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Mechanical gearboxes, as currently used in an indirect drive, electromechanical conversion chain (see Fig. 1a), result in a smaller capital expenditure and lower mass than the direct drive conversion chain [START_REF] Arántegui | JRC wind status report: Technology, market and economic aspects of wind energy in Europe[END_REF] (Fig. 1b). On the downside, mechanical gearboxes cause production interruptions and require repairs, thus increasing operating costs [START_REF] Keller | Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads[END_REF], [START_REF] Teng | Multi-fault detection and failure analysis of wind turbine gearbox using complex wavelet transform[END_REF]. In this context, one attractive solution consists of developing a conversion chain featuring a medium-speed generator and a magnetic gear [START_REF] Desvaux | Design and optimization of magnetic gears with arrangement and mechanical constraints for wind turbine applications[END_REF] (with non-contact power transmission) (Fig. 1c). The most popular magnetic gear topology was proposed by Martin [START_REF] Martin | Magnetic transmission[END_REF] and has been the topic of various studies conducted by Atallah [START_REF] Atallah | A novel high-performance magnetic gear[END_REF], [START_REF] Atallah | Design, analysis and realisation of a high-performance magnetic gear[END_REF]. The magnetic gear [START_REF] Atallah | Design, analysis and realisation of a high-performance magnetic gear[END_REF] shown in Fig. 2 potentially offers high performance with a higher torque density and greater reliability than mechanical gearboxes [START_REF] Gouda | Comparative study between mechanical and magnetic planetary gears[END_REF]. This gear becomes even more attractive for high-torque applications, like a high-power wind turbine (on the order of several MN.m and several MW) [START_REF] Penzkofer | Magnetic Gears for High Torque Applications[END_REF]. The competitiveness of this magnetic gear must be evaluated in the context of wind turbine operations, where conversion chain efficiency and heat dissipation constitute major criteria [START_REF] Bornschlegell | Thermal optimization of a high-power salient-pole electrical machine[END_REF]. It then becomes necessary to compute iron losses in both yokes and pole pieces. These losses have already been computed from a magnetic field computation with the finite element method [START_REF] Rasmussen | Experimental Evaluation of a Motor Integrated Permanent Magnet Gear[END_REF], [START_REF] Jian | A Coaxial Magnetic Gear With Halbach Permanent-Magnet Arrays[END_REF]. However, the computation time is too long to evaluate iron losses in a high-power magnetic gear for the purpose of integrating the iron loss computation into a set of models for the global mechatronic optimization of magnetic gears. Moreover, to the best of our knowledge, the iron loss computation method used in other works, e.g. [START_REF] Rasmussen | Experimental Evaluation of a Motor Integrated Permanent Magnet Gear[END_REF], [START_REF] Jian | A Coaxial Magnetic Gear With Halbach Permanent-Magnet Arrays[END_REF], does not take into account the spatial variations of flux density despite the magnitude of such variations.

The major contribution of this article concerns the development of an analytical model that enables computing the iron loss. The iron loss model takes into account both the spatial and temporal variations of the flux density in pole pieces and yokes of the magnetic gears while computing the iron loss more quickly than the finite element method [START_REF] Rasmussen | Experimental Evaluation of a Motor Integrated Permanent Magnet Gear[END_REF], [START_REF] Jian | A Coaxial Magnetic Gear With Halbach Permanent-Magnet Arrays[END_REF]. For yokes, the analytical magnetic field computation is based on the solution to Laplace's and Poisson's equations [START_REF] Lubin | Analytical computation of the magnetic field distribution in a magnetic gear[END_REF], [START_REF] Desvaux | Computation Time Analysis of the Magnetic Gear Analytical Model[END_REF]. For the pole pieces, a previous analytical model is coupled with a bi-directional permeance network model [START_REF] Ostović | Dynamics of Saturated Electric Machines[END_REF] in order to determine the magnetic field distribution. The temporal and spatial evolution of the flux density is evaluate in post-processing to compute iron losses, in conjunction with the conventional electrical machine, in ferromagnetic parts [START_REF] Hernandez-Aramburo | Estimating Rotational Iron Losses in an Induction Machine[END_REF], as opposed to [START_REF] Rasmussen | Experimental Evaluation of a Motor Integrated Permanent Magnet Gear[END_REF], [START_REF] Jian | A Coaxial Magnetic Gear With Halbach Permanent-Magnet Arrays[END_REF], which only take temporal variations into consideration. The magnetic gear topology [START_REF] Martin | Magnetic transmission[END_REF] is composed of: an internal ring with 𝑝 𝑖𝑛𝑡 pole pairs of permanent magnets and a ferromagnetic yoke, an external ring with 𝑝 𝑒𝑥𝑡 pole pairs of permanent magnets and a ferromagnetic yoke, and a ring with Q ferromagnetic poles between both permanent magnet rings (an example is provided in Fig. 2 with low pole numbers so as to improve legibility: 𝑝 𝑖𝑛𝑡 = 2, 𝑝 𝑒𝑥𝑡 = 7, and 𝑄 = 9). Each permanent magnet ring generates a magnetomotive force wave in the air gaps. The ring with ferromagnetic pole pieces is intended to modulate the magnetic field in both air gaps in order to obtain common harmonics. The result is a magnetic torque with a nonzero average and power transmission.

III. MAGNETIC GEAR PRINCIPLE

To achieve this power transmission, the pole numbers of all three rings must satisfy Eq. [START_REF] Arántegui | JRC wind status report: Technology, market and economic aspects of wind energy in Europe[END_REF]. Depending on the fixed ring, the gear ratio 𝐺 𝑚 is given by [START_REF] Keller | Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads[END_REF], where 𝛺 𝑖𝑛𝑡/0 , 𝛺 𝑒𝑥𝑡/0 and 𝛺 𝑄/0 are the speed rotations of the internal ring, external ring and pole piece ring, respectively. To compute the magnetic field distribution in the magnetic gear, the fixed ring is not needed; the analytical magneto-static model presented in the next part is thus applicable regardless of the fixed ring. To evaluate the iron losses in pole pieces and yokes of the magnetic gear during post-processing, it is first necessary to determine the magnetic field distribution across the various regions of the system, as shown in Fig. 3. For this computation, a 2D magneto-static model, proposed by [START_REF] Lubin | Analytical computation of the magnetic field distribution in a magnetic gear[END_REF] and [START_REF] Desvaux | Computation Time Analysis of the Magnetic Gear Analytical Model[END_REF], has been developed with the radial magnetization of magnets, a constant remanence of magnets and a constant relative permeability for all materials. This analytical model requires solving Poisson's and Laplace's equations in the k region of the system (3) [START_REF] Van Bladel | Electromagnetic Fields: Second Edition[END_REF] (yoke regions, permanent magnet regions, air gap regions, and each air space between pole pieces, see Fig. 3).

𝑝 𝑖𝑛𝑡 + 𝑝 𝑒𝑥𝑡 = 𝑄 (1) 
{ 𝜔 𝑖𝑛𝑡/0 = 0 → 𝐺 𝑚 = 𝛺 𝑒𝑥𝑡/0 𝛺 𝑄/0 = 𝑄 𝑝 𝑒𝑥𝑡 𝜔 𝑄/0 = 0 → 𝐺 𝑚 = 𝛺 𝑖𝑛𝑡/0 𝛺 𝑒𝑥𝑡/0 = - 𝑝 𝑒𝑥𝑡 𝑝 𝑖𝑛𝑡 𝜔 𝑒𝑥𝑡/0 = 0 → 𝐺 𝑚 = 𝛺 𝑖𝑛𝑡/0 𝛺 𝑄/0 = 𝑄 𝑝 𝑖𝑛𝑡 (2)

IV. ANALYTICAL MAGNETO-STATIC MODEL

A. Magnetic field distibution resolution in regions other than pole pieces

𝛥𝐴 (𝑘) = { - 1 𝑟 𝜕𝑀 (𝑘)
𝜕𝛼 0

(3) For Poisson's and Laplace's equations, a general solution (4) can be found in the 𝑘 region of the system by employing the variable separation method [START_REF] Farlow | Partial Differential Equations for Scientists and Engineers[END_REF], where: 𝐴 (𝑘) is the magnetic vector potential, 𝑋 0 (𝑘) , 𝑌 0 (𝑘) , 𝐶 𝑛 (𝑘) , 𝐷 𝑛 (𝑘) , 𝐾 𝑛 (𝑘) and 𝐸 𝑛 (𝑘) are integration constants, 𝑎 𝑛 (𝑘) and 𝑏 𝑛 (𝑘) are the general solution to

Poisson's equation, 𝑟 and 𝛼 are cylindrical coordinates, and 𝑅 𝑀 (𝑘) = 𝑅 𝑚 (𝑘+1) are in agreement with Fig. 3. For the various problem boundaries, the corresponding conditions should be given by the equations presented in [START_REF] Martin | Magnetic transmission[END_REF]. 

From these conditions, it is possible to obtain a matrix system of equations 𝑍, whose integration constants indicated in (4) are the problem unknowns. The dimension of matrix Z, expressed in [START_REF] Atallah | A novel high-performance magnetic gear[END_REF], is dependent on: 𝑁 𝑄 , i.e. the number of harmonics taken into account in the air space regions between pole pieces; 𝑄, the number of pole pieces; and 𝑁, the number of harmonics taken into account in the other regions. This matrix must be inverted to determine first the integration constants in several subdomains and then the magnetic field distribution displayed in Fig. 4. The radial flux 𝐵 𝑟 (𝑘) and tangential flux 𝐵 𝛼 (𝑘) can be computed using [START_REF] Atallah | Design, analysis and realisation of a high-performance magnetic gear[END_REF]. Comparisons may be drawn between the radial and tangential components of the flux density distribution in the middle of both the internal air gap (Fig. 5) and external air gap (Fig. 6), as obtained with the analytical model and finite element model. With this analytical model, the magnetic field distribution is computed for just a single global position of the magnetic gear. To compute iron losses like in [START_REF] Hernandez-Aramburo | Estimating Rotational Iron Losses in an Induction Machine[END_REF], it then becomes necessary to compute many times over the magnetic field distribution for various global positions, representing one magnetic cycle of the system. As regards iron losses in the pole pieces, since the analytical model precludes any magnetic field computation in these regions, coupling with a bi-directional reluctance network model is required to determine the flux density distribution.

𝐷𝑖𝑚 (𝑍) =(20𝑁 + (2𝑁 𝑄 + 2)𝑄)² (6) 

B. Magnetic field distribution in a pole piece resulting from coupling with a permeance network model

To determine iron losses in pole pieces like in [START_REF] Hernandez-Aramburo | Estimating Rotational Iron Losses in an Induction Machine[END_REF], it is possible for only one ferromagnetic pole piece to determine the flux density distribution resulting from coupling between the analytical model [START_REF] Desvaux | Computation Time Analysis of the Magnetic Gear Analytical Model[END_REF] and a bi-directional permeance network model [START_REF] Ostović | Dynamics of Saturated Electric Machines[END_REF], as shown in Fig. 7 with a low permeance number. A constant radial and orthoradial mesh has been adopted from [START_REF] Gouda | Comparative study between mechanical and magnetic planetary gears[END_REF], and the radial and tangential permeance values are computed from [START_REF] Penzkofer | Magnetic Gears for High Torque Applications[END_REF]. 

The flux sources 𝜙 𝑖,𝑗 of the bi-directional reluctance network model are determined on the pole piece boundaries from the analytical model presented above with [START_REF] Bornschlegell | Thermal optimization of a high-power salient-pole electrical machine[END_REF] 

To determine the magnetic field for the various permeance network components, it is necessary to solve equation [START_REF] Rasmussen | Experimental Evaluation of a Motor Integrated Permanent Magnet Gear[END_REF] on the different nodes (the potentials 𝑈 𝑖,𝑗 are the unknowns of this problem). If a node is adjacent to the pole piece boundaries, a number of terms in [START_REF] Rasmussen | Experimental Evaluation of a Motor Integrated Permanent Magnet Gear[END_REF] From these equations, it is possible to derive a matrix system of equations ( 14 Iron losses are generated by the temporal and spatial variations in flux density across the distinct ferromagnetic regions. These flux density variations create hysteresis and eddy currents in materials, which in turn cause losses and then warm the materials. A good indication of whether or not a ferromagnetic region will generate losses entails drawing the flux density evolution at a point of the ferromagnetic part in a 𝐵 𝑟 , 𝐵 𝛼 2D plane. This representation leads to observing a locus with respect to the flux density evolution. For a specific point of a ferromagnetic part, iron losses will increase with the locus amplitude and frequency of occurrence. It is thus important to analyze the locus of the various ferromagnetic parts of the magnetic gear in order to better understand the iron loss evolution. The flux density evolution will be analyzed at three distinct points shown in Fig. 9, representing the magnetic field evolution of the three regions. 

A. Locus frequency across the various ferromagnetic regions

The frequencies of locus generation are not the same for the internal yoke, the pole pieces and the external yoke. In fact, when the magnetic gear is in rotation and when the fixed ring is the pole pieces ring, Fig. 10 shows the evolution in radial and tangential flux for the three points designated in Fig. 9 (Fig. 10a corresponds to the point of the internal yoke, 10b to the point of the pole piece, and 10c to the point of the external yoke).

The frequency of locus generation for the various ferromagnetic parts thus depends on the rotational speed and pole configuration, as in Equation ( 16). The internal yoke locus frequency is therefore higher than the external yoke locus frequency, which in turn is higher than the pole piece locus frequency, like in [START_REF] Van Bladel | Electromagnetic Fields: Second Edition[END_REF]. These frequencies must be taken into account in the iron loss computation. From the curve plotted in Fig. 10, the locus for the various points indicated in Fig. 9 can be found, as shown in Fig. 11 (Fig. 11a refers to the point in the internal yoke, 11b to the point in the middle of a pole piece, and 11c to the point in the external yoke). These three loci are representative of the magnetic field evolution in these three regions. The spatial variations of flux density displayed in Fig. 11 confirm the need to include spatial variation in the iron loss computation method. Fig. 11 shows that the locus obtained in the pole piece is higher than that found in the external yoke. This result comes from the fact that pole pieces are subjected to a rotating magnetic field, imposed by permanent magnets, as opposed to the yoke regions. This figure also reveals that the locus obtained in the external yoke is higher than that in the internal yoke due to the magnetic field distribution apparently being imposed by the ring with a low pole number of permanent magnets (i.e. the internal ring). Even though the frequency is greater for the locus with the smaller amplitude [START_REF] Hernandez-Aramburo | Estimating Rotational Iron Losses in an Induction Machine[END_REF], iron losses in pole pieces will still be higher than losses in either the external or internal yoke.

VI. IRON LOSS COMPUTATION

The studies in this section have been based on an example with a high pole number, as described in Table 2, which corresponds to a magnetic gear optimized for wind applications similar to that in [START_REF] Desvaux | Design and optimization of magnetic gears with arrangement and mechanical constraints for wind turbine applications[END_REF] with the iron loss coefficient proposed in [START_REF] Fratila | Calculation of Iron Losses in Solid Rotor Induction Machine Using FEM[END_REF] for a laminated steel grade M1000-65. To evaluate the iron losses in yokes and pole pieces of the magnetic gear, both 𝐵 ⫽ the major axis of the flux density locus and 𝐵 ⊥ the minor axis of the flux density locus, as defined Fig. 12, must be determined [START_REF] Hernandez-Aramburo | Estimating Rotational Iron Losses in an Induction Machine[END_REF]. 

For the various points (𝑟 𝑗 , 𝛼 𝑖 ) of the ferromagnetic parts, it then becomes possible to evaluate the position of the magnetic gear 𝜃 𝑖,𝑗 * that maximizes the norm of the flux density. The major axis angle of the flux density 𝜉 𝑖,𝑗 (as defined in Fig. 12) must be determined from [START_REF] Fratila | Calculation of Iron Losses in Solid Rotor Induction Machine Using FEM[END_REF] for points (𝑟 𝑗 , 𝛼 𝑖 ) [START_REF] Bertotti | An improved estimation of iron losses in rotatinf electrical machines[END_REF]. From this angle, 𝐵 ⫽ and 𝐵 ⊥ are determined from Eq. [START_REF] Bertotti | An improved estimation of iron losses in rotatinf electrical machines[END_REF], where 𝛿(𝑟, 𝛼, 𝑡) is defined in Fig. 12 

The instantaneous iron loss density 𝑃 𝑖𝑟𝑜𝑛 is then determined from Eq. ( 22), where 𝑘 ℎ , 𝑘 𝑒 and 𝑘 𝑒𝑥 are the hysteresis coefficient, eddy current coefficient and excess loss coefficient, respectively, and 𝛾 the Steinmetz coefficient [START_REF] Deng | An improved iron loss estimation for permanent magnet brushless machines[END_REF]. In Eq. [START_REF] Farlow | Partial Differential Equations for Scientists and Engineers[END_REF], 𝐹 corresponds to: 𝐹 𝑖𝑛𝑡 for the internal yoke iron loss computation, 𝐹 𝑄 for the pole piece iron loss computation, and 𝐹 𝑒𝑥𝑡 for the external yoke iron loss computation (defined in ( 16)). Fig. 13 shows the evolution in iron losses for the various ferromagnetic parts as a function of the internal ring speed when the pole piece ring is stationary, for the magnetic gear described in Table I with a laminated steel grade M1000-65 (linear properties have been assumed). Values obtained at the rated power are provided in Table II. This computation is performed three times depending on the ferromagnetic region with the adapted periodicity (as defined in ( 16)). For these three periods, the evolution in position of the magnetic gear is dissected in 50 positions. For the three ferromagnetic regions, the flux density evolution is evaluated with both the analytical model and finite element model at multiple points (the three ferromagnetic parts are dissected at only 20*20 points for a pole periodicity of this region). For this magnetic gear, the total of the iron losses correspond to 1.9 % of the transmitted power.

𝑃 𝑖𝑟𝑜𝑛 (𝑟 𝑗 , 𝛼 𝑖 ) = 𝑘 ℎ . 𝐹. (( Δ𝐵 ⊥ 2 ) 𝛾 + ( Δ𝐵 ⫽ 2 ) 𝛾 ) +𝑘 𝑒 1 𝑇 ∫ 𝑇 𝑡=0 (( 𝑑𝐵 ⊥ 𝑑𝑡 ) 2 + ( 𝑑𝐵 ⫽ 𝑑𝑡 ) 2 ) 𝑑𝑡 +𝑘 𝑒𝑥 1 𝑇 ∫ 𝑇 𝑡=0 (( 𝑑𝐵 ⊥ 𝑑𝑡 ) 2 + ( 𝑑𝐵 ⫽ 𝑑𝑡 ) 2 ) 3/4 𝑑𝑡 (22) 
Fig. 13. Iron loss evolution in the various ferromagnetic parts as a function of internal ring speed when the pole piece ring is stationary, for the magnetic gear described in Table I 

B. Computation time benefit

The post-processing computation time is the same for the iron loss analytical model and the finite element model. It is a negligible part of the global computation time. For both models, the major part of the global computation time corresponds to the magnetic field repartition resolution for every dissected position of the magnetic gear. Considering the harmonic selection method proposed in [START_REF] Desvaux | Computation Time Analysis of the Magnetic Gear Analytical Model[END_REF] for the Laplace's and Poisson's equations and the permeance network presented above (with a pole piece dissected in 20*20 points), the magnetic field computation time for only one position is 1.5 seconds for the analytical model vs. 300 seconds with the finite element model (for the magnetic gear presented in Table I).

Then, when the position evolution of the magnetic gear is dissected in 50 positions, the global computation time necessary to evaluate iron loss in the internal and external yokes and in the pole pieces is 90 seconds with the analytical model vs. 4 hours with the finite element model. The analytical model thus permits to divide the computation time by 150.

VII. CONCLUSION

This article has focused on a fast analytical model of iron losses in the ferromagnetic parts of the magnetic gear (i.e. internal yoke, external yoke and pole pieces). The proposed 2D magneto-static analytical linear model has been based on a resolution of both Laplace's and Poisson's equations coupled with a permeance network, in order to determine the magnetic field distribution in pole pieces. The iron loss model introduced in this article [START_REF] Hernandez-Aramburo | Estimating Rotational Iron Losses in an Induction Machine[END_REF] takes into account both the temporal and spatial variations of flux density.

For the high-power magnetic gear described in [START_REF] Desvaux | Design and optimization of magnetic gears with arrangement and mechanical constraints for wind turbine applications[END_REF] and describe in table I, the iron loss has been computed in 90 seconds with the analytical model proposed in this article vs. 4 hours if the magnetic field is resolved using the finite element model.

Looking forward, results from this iron loss model must be compared to those obtained from a magnetic field resolution with a finite element model. A comparison between results obtained from the iron loss computation method in considering spatial variation and those found without considering spatial variation can also be drawn. As a next step, a computation time analysis can be conducted in order to reduce the time required to compute the losses by varying both the number of points taken into consideration in the three regions and the number of magnetic gear positions. In the near future, this fast iron loss computation model will be integrated into a global mechatronic optimization of the magnetic gear. Such an optimization process will also include an analytical model of eddy current losses in permanent magnets [START_REF] Desvaux | Modélisation des pertes dans les aimants des multiplicateurs magnétiques pour l'éolien[END_REF].
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Fig. 1 .

 1 Fig. 1. Conversion chain: a) Indirect mechanical drive, b) Direct drive, c) Indirect magnetic drive (i.e. the one studied here).

Fig. 2 .

 2 Fig. 2. Magnetic gear topology proposed by [5] in an expanded drawing with low pole numbers (in this example: 𝑝 𝑖𝑛𝑡 = 2, 𝑝 𝑒𝑥𝑡 = 7, and 𝑄 = 9)

Fig. 3 .

 3 Fig. 3. Magnetic gear parameterization of the various regions (in this example: 𝑝 𝑖𝑛𝑡 = 2, 𝑝 𝑒𝑥𝑡 = 7, and 𝑄 = 9)

  𝐴 (𝑘) (𝑟, 𝛼, 𝜃 (𝑘) ) = 𝑋 0 (𝑘) + 𝑌 0 𝑟 = 𝑅 𝑀 (𝐼𝐼) , 𝑅 𝑚 (𝐼𝑉) ; ∀ 𝛼 ∈ [𝛼 𝑞 + 𝛽, 𝛼 𝑞+1 ] 𝜕𝐴 (𝐼𝐼𝐼,𝑞) 𝜕𝛼 = 0 ⃪ 𝛼 = 𝛼 𝑞 , 𝛼 𝑞 + 𝛽; ∀ 𝑟 ∈ [𝑅 𝑚 (𝐼𝐼𝐼) , 𝑅 𝑀 (𝐼𝐼𝐼) ] µ (𝑘) . 𝜕𝐴 (𝑘) µ (𝑘+1) . 𝜕𝑟 | 𝑋 … 𝑉 𝐴 (𝑘) | 𝑟=𝑅 𝑚 (𝑘) = 𝐴 (𝑘-1) | 𝑟=𝑅 𝑀 (𝑘-1) ⃪ 𝑘 = 𝐼 … 𝑉𝐼

Fig. 4 .Fig. 5 .Fig. 6 .

 456 Fig. 4. Magnetic flux line distribution in a magnetic gear, as obtained with the analytical model in [14]. In this example: 𝑝 𝑖𝑛𝑡 = 2, 𝑝 𝑒𝑥𝑡 = 7, and 𝑄 = 9.

Fig. 7 .

 7 Fig. 7. Pole piece parameterization for the permeance network model

  must be substituted by the flux sources determined by the previous analytical model, like in (12) if 𝑖 = 1 or 𝑖 = 𝑁 and in (13) if 𝑗 = 1 or 𝑗 = 𝑁. (𝑈 𝑖,𝑗 -𝑈 𝑖-1,𝑗 )2. 𝑃 𝛼 + (𝑈 𝑖,𝑗 -𝑈 𝑖,𝑗-1 )2. 𝑃 𝑟 + (𝑈 𝑖,𝑗 -𝑈 𝑖+1,𝑗 )2. 𝑃 𝛼 + (𝑈 𝑖,𝑗 -𝑈 𝑖,𝑗+1 )2. 𝑃 𝑟 = 0 (11) { (𝑈 𝑖,𝑗 -𝑈 𝑖-1,𝑗 )2. 𝑃 𝛼 = 𝜙 𝛼,𝑖,𝑗 ⃪ 𝑖 = 1 (𝑈 𝑖,𝑗 -𝑈 𝑖+1,𝑗 )2. 𝑃 𝛼 = 𝜙 𝛼,𝑖,𝑗 ⃪ 𝑖 = 𝑁 (12) { (𝑈 𝑖,𝑗 -𝑈 𝑖,𝑗-1 )2. 𝑃 𝑟 = 𝜙 𝑟,𝑖,𝑗 ⃪ 𝑗 = 1 (𝑈 𝑖,𝑗 -𝑈 𝑖,𝑗+1 )2. 𝑃 𝑟 = 𝜙 𝑟,𝑖,𝑗 ⃪ 𝑗 = 𝑁 (13)

  ), where: [𝑈] is the potential matrix (containing the problem unknowns), [𝑃] the permeance matrix, and [𝜙] the flux matrix (containing the flux determined from the analytical model). If the permeance matrix [𝑃] is inverted, then: the potential matrix [𝑈] can be determined; the radial flux 𝐵 𝑟,𝑖,𝑗 and tangential flux 𝐵 𝛼,𝑖,𝑗 can be computed with (15); and a flux density distribution can be computed for a pole piece (see Fig.

8

 8 

Fig. 8 .

 8 Fig. 8. Flux density in a pole piece obtained from the permeance network model V. FLUX DENSITY EVOLUTION IN FERROMAGNETIC PARTS

Fig. 9 .

 9 Fig. 9. Designation of the three distinct points studied in Section V, representing the magnetic field evolution of the three regions

Fig. 10 .

 10 Fig. 10. Evolution in the radial and tangential components of flux density for a point on the: a) internal yoke, b) pole piece, and c) external yoke displayed in Fig. 9

Fig. 11 .

 11 Fig. 11. Spatial variations in flux density at a point of the: a) internal yoke, b) pole piece, and c) external yoke (presented in Fig. 9)

2 +

 2 It is thus necessary to compute the magnetic field distribution using the global analytical model presented above (Poisson's and Laplace's resolution model coupled with the permeance network model) for various positions of the magnetic gear, i.e. representative of a magnetic cycle. The next step first consists of evaluating the norm of the flux (18) everywhere in the ferromagnetic parts: ‖𝐵(𝑟 𝑗 , 𝛼 𝑖 , 𝜃)‖ = √ (𝐵 𝑟 (𝑟 𝑗 , 𝛼 𝑖 + 𝜃) -𝐵 𝑟 𝑚𝑜𝑦 (𝑟 𝑗 , 𝛼 𝑖 )) (𝐵 𝛼 (𝑟 𝑗 , 𝛼 𝑖 + 𝜃) -𝐵 𝛼 𝑚𝑜𝑦 (𝑟 𝑗 , 𝛼 𝑖 )) ²

  𝑟 𝑗 , 𝛼 𝑖 ) . 𝑑𝑆 𝑖,𝑗 𝜙 𝛼,𝑖,𝑗 = ∫ 𝐵 𝛼 (𝑘) (𝑟 𝑗 , 𝛼 𝑖 ) . 𝑑𝑆 𝑖,𝑗

	(𝑘) , where 𝐵 𝑟 (𝑘) correspond to the magnetic field determined in regions and 𝐵 𝛼
	II, III and IV.
	𝜙 𝑟,𝑖,𝑗 = ∫ 𝐵 𝑟 (𝑘) (
	{

TABLE I :

 I DATA OF THE MAGNETIC GEAR EXAMPLE IN SECTION VI

	Fig. 12. Locus parameterization for the iron loss evaluation		
	Symbol	Quantity	Value
	𝑃 𝑟𝑎𝑡𝑒𝑑	Rated power transmitted	3.9 MW
	𝑁 𝑙	Rated speed of the low-speed rotor	15 rpm
	𝑁 ℎ	Rated speed of the high-speed rotor	97 rpm
	𝑝 𝑖𝑛𝑡	Number of internal ring pole pairs	20
	𝑝 𝑒𝑥𝑡	Number of external ring pole pairs	131
	Q	Number of ferromagnetic pole pieces	151
	D	External diameter	4 m
	𝐿 𝑧	Magnetic length	2 m
	δint	Internal air gap	5 mm
	δext	External air gap	5 mm
	Brem	Remanence of the magnets	1.20 T
	µ (𝐼,𝑉)	Relative permeability of magnets	1
	µ (𝑋,𝐼𝐼𝐼,𝑉𝐼)	Relative permeability of iron	1,000
	𝑘 ℎ	Hysteresis coefficient	363.78
	𝑘 𝑒	Eddy current coefficient	0.167
	𝑘 𝑒𝑥	Excess loss coefficient	1.84
	𝛾	Steinmetz coefficient	2

  and Eq. (21).

	𝜉 𝑖,𝑗 = 𝑎𝑟𝑐𝑡𝑎𝑛 (	𝐵 𝑟 (𝜃 𝑖,𝑗 * ) 𝐵 𝛼 (𝜃 𝑖,𝑗 * )	)	(19)
	{ 𝐵 ⫽ (𝑟 𝑗 , 𝛼 𝑖 , 𝜃) = ‖𝐵(𝑟 𝑗 , 𝛼 𝑖 , 𝜃)‖. cos(𝛿 𝑖,𝑗 (𝜃)) 𝐵 ⊥ (𝑟 𝑗 , 𝛼 𝑖 , 𝜃) = ‖𝐵(𝑟 𝑗 , 𝛼 𝑖 , 𝜃)‖. sin(𝛿 𝑖,𝑗 (𝜃))	(20)
	𝛿 𝑖,𝑗 (𝜃) = 𝑎𝑟𝑐𝑡𝑎𝑛 (	𝐵 𝑟 (𝑟 𝑗 , 𝛼 𝑖 + 𝜃) 𝐵 𝛼 (𝑟 𝑗 , 𝛼 𝑖 + 𝜃)	) -𝜉 𝑖,𝑗

TABLE II :

 II IRON LOSSES OBTAINNED FROM THE ANALYTICAL MODEL

		Losses obtained from the
		analytical model (kW)
	Internal yoke	0.62
	Pole pieces	44.1
	External yoke	31.5
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