
HAL Id: hal-01598123
https://hal.science/hal-01598123

Submitted on 29 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analytical iron loss model for the optimization of
magnetic gear

Melaine Desvaux, Bernard Multon, Stéphane Sire, Hamid Ben Ahmed

To cite this version:
Melaine Desvaux, Bernard Multon, Stéphane Sire, Hamid Ben Ahmed. Analytical iron loss model
for the optimization of magnetic gear. IEEE International Electric Machines and Drives Conference
(IEMDC), 2017, May 2017, Miami, United States. pp.1 - 8, �10.1109/IEMDC.2017.8002255�. �hal-
01598123�

https://hal.science/hal-01598123
https://hal.archives-ouvertes.fr


 

 

 

 

Analytical Iron Loss Model for  

the Optimization of Magnetic Gear 

Melaine Desvaux1, Bernard Multon1, Stéphane Sire2, Hamid Ben Ahmed1 
1SATIE, ENS Rennes, Université Bretagne Loire, CNRS, 35170 Bruz, France, melaine.desvaux@ens-rennes.fr 

2IRDL, Université de Bretagne Occidentale, FRE CNRS 3744, 29200 Brest, France, stephane.sire@univ-brest.fr 

 

 
Abstract — This article deals with analytical models dedicated 

to iron losses in yokes and pole pieces of a magnetic gear with a 

concentric structure. The magnetic field distribution is 

determined in yokes by solving both Poisson’s and Laplace’s 

equations, whereas for pole pieces the magnetic field is computed 

by coupling the previous analytical model with a reluctance 

network model. The iron loss can then be determined in post-

processing from the magnetic field analytical computation. The 

iron loss model used in this article takes into account the temporal 

and spatial variations of flux density. Results of this global 

analytical model permit to analyze the temporal and spatial 

evolution of flux density. In recognizing that the purpose of this 

model is to be integrated into a set of models for the global 

mechatronic optimization of magnetic gears, it is essential to 

minimize computation time. This work is being applied in the 

context of high-power (multi-MW) wind turbines. 

Keywords — Analytical model; Computation time; Flux density; 

Iron losses; Locus; Magnetic gear; Permeance network; Pole pieces; 

Yokes. 

I. NOMENCLATURE 

𝐴(𝑘): Magnetic vector potential of region k [Wb] 

𝐵𝑟
(𝑘)
: Radial flux density in region k [T] 

𝐵𝛼
(𝑘)
: Tangential flux density in region k [T] 

𝐵⫽: Major axis of the flux density locus [T] 

𝐵⊥: Minor axis of the flux density locus [T] 

𝐹𝑖𝑛𝑡: Iron loss frequency in the internal yoke [Hz] 

𝐹𝑒𝑥𝑡: Iron loss frequency in the external yoke [Hz] 

𝐹𝑄: Iron loss frequency in pole pieces [Hz] 

𝐺𝑚: Gear ratio 

𝑘: Index of the magnetic gear region 

𝑘ℎ: Hysteresis coefficient 

𝑘𝑒 ∶ Eddy current coefficient 

𝑘𝑒𝑥 ∶ Excess loss coefficient 

𝐿: Length of the magnetic gear [m] 

𝑀(𝑘): Radial magnetization distribution of region k [Wb] 

𝑃𝑖𝑟𝑜𝑛: Instantaneous iron loss density [W/m3] 

𝑝𝑖𝑛𝑡: Number of internal ring pole pairs 

𝑝𝑒𝑥𝑡 : Number of external ring pole pairs 

𝑃𝑟: Radial permeance 

𝑃𝛼: Tangential permeance 

𝑄: Number of ferromagnetic pole pieces 

𝑟: Radial cylindrical coordinate [m] 

𝑅𝑀
(𝑘)
: External radius of region k [m] 

𝑅𝑚
(𝑘)
: Internal radius of region k [m] 

𝑇: Iron loss periodicity [s] 

𝑈𝑖,𝑗: Potential of the permeance network for point 𝑖, 𝑗 

𝑍:  Matrix system of the analytical model derived from the 

resolution of Poisson’s and Laplace’s equations 

𝛼: Angular cylindrical coordinate [rad] 

𝛽: Opening angle of the pole pieces [rad] 

𝛾: Steinmetz coefficient 

𝜉𝑖,𝑗: Major axis angle of the flux density at point 𝑖, 𝑗 [rad] 

𝜃 : Global angular position of the magnetic gear [rad] 

𝜃𝑖,𝑗
∗ : Global angular position maximizing the flux density at 

point 𝑖, 𝑗 [rad] 

µ(𝑘): Relative permeability of region k 

𝜙𝑟,𝑖,𝑗: Radial flux source of point 𝑖, 𝑗 

𝜙𝛼,𝑖,𝑗: Tangential flux source of point 𝑖, 𝑗 

𝛺𝑖𝑛𝑡/0: Rotational speed of the internal ring [rad/s] 

𝛺𝑒𝑥𝑡/0: Rotational speed of the external ring [rad/s] 

𝛺𝑄/0: Rotational speed of the pole piece ring [rad/s] 

II. INTRODUCTION 

Mechanical gearboxes, as currently used in an indirect drive, 
electromechanical conversion chain (see Fig. 1a), result in a 
smaller capital expenditure and lower mass than the direct drive 
conversion chain [1] (Fig. 1b). On the downside, mechanical 
gearboxes cause production interruptions and require repairs, 
thus increasing operating costs [2],[3]. In this context, one 
attractive solution consists of developing a conversion chain 
featuring a medium-speed generator and a magnetic gear [4] 
(with non-contact power transmission) (Fig. 1c). The most 
popular magnetic gear topology was proposed by Martin [5] and 
has been the topic of various studies conducted by Atallah 
[6],[7]. 

 

Fig. 1. Conversion chain: a) Indirect mechanical drive, b) Direct drive,  

c) Indirect magnetic drive (i.e. the one studied here). 



 

 

 

 

The magnetic gear [7] shown in Fig. 2 potentially offers high 
performance with a higher torque density and greater reliability 
than mechanical gearboxes [8]. This gear becomes even more 
attractive for high-torque applications, like a high-power wind 
turbine (on the order of several MN.m and several MW) [9]. The 
competitiveness of this magnetic gear must be evaluated in the 
context of wind turbine operations, where conversion chain 
efficiency and heat dissipation constitute major criteria [10]. It 
then becomes necessary to compute iron losses in both yokes 
and pole pieces. These losses have already been computed from 
a magnetic field computation with the finite element method 
[11],[12]. However, the computation time is too long to evaluate 
iron losses in a high-power magnetic gear for the purpose of 
integrating the iron loss computation into a set of models for the 
global mechatronic optimization of magnetic gears. Moreover, 
to the best of our knowledge, the iron loss computation method 
used in other works, e.g. [11],[12], does not take into account 
the spatial variations of flux density despite the magnitude of 
such variations. 

The major contribution of this article concerns the 
development of an analytical model that enables computing the 
iron loss. The iron loss model takes into account both the spatial 
and temporal variations of the flux density in pole pieces and 
yokes of the magnetic gears while computing the iron loss more 
quickly than the finite element method [11],[12]. For yokes, the 
analytical magnetic field computation is based on the solution to 
Laplace’s and Poisson’s equations [13],[14]. For the pole pieces, 
a previous analytical model is coupled with a bi-directional 
permeance network model [15] in order to determine the 
magnetic field distribution. The temporal and spatial evolution 
of the flux density is evaluate in post-processing to compute iron 
losses, in conjunction with the conventional electrical machine, 
in ferromagnetic parts [16], as opposed to [11],[12], which only 
take temporal variations into consideration.  

III. MAGNETIC GEAR PRINCIPLE 

 

Fig. 2. Magnetic gear topology proposed by [5] in an expanded drawing with 

low pole numbers (in this example: 𝑝𝑖𝑛𝑡 = 2, 𝑝𝑒𝑥𝑡 = 7, and 𝑄 = 9) 

The magnetic gear topology [5] is composed of: an internal 
ring with 𝑝𝑖𝑛𝑡  pole pairs of permanent magnets and a 
ferromagnetic yoke, an external ring with 𝑝𝑒𝑥𝑡  pole pairs of 
permanent magnets and a ferromagnetic yoke, and a ring with Q 
ferromagnetic poles between both permanent magnet rings (an 
example is provided in Fig. 2 with low pole numbers so as to 

improve legibility: 𝑝𝑖𝑛𝑡  = 2, 𝑝𝑒𝑥𝑡  = 7, and 𝑄  = 9). Each 
permanent magnet ring generates a magnetomotive force wave 
in the air gaps. The ring with ferromagnetic pole pieces is 
intended to modulate the magnetic field in both air gaps in order 
to obtain common harmonics. The result is a magnetic torque 
with a nonzero average and power transmission. 

To achieve this power transmission, the pole numbers of all 
three rings must satisfy Eq. (1). Depending on the fixed ring, the 
gear ratio 𝐺𝑚 is given by (2), where 𝛺𝑖𝑛𝑡/0, 𝛺𝑒𝑥𝑡/0 and 𝛺𝑄/0 are 

the speed rotations of the internal ring, external ring and pole 
piece ring, respectively. To compute the magnetic field 
distribution in the magnetic gear, the fixed ring is not needed; 
the analytical magneto-static model presented in the next part is 
thus applicable regardless of the fixed ring. 

𝑝𝑖𝑛𝑡 + 𝑝𝑒𝑥𝑡 =  𝑄 (1) 

{
  
 

  
 𝜔𝑖𝑛𝑡/0 = 0 → 𝐺𝑚 =

𝛺𝑒𝑥𝑡/0

𝛺𝑄/0
=

𝑄

𝑝𝑒𝑥𝑡

𝜔𝑄/0 = 0 → 𝐺𝑚 =
𝛺𝑖𝑛𝑡/0

𝛺𝑒𝑥𝑡/0
= −

𝑝𝑒𝑥𝑡
𝑝𝑖𝑛𝑡

𝜔𝑒𝑥𝑡/0 = 0 → 𝐺𝑚 =
𝛺𝑖𝑛𝑡/0

𝛺𝑄/0
=

𝑄

𝑝𝑖𝑛𝑡

 (2) 

IV. ANALYTICAL MAGNETO-STATIC MODEL 

A. Magnetic field distibution resolution in regions other than 

pole pieces 

 

Fig. 3. Magnetic gear parameterization of the various regions  

(in this example: 𝑝𝑖𝑛𝑡 = 2, 𝑝𝑒𝑥𝑡 = 7, and 𝑄 = 9) 

To evaluate the iron losses in pole pieces and yokes of the 
magnetic gear during post-processing, it is first necessary to 
determine the magnetic field distribution across the various 
regions of the system, as shown in Fig. 3. For this computation, 
a 2D magneto-static model, proposed by [13] and [14], has been 
developed with the radial magnetization of magnets, a constant 
remanence of magnets and a constant relative permeability for 
all materials. This analytical model requires solving Poisson's 



 

 

 

 

and Laplace's equations in the k region of the system (3) [17] 
(yoke regions, permanent magnet regions, air gap regions, and 
each air space between pole pieces, see Fig. 3). 

𝛥𝐴(𝑘) = {−
1

𝑟

𝜕𝑀(𝑘)

𝜕𝛼
0

 (3) 

For Poisson's and Laplace's equations, a general solution (4) 
can be found in the 𝑘 region of the system by employing the 

variable separation method [18], where: 𝐴(𝑘) is the magnetic 

vector potential,  𝑋0
(𝑘)

, 𝑌0
(𝑘)

, 𝐶𝑛
(𝑘)

, 𝐷𝑛
(𝑘)

, 𝐾𝑛
(𝑘)

 and 𝐸𝑛
(𝑘)

 are 

integration constants, 𝑎𝑛
(𝑘)

 and 𝑏𝑛
(𝑘)

 are the general solution to 
Poisson’s equation, 𝑟 and 𝛼  are cylindrical coordinates, and 

𝑅𝑀
(𝑘)
= 𝑅𝑚

(𝑘+1)
 are in agreement with Fig. 3. For the various 

problem boundaries, the corresponding conditions should be 
given by the equations presented in (5). 

𝐴(𝑘)(𝑟, 𝛼, 𝜃(𝑘)) =𝑋0
(𝑘)
+𝑌0

(𝑘)
 𝑙𝑛 (

𝑟

𝑅𝑀
(𝑘)
) 

+∑(𝐶𝑛
(𝑘) (

𝑟

𝑅𝑀
(𝑘)
)

𝑛

+ 𝐷𝑛
(𝑘) (

𝑟

𝑅𝑚
(𝑘)
)

−𝑛

+ 𝑎𝑛
(𝑘))

𝑁

𝑛≥1

cos(𝑛. 𝛼) 

+∑(𝐾𝑛
(𝑘)
(
𝑟

𝑅𝑀
(𝑘)
)

𝑛

+ 𝐸𝑛
(𝑘)
(
𝑟

𝑅𝑚
(𝑘)
)

−𝑛

+ 𝑏𝑛
(𝑘)
)

𝑁

𝑛≥1

sin(𝑛. 𝛼) 

(4) 

{
 
 
 
 
 

 
 
 
 
 𝐴(𝑘) = 0 ⃪ 𝑟 = 𝑅𝑚

(𝑋), 𝑅𝑀
(𝑉𝐼)

𝜕𝐴(𝑘)

𝜕𝑟
= 0 ⃪ 𝑟 = 𝑅𝑀

(𝐼𝐼), 𝑅𝑚
(𝐼𝑉); ∀ 𝛼 ∈ [𝛼𝑞 + 𝛽, 𝛼𝑞+1]

𝜕𝐴(𝐼𝐼𝐼,𝑞)

𝜕𝛼
= 0 ⃪ 𝛼 = 𝛼𝑞 , 𝛼𝑞 + 𝛽; ∀ 𝑟 ∈ [𝑅𝑚

(𝐼𝐼𝐼), 𝑅𝑀
(𝐼𝐼𝐼)]

µ(𝑘). 𝜕𝐴
(𝑘)

µ(𝑘+1). 𝜕𝑟
|
𝑟=𝑅𝑀

(𝑘)
=
𝜕𝐴(𝑘+1)

𝜕𝑟
|
𝑟=𝑅𝑚

(𝑘+1)
 ⃪ 𝑘 = 𝑋…𝑉

𝐴(𝑘)|
𝑟=𝑅𝑚

(𝑘) = 𝐴(𝑘−1)|
𝑟=𝑅𝑀

(𝑘−1) ⃪ 𝑘 = 𝐼 …𝑉𝐼

 (5) 

From these conditions, it is possible to obtain a matrix 
system of equations 𝑍, whose integration constants indicated in 
(4) are the problem unknowns. The dimension of matrix Z, 
expressed in (6), is dependent on: 𝑁𝑄 , i.e. the number of 

harmonics taken into account in the air space regions between 
pole pieces; 𝑄, the number of pole pieces; and 𝑁, the number of 
harmonics taken into account in the other regions. This matrix 
must be inverted to determine first the integration constants in 
several subdomains and then the magnetic field distribution 

displayed in Fig. 4. The radial flux 𝐵𝑟
(𝑘)

 and tangential flux 𝐵𝛼
(𝑘)

 
can be computed using (7). Comparisons may be drawn between 
the radial and tangential components of the flux density 
distribution in the middle of both the internal air gap (Fig. 5) and 
external air gap (Fig. 6), as obtained with the analytical model 
and finite element model. 

𝐷𝑖𝑚 (𝑍) =(20𝑁 + (2𝑁𝑄 + 2)𝑄)² (6) 

{
 

 𝐵𝑟
(𝑘)(𝑟, 𝛼, 𝑡) =

1

𝑟

𝜕𝐴(𝑘)

𝜕𝛼

𝐵𝛼
(𝑘)(𝑟, 𝛼, 𝑡) = −

𝜕𝐴(𝑘)

𝜕𝑟

 (7) 

 

 
Fig. 4. Magnetic flux line distribution in a magnetic gear, as obtained with 

the analytical model in [14]. In this example: 𝑝𝑖𝑛𝑡 = 2, 𝑝𝑒𝑥𝑡 = 7, and 𝑄 = 9. 

 
(a) 

 
(b) 

Fig. 5. Flux density distribution in the middle of the internal air gap:  

a) radial component, and b) tangential component 



 

 

 

 

 
(a) 

 
(b) 

Fig. 6. Flux density distribution in the middle of the external air gap:  

a) radial component, and b) tangential component 

With this analytical model, the magnetic field distribution is 
computed for just a single global position of the magnetic gear. 
To compute iron losses like in [16], it then becomes necessary 
to compute many times over the magnetic field distribution for 
various global positions, representing one magnetic cycle of the 
system. As regards iron losses in the pole pieces, since the 
analytical model precludes any magnetic field computation in 
these regions, coupling with a bi-directional reluctance network 
model is required to determine the flux density distribution. 

B. Magnetic field distribution in a pole piece resulting from 

coupling with a permeance network model 

To determine iron losses in pole pieces like in [16], it is 
possible for only one ferromagnetic pole piece to determine the 
flux density distribution resulting from coupling between the 
analytical model [14] and a bi-directional permeance network 
model [15], as shown in Fig. 7 with a low permeance number. A 
constant radial and orthoradial mesh has been adopted from (8), 
and the radial and tangential permeance values are computed 
from (9). 

 

Fig. 7. Pole piece parameterization for the permeance network model 

{
 

 𝑟𝑗 = 𝑅𝑚
(𝐼𝐼𝐼) + (𝑗 − 0.5)

𝑅𝑀
(𝐼𝐼𝐼) − 𝑅𝑚

(𝐼𝐼𝐼)

𝑁

𝛼𝑖 = 𝛼𝑞 − (𝑖 − 0.5)
𝛽

𝑁

 (8) 

{
 
 
 

 
 
 
𝑃𝑟 = µ(𝐼𝐼𝐼)

𝑅𝑚𝑜𝑦
(𝐼𝐼𝐼) 𝛽

𝑁

1
2
.
𝑅𝑀
(𝐼𝐼𝐼)

− 𝑅𝑚
(𝐼𝐼𝐼)

𝑁

𝐿

𝑃𝛼 = µ(𝐼𝐼𝐼)

𝑅𝑚𝑎𝑥
(𝐼𝐼𝐼)

− 𝑅𝑚𝑖𝑛
(𝐼𝐼𝐼)

𝑁
1
2
. 𝑅𝑚𝑜𝑦

(𝐼𝐼𝐼) 𝛽
𝑁

𝐿

 

 

(9) 

The flux sources 𝜙𝑖,𝑗  of the bi-directional reluctance 

network model are determined on the pole piece boundaries 

from the analytical model presented above with (10), where 𝐵𝑟
(𝑘)

 

and 𝐵𝛼
(𝑘)

 correspond to the magnetic field determined in regions 
II, III and IV. 

{
𝜙𝑟,𝑖,𝑗 = ∫𝐵𝑟

(𝑘)(𝑟𝑗 , 𝛼𝑖) . 𝑑𝑆𝑖,𝑗

𝜙𝛼,𝑖,𝑗 = ∫𝐵𝛼
(𝑘)(𝑟𝑗 , 𝛼𝑖) . 𝑑𝑆𝑖,𝑗

 

 

(10) 

 To determine the magnetic field for the various permeance 
network components, it is necessary to solve equation (11) on 
the different nodes (the potentials 𝑈𝑖,𝑗 are the unknowns of this 

problem). If a node is adjacent to the pole piece boundaries, a 
number of terms in (11) must be substituted by the flux sources 
determined by the previous analytical model, like in (12) if 𝑖 =
1 or 𝑖 = 𝑁 and in (13) if 𝑗 = 1 or 𝑗 = 𝑁. 

(𝑈𝑖,𝑗 − 𝑈𝑖−1,𝑗)2. 𝑃𝛼 + (𝑈𝑖,𝑗 − 𝑈𝑖,𝑗−1)2. 𝑃𝑟 + 

(𝑈𝑖,𝑗 − 𝑈𝑖+1,𝑗)2. 𝑃𝛼 + (𝑈𝑖,𝑗 − 𝑈𝑖,𝑗+1)2. 𝑃𝑟 = 0 
(11) 

{
(𝑈𝑖,𝑗 − 𝑈𝑖−1,𝑗)2. 𝑃𝛼 = 𝜙𝛼,𝑖,𝑗  ⃪ 𝑖 = 1

(𝑈𝑖,𝑗 − 𝑈𝑖+1,𝑗)2. 𝑃𝛼 = 𝜙𝛼,𝑖,𝑗  ⃪ 𝑖 = 𝑁
 (12) 

{
(𝑈𝑖,𝑗 − 𝑈𝑖,𝑗−1)2. 𝑃𝑟 = 𝜙𝑟,𝑖,𝑗  ⃪ 𝑗 = 1

(𝑈𝑖,𝑗 − 𝑈𝑖,𝑗+1)2. 𝑃𝑟 = 𝜙𝑟,𝑖,𝑗 ⃪ 𝑗 = 𝑁
 (13) 

From these equations, it is possible to derive a matrix system 
of equations (14), where: [𝑈] is the potential matrix (containing 
the problem unknowns), [𝑃] the permeance matrix, and [𝜙] the 
flux matrix (containing the flux determined from the analytical 
model). If the permeance matrix [𝑃]  is inverted, then: the 
potential matrix [𝑈] can be determined; the radial flux 𝐵𝑟,𝑖,𝑗 and 

tangential flux 𝐵𝛼,𝑖,𝑗  can be computed with (15); and a flux 

density distribution can be computed for a pole piece (see Fig. 
8). 

[𝑃]𝑁∗𝑁,𝑁∗𝑁 ∗ [𝑈]𝑁∗𝑁,1 = [𝜙]𝑁∗𝑁,1 (14) 



 

 

 

 

{
  
 

  
 𝐵𝑟,𝑖,𝑗 =

1

𝑟𝑖
𝛽
𝑁
𝐿
(
(𝑈𝑖,𝑗 − 𝑈𝑖,𝑗−1)2. 𝑃𝑟 +

(𝑈𝑖,𝑗+1 − 𝑈𝑖,𝑗)2. 𝑃𝑟
)

𝐵𝛼,𝑖,𝑗 =
1

𝑅𝑀
(𝐼𝐼𝐼) − 𝑅𝑚

(𝐼𝐼𝐼)

𝑁
𝐿

(
(𝑈𝑖,𝑗 − 𝑈𝑖−1,𝑗)2. 𝑃𝛼 +

(𝑈𝑖+1,𝑗 − 𝑈𝑖,𝑗)2. 𝑃𝛼
)

 (15) 

 

 
Fig. 8. Flux density in a pole piece obtained from  

the permeance network model 

V. FLUX DENSITY EVOLUTION IN FERROMAGNETIC PARTS 

Iron losses are generated by the temporal and spatial 
variations in flux density across the distinct ferromagnetic 
regions. These flux density variations create hysteresis and eddy 
currents in materials, which in turn cause losses and then warm 
the materials. A good indication of whether or not a 
ferromagnetic region will generate losses entails drawing the 
flux density evolution at a point of the ferromagnetic part in a 
𝐵𝑟 , 𝐵𝛼  2D plane. This representation leads to observing a locus 
with respect to the flux density evolution. For a specific point of 
a ferromagnetic part, iron losses will increase with the locus 
amplitude and frequency of occurrence. It is thus important to 
analyze the locus of the various ferromagnetic parts of the 
magnetic gear in order to better understand the iron loss 
evolution. The flux density evolution will be analyzed at three 
distinct points shown in Fig. 9, representing the magnetic field 
evolution of the three regions. 

 

Fig. 9. Designation of the three distinct points studied in Section V, 
representing the magnetic field evolution of the three regions 

A. Locus frequency across the various ferromagnetic regions 

The frequencies of locus generation are not the same for the 
internal yoke, the pole pieces and the external yoke. In fact, 
when the magnetic gear is in rotation and when the fixed ring is 
the pole pieces ring, Fig. 10 shows the evolution in radial and 
tangential flux for the three points designated in Fig. 9 (Fig. 10a 

corresponds to the point of the internal yoke, 10b to the point of 
the pole piece, and 10c to the point of the external yoke). 

The frequency of locus generation for the various 
ferromagnetic parts thus depends on the rotational speed and 
pole configuration, as in Equation (16). The internal yoke locus 
frequency is therefore higher than the external yoke locus 
frequency, which in turn is higher than the pole piece locus 
frequency, like in (17). These frequencies must be taken into 
account in the iron loss computation. 

 

(a) 

 

(b) 

 

(c) 

Fig. 10. Evolution in the radial and tangential components of flux density for 
a point on the: a) internal yoke, b) pole piece, and c) external yoke  

displayed in Fig. 9 
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 (16) 

𝐹𝑄 < 𝐹𝑒𝑥𝑡 < 𝐹𝑖𝑛𝑡 (17) 

B. Locus amplitude in the various ferromagnetic regions 

 

(a) 

 

(b) 

 

(c) 

Fig. 11. Spatial variations in flux density at a point of the: a) internal yoke,  

b) pole piece, and c) external yoke (presented in Fig. 9) 

From the curve plotted in Fig. 10, the locus for the various 
points indicated in Fig.9 can be found, as shown in Fig.11 (Fig. 
11a refers to the point in the internal yoke, 11b to the point in 
the middle of a pole piece, and 11c to the point in the external 
yoke). These three loci are representative of the magnetic field 
evolution in these three regions. The spatial variations of flux 
density displayed in Fig. 11 confirm the need to include spatial 
variation in the iron loss computation method. 

Fig. 11 shows that the locus obtained in the pole piece is 
higher than that found in the external yoke. This result comes 
from the fact that pole pieces are subjected to a rotating magnetic 
field, imposed by permanent magnets, as opposed to the yoke 
regions. This figure also reveals that the locus obtained in the 
external yoke is higher than that in the internal yoke due to the 
magnetic field distribution apparently being imposed by the ring 
with a low pole number of permanent magnets (i.e. the internal 
ring). Even though the frequency is greater for the locus with the 
smaller amplitude (16), iron losses in pole pieces will still be 
higher than losses in either the external or internal yoke. 

VI. IRON LOSS COMPUTATION 

The studies in this section have been based on an example 
with a high pole number, as described in Table 2, which 
corresponds to a magnetic gear optimized for wind applications 
similar to that in [4] with the iron loss coefficient proposed in 
[19] for a laminated steel grade M1000-65. 

TABLE I: DATA OF THE MAGNETIC GEAR EXAMPLE IN SECTION VI 

Symbol Quantity Value 

𝑃𝑟𝑎𝑡𝑒𝑑 Rated power transmitted 3.9 MW 

𝑁𝑙 Rated speed of the low-speed rotor 15 rpm 

𝑁ℎ Rated speed of the high-speed rotor 97 rpm 

𝑝𝑖𝑛𝑡 Number of internal ring pole pairs 20 

𝑝𝑒𝑥𝑡 Number of external ring pole pairs 131 

Q Number of ferromagnetic pole pieces 151 

D External diameter 4 m 

𝐿𝑧 Magnetic length 2 m 

δint Internal air gap 5 mm 

δext External air gap 5 mm 

Brem Remanence of the magnets 1.20 T 

µ(𝐼,𝑉) Relative permeability of magnets 1 

µ(𝑋,𝐼𝐼𝐼,𝑉𝐼) Relative permeability of iron 1,000 

𝑘ℎ Hysteresis coefficient 363.78 

𝑘𝑒 Eddy current coefficient 0.167 

𝑘𝑒𝑥 Excess loss coefficient 1.84 

𝛾 Steinmetz coefficient 2 



 

 

 

 

A. Analytical iron loss model 

 
Fig. 12. Locus parameterization for the iron loss evaluation 

To evaluate the iron losses in yokes and pole pieces of the 

magnetic gear, both 𝐵⫽ the major axis of the flux density locus 

and 𝐵⊥ the minor axis of the flux density locus, as defined Fig. 

12, must be determined [16]. It is thus necessary to compute the 

magnetic field distribution using the global analytical model 

presented above (Poisson’s and Laplace’s resolution model 

coupled with the permeance network model) for various 

positions of the magnetic gear, i.e. representative of a magnetic 

cycle. The next step first consists of evaluating the norm of the 

flux (18) everywhere in the ferromagnetic parts: 

‖𝐵(𝑟𝑗 , 𝛼𝑖 , 𝜃)‖

= √
(𝐵𝑟(𝑟𝑗 , 𝛼𝑖 + 𝜃) − 𝐵𝑟 𝑚𝑜𝑦(𝑟𝑗 , 𝛼𝑖))

2

+(𝐵𝛼(𝑟𝑗 , 𝛼𝑖 + 𝜃) − 𝐵𝛼 𝑚𝑜𝑦(𝑟𝑗 , 𝛼𝑖)) ²
 

(18) 

For the various points (𝑟𝑗 , 𝛼𝑖) of the ferromagnetic parts, it 

then becomes possible to evaluate the position of the magnetic 

gear 𝜃𝑖,𝑗
∗  that maximizes the norm of the flux density. The major 

axis angle of the flux density 𝜉𝑖,𝑗 (as defined in Fig. 12) must be 

determined from (19) for points (𝑟𝑗 , 𝛼𝑖) [20]. From this angle, 

𝐵⫽  and 𝐵⊥  are determined from Eq. (20), where 𝛿(𝑟, 𝛼, 𝑡)  is 

defined in Fig. 12 and Eq. (21). 

𝜉𝑖,𝑗 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐵𝑟(𝜃𝑖,𝑗

∗ )

𝐵𝛼(𝜃𝑖,𝑗
∗ )
) (19) 

{
𝐵⫽(𝑟𝑗 , 𝛼𝑖, 𝜃) = ‖𝐵(𝑟𝑗 , 𝛼𝑖, 𝜃)‖. cos(𝛿𝑖,𝑗(𝜃))

𝐵⊥(𝑟𝑗 , 𝛼𝑖 , 𝜃) = ‖𝐵(𝑟𝑗 , 𝛼𝑖 , 𝜃)‖. sin(𝛿𝑖,𝑗(𝜃))
 (20) 

𝛿𝑖,𝑗(𝜃) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐵𝑟(𝑟𝑗 , 𝛼𝑖 + 𝜃)

𝐵𝛼(𝑟𝑗 , 𝛼𝑖 + 𝜃)
) − 𝜉𝑖,𝑗 (21) 

The instantaneous iron loss density 𝑃𝑖𝑟𝑜𝑛  is then determined 

from Eq. (22), where 𝑘ℎ , 𝑘𝑒  and 𝑘𝑒𝑥  are the hysteresis 

coefficient, eddy current coefficient and excess loss coefficient, 

respectively, and 𝛾 the Steinmetz coefficient [21]. In Eq. (18), 𝐹 

corresponds to: 𝐹𝑖𝑛𝑡 for the internal yoke iron loss computation, 

𝐹𝑄  for the pole piece iron loss computation, and 𝐹𝑒𝑥𝑡  for the 

external yoke iron loss computation (defined in (16)). Fig. 13 

shows the evolution in iron losses for the various ferromagnetic 

parts as a function of the internal ring speed when the pole piece 

ring is stationary, for the magnetic gear described in Table I with 

a laminated steel grade M1000-65 (linear properties have been 

assumed). Values obtained at the rated power are provided in 

Table II. This computation is performed three times depending 

on the ferromagnetic region with the adapted periodicity (as 

defined in (16)). For these three periods, the evolution in 

position of the magnetic gear is dissected in 50 positions. For the 

three ferromagnetic regions, the flux density evolution is 

evaluated with both the analytical model and finite element 

model at multiple points (the three ferromagnetic parts are 

dissected at only 20*20 points for a pole periodicity of this 

region). For this magnetic gear, the total of the iron losses 

correspond to 1.9 % of the transmitted power. 

𝑃𝑖𝑟𝑜𝑛(𝑟𝑗 , 𝛼𝑖) = 𝑘ℎ. 𝐹. ((
Δ𝐵⊥
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(22) 

 

Fig. 13. Iron loss evolution in the various ferromagnetic parts as a function of 
internal ring speed when the pole piece ring is stationary, for the magnetic 

gear described in Table I 

TABLE II: IRON LOSSES OBTAINNED FROM THE ANALYTICAL MODEL  

 Losses obtained from the 

analytical model (kW) 

Internal 

yoke 
0.62 

Pole 

pieces 
44.1 

External 

yoke 
31.5 

B. Computation time benefit 

The post-processing computation time is the same for the 
iron loss analytical model and the finite element model. It is a 
negligible part of the global computation time. For both models, 
the major part of the global computation time corresponds to the 
magnetic field repartition resolution for every dissected position 



 

 

 

 

of the magnetic gear. Considering the harmonic selection 
method proposed in [14] for the Laplace’s and Poisson’s 
equations and the permeance network presented above (with a 
pole piece dissected in 20*20 points), the magnetic field 
computation time for only one position is 1.5 seconds for the 
analytical model vs. 300 seconds with the finite element model 
(for the magnetic gear presented in Table I). 

Then, when the position evolution of the magnetic gear is 
dissected in 50 positions, the global computation time necessary 
to evaluate iron loss in the internal and external yokes and in the 
pole pieces is 90 seconds with the analytical model vs. 4 hours 
with the finite element model. The analytical model thus permits 
to divide the computation time by 150. 

VII. CONCLUSION 

This article has focused on a fast analytical model of iron 
losses in the ferromagnetic parts of the magnetic gear (i.e. 
internal yoke, external yoke and pole pieces). The proposed 2D 
magneto-static analytical linear model has been based on a 
resolution of both Laplace’s and Poisson’s equations coupled 
with a permeance network, in order to determine the magnetic 
field distribution in pole pieces. The iron loss model introduced 
in this article [16] takes into account both the temporal and 
spatial variations of flux density.  

For the high-power magnetic gear described in [4] and 
describe in table I, the iron loss has been computed in 90 seconds 
with the analytical model proposed in this article vs. 4 hours if 
the magnetic field is resolved using the finite element model. 

Looking forward, results from this iron loss model must be 
compared to those obtained from a magnetic field resolution 
with a finite element model. A comparison between results 
obtained from the iron loss computation method in considering 
spatial variation and those found without considering spatial 
variation can also be drawn. As a next step, a computation time 
analysis can be conducted in order to reduce the time required 
to compute the losses by varying both the number of points taken 
into consideration in the three regions and the number of 
magnetic gear positions. In the near future, this fast iron loss 
computation model will be integrated into a global mechatronic 
optimization of the magnetic gear. Such an optimization process 
will also include an analytical model of eddy current losses in 
permanent magnets [22]. 
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