0 𝜕𝐴 (𝑉) 𝜕𝑟 | 𝑟=𝑅 𝑀 (𝑉) = 0 (14) 
With this simplification (infinite relative permeability of the yoke), the dimension of matrix system 𝑍 1 can be proposed in [START_REF] Niu | Design optimization of magnetic gears using mesh adjustable finite-element algorithm for improved torque[END_REF], where 𝑁 𝑄 is the number of harmonics taken into account in the air space between pole pieces (region III), 𝑄 the number of pole pieces, and 𝑁 the number of harmonics taken into account in the other regions (i.e. I, II, IV and V) [START_REF] Penzkofer | Magnetic Gears for High Torque Applications[END_REF]. If matrix system 𝑍 1 is inverted, it becomes possible to compute the magnetic potential vector in every region of the problem.

𝐷𝑖𝑚 (𝑍 1 ) =(12𝑁 + (2𝑁 𝑄 + 2)𝑄)² (15) 

V. ANALYTICAL MODEL WITH A FINITE RELATIVE PERMEABILITY OF YOKES (MODEL 2)

As opposed to the previous model (i.e. with an infinite relative permeability of yokes), this 2 nd analytical model includes yokes with a finite relative permeability, which could be important to compute a global optimization proposed in [START_REF] Desvaux | Design and Optimization of Magnetic Gears with Arrangement and Mechanical Constraints for Wind Turbine Applications[END_REF]. Taking yokes into consideration will inevitably increase the dimension of matrix 𝑍 2 with integration constants in regions X and VI defined in Fig. 2. Integration constants 𝐷 𝑛 (𝑘) and 𝐸 𝑛 (𝑘) of regions I and V will also increase the dimension of 𝑍 2 since they are not simplified by the relations in ( 14). This approach generates 8𝑁 more integration constants than the previous analytical model which induces an increase of the matrix system 𝑍 2 dimension to be inverted for determining the magnetic field distribution in previous regions of the problem and yoke regions (see Equation ( 16)).

𝐷𝑖𝑚 (𝑍 2 ) =(20𝑁 + (2𝑁 𝑄 + 2)𝑄)² (16) 
To obtain the magnetic field distribution, new boundary conditions must be taken into account for regions X, I, V and VI. The boundary conditions between regions X and I and between regions V and VI [START_REF] Aubry | Sizing optimization methodology of a surface permanent magnet machine-converter system over a torque-speed operating profile: Application to a wave energy converter[END_REF] are replaced by [START_REF] Hernandez-Aramburo | Estimating Rotational Iron Losses in an Induction Machine[END_REF] (the relative permeability of yokes is no longer infinite, but equal to 1000, while the relative permeability of pole pieces remains infinite). On the inner radius of region X and on the outer radius of region VI, boundary conditions (18) are imposed.

{ 𝜕𝐴 (𝑋) 𝜕𝛼 | 𝑟=𝑅 𝑚 (𝐼) = 𝜕𝐴 (𝐼) 𝜕𝛼 | 𝑟=𝑅 𝑚 (𝐼) 1 µ 𝑋 ⋅ 𝜕𝐴 (𝑋) 𝜕𝑟 | 𝑟=𝑅 𝑚 (𝐼) = 1 µ 𝐼 ⋅ 𝜕𝐴 (𝐼) 𝜕𝑟 | 𝑟=𝑅 𝑚 (𝐼) 𝜕𝐴 (𝑉) 𝜕𝛼 | 𝑟=𝑅 𝑀 (𝑉) = 𝜕𝐴 (𝑉𝐼) 𝜕𝛼 | 𝑟=𝑅 𝑀 (𝑉) 1 µ 𝑉 ⋅ 𝜕𝐴 (𝑉) 𝜕𝑟 | 𝑟=𝑅 𝑀 (𝑉) = 1 µ 𝑉𝐼 ⋅ 𝜕𝐴 (𝑉𝐼) 𝜕𝑟 | 𝑟=𝑅 𝑀 (𝑉) (17) 
{ 𝐴 (𝑋) | 𝑟=𝑅 𝑚 (𝑋) = 0 𝐴 (𝑉𝐼) | 𝑟=𝑅 𝑀 (𝑉𝐼) = 0 (18)
This consideration leads to the 8𝑁 equations given in the Appendix, which are required to transition from analytical model 1 to analytical model 2.

Like the other model, when matrix system 𝑍 2 is inverted, it becomes possible to draw the magnetic flux line distribution in previous regions of the problem and in yokes regions as shown in Fig. 3.

VI. HARMONIC SELECTION METHODS

In this section and the following one, the studies have been based on an example with a high pole number, as described in Table I, which is similar to [START_REF] Desvaux | Design and Optimization of Magnetic Gears with Arrangement and Mechanical Constraints for Wind Turbine Applications[END_REF] in respecting condition (5) (cogging torque factor equal to 1). For both previous models and harmonic selection methods, the matrix system dimension 𝑍 𝑖,𝑗 will be compared with 𝑁 𝑄 = 𝑁/𝑝 𝑒𝑥𝑡 = 5, where 𝑖 assumes the values 1, 2 and 𝑗 assumes the values 𝐴, 𝐵, 𝐶, 𝐷. To compare the efficiency of the various harmonic selection methods, the product 𝐵 𝑟 . 𝐵 𝛼 spectrum, which generates the magnetic torque obtained in [START_REF] Penzkofer | Magnetic Gears for High Torque Applications[END_REF], will be analyzed in Fig. 4.

Method A: Initial method without harmonic selection ("Exact" analytical method)

The product 𝐵 𝑟 . 𝐵 𝛼 spectrum obtained using the analytical model without a harmonic selection method is presented in Fig. 4 with 𝑁 𝑄 = 𝑁/𝑝 𝑒𝑥𝑡 = 10. The initial method [START_REF] Lubin | Analytical computation of the magnetic field distribution in a magnetic gear[END_REF] allows taking into account all harmonic systems, from the lowest periodicity 2𝜋 to the highest, i.e. 5. 𝑝 𝑒𝑥𝑡 . 2𝜋 in regions X, I, II, IV, V and VI (specified in Fig. 2). Let's observe that many system harmonics do not generate magnetic torque and can be removed from the magnetic field computation. This method incorporates 5 external ring harmonics and 5. ⌊𝑝 𝑒𝑥𝑡 /𝑝 𝑖𝑛𝑡 ⌋ internal ring harmonics. To reduce the dimension of matrix system 𝑍 𝑖,𝑗 while maintaining the same level of accuracy, harmonic systems may be taken into account from periodicity 𝑝 𝑖𝑛𝑡 . 2𝜋 to 5. 𝑝 𝑒𝑥𝑡 . 2𝜋 [START_REF] Penzkofer | Magnetic Gears for High Torque Applications[END_REF]. The dimension of matrix system 𝑍 1,𝐴 and 𝑍 2,𝐴 is then given by ( 19) and (20) respectively for the magnetic gear described in Table I. Without any harmonic selection method, the matrix dimension is increased substantially for Model 2 (with a finite relative permeability of the yokes).

𝐷𝑖𝑚 (𝑍 1,𝐴 ) = 9444²

(19)

𝐷𝑖𝑚 (𝑍 2,𝐴 ) = 14532² (20) 

Method B: Ring harmonics and particular modulated harmonics selection

As shown in the Fig. 4 for the "exact" method, some of the presented harmonics do not correspond to either the internal or external ring harmonics, but they do correspond to other harmonics due to modulation. To take into account the main harmonics of the system, this harmonics selection method takes into account (for regions other than III):

 the impaired harmonics of the permanent magnet rings  fundamental components of the internal and external rings modulated by pole piece ring harmonics (e.g. harmonics with a periodicity of (3. 𝑄 -𝑝 𝑖𝑛𝑡 ). 2𝜋)  the first impaired harmonic of internal and external rings modulated by poles pieces ring fundamental (e.g. harmonics with a periodicity of (𝑄 -3. 𝑝 𝑖𝑛𝑡 ). 2𝜋). According to this method, the dimension of matrix systems 𝑍 1,𝐵 and 𝑍 2,𝐵 is considerably reduced, as revealed in Equations ( 21) and ( 22). With this harmonic selection method, the dimensions of matrix 𝑍 2,𝐵 do not increase substantially compared to matrix 𝑍 1,𝐵 , as opposed to method A (equations 

-( 20)). This method serves to reduce the matrix dimension, hence computation time, without any loss of accuracy because every significant harmonic has been selected, as shown in Fig. 4 (only 12 harmonics are taken into account vs. approximately 500 with method A).

𝐷𝑖𝑚 (𝑍 1,𝐵 ) = 2100² (21) 𝐷𝑖𝑚 (𝑍 2,𝐵 ) = 2292² (22) 

Method C: Only permanent magnets impairing harmonics selection

To further reduce the matrix dimension, this harmonic selection method only targeted the impaired harmonics of the permanent magnet rings. According to this method, the dimension of the matrix system 𝑍 1,𝐶 and 𝑍 2,𝐶 is given by ( 23) and ( 24) respectively. This method further reduces computation time, although precision may be lowered as well because every significant harmonic has not been selected, as shown in Figure 4.

𝐷𝑖𝑚 (𝑍 1,𝐶 ) = 1908² (23) 
𝐷𝑖𝑚 (𝑍 2,𝐶 ) = 1972² (24)

Method D: Fundamental selection of just permanent magnets

To further reduce the matrix dimension beyond that of method C, this last harmonic selection method only targets the fundamentals of the permanent magnet rings. According to this method, the dimension of matrix system 𝑍 1,𝐶 and 𝑍 2,𝐶 is given in ( 25) and (26), respectively. With this method D, the level of precision may be further lowered compared to method C (see Fig. 4).

𝐷𝑖𝑚 (𝑍 1,𝐷 ) = 1836²

(25)

𝐷𝑖𝑚 (𝑍 2,𝐷 ) = 1852² (26) 

VII. COMPUTATION TIME AND PRECISION COMPARISON

A. Torque ripple comparison

During an optimization phase needed for system development, some system properties must be evaluated quickly (on the order of a second) with relative precision for the various system configurations [START_REF] Aubry | Sizing optimization methodology of a surface permanent magnet machine-converter system over a torque-speed operating profile: Application to a wave energy converter[END_REF]. In the context of magnetic gear optimization, the main property to evaluate is the maximum gear torque [START_REF] Niu | Design optimization of magnetic gears using mesh adjustable finite-element algorithm for improved torque[END_REF], which is obtained for a load angle equal to 𝜋 2 ⁄ with an amount of torque ripple that depends on the pole configuration [START_REF] Atallah | Design, analysis and realisation of a high-performance magnetic gear[END_REF]. Fig. 5 indicates that with respect to (5) (cogging torque factor 𝐶 𝑓 = 1), the magnetic torque can only be evaluated for a single position corresponding to the maximum gear torque (with a load angle equal to 𝜋 2 ⁄ ). This criterion is then used to compare computation times for the various models and various harmonic selection methods in the next section.

B. Analysis of the number of harmonics taken into account in pole piece regions ( 𝑁 𝑄 )

To reduce computation time, different approximations were performed, which on all occasions were detrimental to (a) (b) Fig. 4: Illustration of the various harmonic selection methods with the normalized 𝐵 𝑟 . 𝐵 𝛼 product spectrum obtained using the exact analytical method (with the finite relative permeability of yokes) for the magnetic gear described in Table I, at: (a) the middle of the external air gap, and (b) the middle of the internal air gap Fig. 5: Magnetic torque evolution obtained using Method A with finite relative permeability of yokes and a finite element model for the magnetic gear described in Table I. A 2° rotation for the internal ring and 13.1° for the external ring (configuration where 𝜔 𝑄/0 = 0) has been considered.

External ring fundamental (amplitude equal to 1)

Internal ring fundamental (amplitude equal to 1)

precision. A compromise between computation time and precision must be found before optimization for the range of approximations presented above (in knowing that the yokes consideration from these analytical models do impact computation time but not precision).

To evaluate the level of precision, the torque value reference 𝑇 𝑟𝑒𝑓 (𝐼𝑉) has been computed using model 2 without any harmonic selection (i.e. Method A), with 𝑁 𝑄 = 𝑁/𝑝 𝑒𝑥𝑡 = 10 and considering the torque of the external permanent magnet ring. A preliminary analysis of the impact of 𝑁 𝑄 , i.e. the number of harmonics taken into account in region III, has been conducted for various values of 𝑁, i.e. the maximum value of system harmonics in the other regions. It is then possible to analyze the computation time and precision of the torque evaluation without having to proceed with harmonic selection (Method A), as shown in Fig. 6 with the error defined in ( 27), for the harmonic selection method 𝑖 = 𝐴.

𝐸𝑟𝑟𝑜𝑟 = | 𝑇 𝑟𝑒𝑓 (𝐼𝑉) -𝑇 (𝐼𝑉) ( 𝑁 𝑄 , 𝑁 𝑝 𝑒𝑥𝑡 , 𝑖) 𝑇 𝑟𝑒𝑓 (𝐼𝑉) | (27) 
Fig. 6 indicates that the precision and computation time increase as a function of 𝑁 𝑄 and 𝑁. However, regardless of the value of 𝑁, it was observed that the torque evaluation error remained less than 1% with a safety margin with 𝑁 𝑄 = 5. It will thus be assumed for the rest of this study that the maximum value of pole piece harmonics in region III 𝑁 𝑄 is fixed and equal to 5. This consideration is not yet sufficient to reduce the computation time for optimization. It then becomes necessary to analyze the impact of the harmonic selection methods on both computation time and precision.

C. Computation time and precision analysis for various harmonic selection methods

To reduce computation time, the dimension of matrix system 𝑍 𝑖,𝑗 may be reduced with harmonic selection methods. It is then possible to analyze the computation time and precision of the torque evaluation for the various harmonic selection methods in function of 𝑁, the maximal value of system harmonics with 𝑁 𝑄 = 5, as shown in Fig. 7 (the torque value reference is still 𝑇 𝑟𝑒𝑓 (𝐼𝑉) , as presented before).

Fig. 7 illustrates that harmonic selection methods B, C and D reduce computation time considerably with an error (defined in (27), 𝑁 𝑄 = 5) of below 1% (for 𝑁/𝑝 𝑒𝑥𝑡 ≠ 1) for method B, less than 4% for method C and less than 5% for method D. The best compromise found between computation time and precision is thus to apply harmonic selection method B with 𝑁/𝑝 𝑒𝑥𝑡 = 3 and 𝑁 𝑄 = 5, which permits to have a torque evaluation in 0.36 seconds (with an Intel Xeon E5-1630 v3, 8 threads, 3.70 GHz) and an error of less than 1% using the analytical model with a finite relative permeability of yokes. 

D. Influence of the consideration (finite or infinite relative permeability) in the analytical models

Finite relative permeability of yokes consideration will increase the matrix system 𝑍 𝑖,𝑗 dimension and hence computation time. However, for a global system optimization, it may be necessary to include yokes in the procedure. It is then possible to analyze the computation time of the torque evaluation obtained using the analytical model with a finite relative permeability of yokes (model 2) and compare it with different models. Table II presents this comparison for the various models (the level of precision has not been presented since yokes consideration has almost no impact on precision).

Table II indicates that for a high pole number magnetic gear, the analytical model computation time can exceed the finite element computation time without any harmonic selection and with 𝑁 𝑄 = 𝑁/𝑝 𝑒𝑥𝑡 = 10 (180 sec vs. 480 sec). This finite element analysis included 1.1 million elements and four elements per air gap for the first column, and 0.6 million elements and one element per air gap for the second column; it was conducted with the FEMM 4.2 software. In contrast, it has been observed that integrating finite relative permeability of yoke into the analytical model slightly increases computation time with harmonic selection method B (0.36 sec vs. 0.32 sec with 𝑁/𝑝 𝑒𝑥𝑡 = 3 and 𝑁 𝑄 = 5) for the same level of precision. The best compromise between computation time and precision has been obtained using method B with 𝑁/𝑝 𝑒𝑥𝑡 = 3 and 𝑁 𝑄 = 5 and the robustness of this solution can be evaluated.

VIII. ROBUSTNESS OF HARMONIC SELECTION METHOD B

A. Torque computation for other magnetic gear configurations

In order to validate the harmonic selection method B for various magnetic gear geometries, an analysis of the computation time and error (defined in equation ( 27)) is conducted for the different pole numbers presented in Table III, with a finite relative permeability of the yoke (with the same radial thicknesses as in the magnetic gear studied above): 𝑁/𝑝 𝑒𝑥𝑡 = 3 and 𝑁 𝑄 = 5.

For these various magnetic gear topologies, the error on the torque computation lies between 0.4% and 0.8%, with a computation time of between 0.27 sec and 0.33 sec. Table III shows that the precision and computation time do not differ much for the studied configurations. This finding validates the general use of harmonic selection method B. However, for a global optimization, the torque ripple is a problem if just one position is evaluated.

B. Evaluation of other magnetic gear properties

The harmonic selection method proposed in this article (Method B) enables significantly reducing the computation time of the magnetic torque without any loss of accuracy. It can also be used to compute other properties of the magnetic gear, like eddy current losses in permanent magnets [START_REF] De La Barrière | An analytical model for the computation of no-load eddy current losses in the rotor of a permanent magnet synchronous machine[END_REF], iron losses in yokes [START_REF] Hernandez-Aramburo | Estimating Rotational Iron Losses in an Induction Machine[END_REF] and tangential and radial loads on pole pieces. The computation of these properties is solely based on the computation of radial and tangential components of the flux density distribution for the different regions.

In order to evaluate the relevance of harmonic selection method B for the calculation of the aforementioned properties, it is simply necessary to control the flux density distribution computation in the different regions. Fig. 8 shows the flux density distribution in the magnetic gear obtained with harmonic selection method B, with 𝑁 𝑄 = 𝑁/𝑝 𝑒𝑥𝑡 = 10 for the magnetic gear presented in Table I. A comparison can be drawn with the "exact" analytical model (Method A), and the flux density distribution difference between the two methods can be computed for every point of the different regions, as shown in Figure 9. Table IV lists the average differences of the flux density distribution obtained in these regions with 𝑁 𝑄 = 𝑁/𝑝 𝑒𝑥𝑡 = 10. Table IV shows that harmonic selection method B enables computing the flux density distribution with a total average difference between method A and B of 0.012 T across the different regions of the magnetic gear with 𝑁 𝑄 = 𝑁/𝑝 𝑒𝑥𝑡 = 10. This finding validates the use of harmonic selection method B to compute the different magnetic gear properties (eddy current losses in permanent magnets, iron losses in yokes, and the tangential and radial loads on pole pieces) in the magnetic gears.

In order to minimize computation time and maintain an acceptable precision for the other magnetic gear properties, 𝑁 𝑄 , the number of harmonics taken into account in the air space between pole pieces (region III), and 𝑁, the number of harmonics taken into account in the other regions (i.e. I, II, IV and V), can both be modified. It then becomes necessary to analyze the error on the final value of the evaluated property (losses and magneto-mechanical loads) and not solely on the flux density distribution values. It is indeed possible to generate a sizable error on the flux density distribution with an acceptable error on the final value of the evaluated properties. This condition implies that the values of 𝑁 𝑄 and 𝑁, which correspond to the best compromise between computation time and precision, should be determined for the various magnetic gear property evaluations (losses and magneto-mechanical loads).

IX. CONCLUSION

This paper has described a novel model for analyzing magnetic field distribution that includes a finite relative permeability of yokes (model 2) for both the internal and external permanent magnet rings of a magnetic gear. For this model and the other one with an infinite relative permeability of yokes (model 1) [START_REF] Lubin | Analytical computation of the magnetic field distribution in a magnetic gear[END_REF], harmonic selection methods have been proposed and compared in order to reduce the computation time required to determine the magnetic torque for one magnetic configuration of a high pole number magnetic gear.

The result of this comparison suggests the possibility of significantly reducing computation time with harmonic selection method 𝐵, which selects impaired harmonics of the permanent magnet rings along with particular modulated harmonics of the system (has describe section VI) for regions X, I, II, IV, V and VI, as defined in Fig. 2. The best compromise between computation time and precision has been obtained using method B with 𝑁/𝑝 𝑒𝑥𝑡 = 3 and 𝑁 𝑄 = 5. With these parameters, the torque evaluation is computed at a precision above 99% in 0.32 sec (for the magnetic gear presented in Table I with an Intel Xeon E5-1630 v3, 8 threads, 3.70 GHz) for model 1 and in 0.36 sec for model 2. Analytical model 2 and harmonic selection method B divide the computation time by 900 relative to a 2D finite element model and by 60 compared to the exact analytical method (Method A with 𝑁/𝑝 𝑒𝑥𝑡 = 3 and 𝑁 𝑄 = 5 and analytical model 2) with an error below 1%. With this model, it would be possible to achieve a strong optimization of a high pole number magnetic gear with an acceptable computation time (less than one day).

Looking forward, the harmonic selection method proposed in this article will be used to more quickly compute the various mechanical loads in the magnetic gear and the eddy current losses in permanent magnets (Table IV). The analytical model with a finite relative permeability of yokes will also be able to compute iron losses in yokes (in laminated magnetic material). An analysis of the number of harmonics taken into account in the various regions (𝑁 and 𝑁 𝑄 ) remains to be completed in order to minimize computation time for the magnetic gear properties other than torque. APPENDIX Equations ( 28) and (29), which serve to remove some integration constants from [START_REF] Aubry | Sizing optimization methodology of a surface permanent magnet machine-converter system over a torque-speed operating profile: Application to a wave energy converter[END_REF] in region I with (28) and in region V with (29) (( 14) generates a condition between 𝐶 𝑛 (𝑘) and 𝐷 𝑛 (𝑘) , and between 𝐾 𝑛 (𝑘) and 𝐸 𝑛 (𝑘) ). 
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Fig. 3 :

 3 Fig. 3: Magnetic flux line distribution obtained with analytical model 2 (with finite relative permeability of yokes)

Fig. 6 :

 6 Torque evaluation for various values of 𝑁 vs. 𝑁 𝑄 without harmonic selection (Method A) for the magnetic gear described in Table I: (a) precision, and (b) computation time (a) (b) Fig. 7: Torque evaluation for various harmonic selection methods vs. harmonic number 𝑁, computed with an ideal yoke and 𝑁 𝑄 = 5 for the magnetic gear described in Table I: (a) precision, and (b) computation time

Fig. 8 :

 8 Fig. 8: Flux density distribution obtained with harmonic selection method Band 𝑁 𝑄 = 𝑁/𝑝 𝑒𝑥𝑡 = 10 for the magnetic gear presented TableI.

Fig. 9 :

 9 Fig. 9: Flux density distribution difference between harmonic selection method B and the exact analytical model with 𝑁 𝑄 = 𝑁/𝑝 𝑒𝑥𝑡 = 10 for the magnetic gear presented Table I

  

TABLE I DATA

 I FOR THE MAGNETIC GEAR EXAMPLE IN SECTION VI

	Symbol	Quantity	Value
	𝑝 𝑖𝑛𝑡	Number of internal ring pole pairs	20
	𝑝 𝑒𝑥𝑡 Q	Number of external ring pole pairs Number of ferromagnetic pole pieces	131 151
	𝐶 𝑓	Cogging torque factor	1
	D	External diameter	4 m
	δint	Internal air gap	5 mm
	δext	External air gap	5 mm
	𝑒 𝑦𝑜𝑘𝑒 𝑖𝑛𝑡	Radial thickness of the internal ring yoke	106 mm
	𝑒 𝑦𝑜𝑘𝑒 𝑒𝑥𝑡	Radial thickness of the external ring yoke	65 mm
	𝑒 𝑃𝑀 𝑖𝑛𝑡	Radial thickness of the internal ring permanent	19 mm
		magnets	
	𝑒 𝑃𝑀 𝑒𝑥𝑡	Radial thickness of the external ring permanent	10 mm
		magnets	
	𝑒 𝑠	Radial thickness of ferromagnetic pole pieces	52 mm
	𝐿 𝑧 Br	Magnetic length of the magnetic gear Remanence of magnets	2.1 m 1.2 T
	µ 𝐼 -µ 𝑉	Relative permeability of magnets	1
	µ 𝑋 -µ 𝑉𝐼	Relative permeability of yokes (with Model 1)	∞
	µ 𝑋 -µ 𝑉𝐼	Relative permeability of yokes (with Model 2)	1,000

TABLE IV AVERAGE

 IV DIFFERENCE BETWEEN THE TWO FLUX DENSITY DISTRIBUTION METHODS OBTAINED IN DIFFERENT REGIONS WITH 𝑁 𝑄 = 𝑁/𝑝 𝑒𝑥𝑡 = 10

		Reg.	Reg.	Reg.	Reg.	Reg.	Reg.	Reg.
		X	I	II	III	IV	V	VI
	Av.							
	diff.	5	6	26	9	10	7	2
	x10 -3							
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