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Abstract

Statistical shape analysis plays a key role in various medical imaging applications. In par-
ticular, such methods provide tools for registering, deforming, comparing, averaging, and
modeling anatomical shapes. In this work, we focus on the application of a recent method
for statistical shape analysis of elastic parametrized surfaces to simulation of realistic en-
dometrial tissue shapes. The clinical data used here contains ten magnetic resonance imag-
ing (MRI) endometrial tissue surfaces, which are used to learn a generative shape model.
We generate random samples from this model, and apply elastic semi-synthetic deforma-
tions to the randomly generated tissue shapes. This provides two types of simulated data: (1)
MRI-type (without deformation) and (2) corresponding transvaginal utltrasound (TVUS)
type endometrial tissue shapes, which undergo a deformation due to the transducer’s pres-
sure. The proposed models can be used for validation purposes of automatic, multimodal
image registration techniques, which are crucial steps in diagnosing endometriosis.
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1 Introduction

Endometriosis is a complex gynecological disease in which endometrial cells ap-
pear outside their usual locations in the uterine cavity [1]. The main symptoms de-
pend on the site of active endometriosis and are influenced by hormonal changes.
This disease affects approximately 10% of women in the reproductive age group
and may cause chronic pelvic pain, severe dysmenorrhea, infertility, rectal bleed-
ing and digestive problems. Endometriosis can be found in the pelvic cavity region,
specifically in the pelvic peritoneum and pelvic organs. Currently there is no eti-
ologic cure for endometriosis, but it can be treated in a variety of ways including
pain medication, hormonal treatments, and laparoscopic surgery in severe cases.
An accurate diagnosis must be made to obtain important medical information.
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Fig. 1. An example of constructing a cylindrical surface using MR image slices.

Diagnosis and surgery planning in endometriosis are often improved by analyzing
shapes of organs and tissues. Recent advances in medical imaging offer increas-
ingly detailed information on typical anatomical structures. However, there is a lack
of validation techniques for automatic image registration strategies, especially for
multimodal images. In many medical applications, real data can only be extracted
manually by an expert, and then used to validate image processing algorithms. In-
deed, scarcity of data for evaluation results in restricted studies. In this paper, we
present a new statistical framework to generate realistic data that can be used as
ground truth when dealing with deformability of endometrial cells. Standard meth-
ods to assess an accurate diagnosis use multiple modalities including trans-vaginal
ultrasound (TVUS) and magnetic resonance imaging (MRI). However, some lim-
itations due to non-localized endometrial lesions or its infiltration in other organs
cannot be directly avoided. An interesting solution is to statistically analyze shapes
of real clinical data and provide enough random or simulated samples to validate
the TVUS to MRI registration step; registration of these two modalities is key for
fusing complementary information for diagnostic purposes [2,3].

There are many approaches to generate synthetic data for validation of medical
image processing methods [4,5]. First, one could use physical image phantoms
with known shapes. However, phantoms are limited to specific information with
restricted variability and are very costly if adapted to complex medical cases. Sec-
ond, virtual organs can be simulated using controlled numerical models. These ap-
proaches are usually based on parametric models with good approximations and
computational cost. But, they are limited to controlled deformations governed by
the model. Thus, ignoring the variability of anatomical structures limits the realism
of these simulations. Finally, one can utilize tools from shape analysis to charac-
terize large amounts of natural variability. In this paper, we adopt the square-root
normal field (SRNF) representation [6] of cylindrical surfaces to provide a set of
tools, including parallel transport, exponential map, and geodesics, needed for sta-
tistical analysis of endometrial tissue shapes.

Clinical Data and Contributions: This study was carried out using real data from
ten patients who have small endometrial implants in the pelvic area. For each
patient, MRI was used to examine their pelvic organs. First, MRI slices which
include both the endometrial implant and its neighboring organs were selected
for each patient. MR images used for these experiments had an average size of
400⇥ 400⇥ 5mm3 with a voxel resolution of 0.5⇥ 0.5⇥ 5mm3. Second, the soft
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Fig. 2. Endometrial tissue surface data from [7] reconstructed using the basis B.

tissue organs (i.e. bladder, uterus, ovary, rectum) and the implant were segmented
by an expert. Finally, the endometrial tissue data was represented using a cylin-
drical surface parameterization, which was constructed from a set of 2D MR con-
tours. Additionally, corresponding 2D TVUS images were segmented to provide
deformed endometrial tissue curves. An example of the reconstruction process is
shown in Figure 1. All of the surfaces in our dataset, reconstructed using a basis
defined in the following section, are shown in Figure 2 (the original data is shown
in [7]). There is a lot of variation in this data, and thus, parsimonious shape models
are very important in this application.

Some preliminary results of this study were presented in a recent conference paper
[7]. The novel contributions of the present article are (1) random sampling from a
Gaussian model using the exponential map instead of a linear approximation, and
(2) simulation of semi-synthetically deformed endometrial tissue shapes. The first
contribution is theoretical in nature, although it can also have practical implications.
In particular, we extend the tools proposed in [8] to apply to cylindrical surfaces and
use shooting geodesics to develop random sampling from a Gaussian endometrial
tissue shape model. The second contribution allows for simulation of TVUS-type,
deformed endometrial tissue shapes via parallel transport on the shape space of
cylindrical surfaces. The rest of this paper is organized as follows. In Section 2,
we define a mathematical framework for shape analysis of cylindrical surfaces.
Section 3 describes tools for statistical modeling of endometrial tissue shapes and
a procedure for generating semi-synthetic endometrial tissue deformations. Finally
in Section 4, we close with a brief summary.

2 Mathematical Framework

Let F be the space of all smooth embeddings of a cylinder in R3, where each such
embedding defines a parametrized surface f : S1

⇥ [0, 1] ! R3. Let � be the set of
all boundary-preserving diffeomorphisms of S1

⇥ [0, 1]. For an endometrial tissue
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surface f 2 F , f �� represents its re-parameterization. As shown in previous work,
it is inappropriate to use the L2 metric for statistical shape analysis of parameterized
surfaces, because � does not act on F by isometries [6,9]. Thus, we utilize the
square-root normal field (SRNF) representation of surfaces and the corresponding
Riemannian metric proposed in [6]; additional tools for statistical analysis were
given in [8]. However, most of the previous work was limited to spherical surfaces.
Thus, in the following we provide a summary of these methods and particularize
them to apply to cylindrical endometrial tissue surfaces.

Let s = (u, v) 2 S1
⇥ [0, 1] be a coordinate system on the unit cylinder. Then,

n(s) = @f
@u
(s) ⇥ @f

@v
(s) denotes a normal vector to the surface f at the point f(s).

The SRNF representation of surfaces is defined using a mapping Q : F ! L2

as Q(f)(s) =

n(s)
|n(s)|1/2

. The space of all SRNFs is a subset of L2 and it is en-
dowed with the natural L2 metric. The differential of the map Q, denoted by Q

⇤,f ,
is used to define the corresponding Riemannian metric on F as g

F

(w1, w2) =

gL2
(Q

⇤,f (w1), Q⇤,f (w2)), w1, w2 2 Tf (F) (see [7] for a detailed expression). It is
now easy to verify that the re-parameterization group � acts on F by isometries un-
der the pullback metric g

F

; this property is necessary to define a parameterization-
invariant shape analysis framework. Furthermore, this metric is automatically in-
variant to translation because it is based on partial derivatives of f , w1 and w2 only.
Scaling variability can be removed by rescaling all surfaces to have unit area. With
a slight abuse of notation, we redefine F as the space of all unit area surfaces, which
forms the pre-shape space in our analysis.

In order to define tools for computing parallel transport and geodesics, we must first
define an orthonormal basis on F , B = {b1, b2, . . . }. Any surface can be expressed
with respect to this basis as f(s) =

P
1

k=1 ↵kbk(s). Then f = (↵1,↵2, . . . ) 2 R1

forms an alternative representation of f . We define the orthonormal basis B in
two steps. First, we define two basis sets on S1 and [0, 1] separately as BS1

=

{sin(n1u), 1�cos(n1u), 1|n1 = 1, . . . , N1, u 2 [0, 2⇡]}, and B[0,1] = {sin(2⇡n2v),
1� cos(2⇡n2v), 1� v, v|n2 = 1, . . . , N2, v 2 [0, 1]}. Then, to form the basis set
B we take all products of the elements in B[0,1] and BS1 , and orthonormalize using
Gram-Schmidt under the L2 metric. As a result, we obtain a total of N orthonormal
basis elements; we have truncated this basis to a finite number despite F being an
infinite dimensional space. Figure 2 shows the reconstruction of the original data
using this basis; the surfaces are shown in the same order as in [7].

We are interested in modeling shapes of endometrial tissue surfaces. Thus, we
must also remove the variability in our data due to rotation and re-parameterization.
This is also known as the registration process, where one-to-one correspondence is
determined across two (or multiple) endometrial tissue surfaces. Registration can
be performed in the SRNF space as follows. For a rotation matrix O 2 SO(3)

and a surface f 2 F , the SRNF of the rotated surface Of is Oq. Also, for a re-
parameterization � 2 �, the SRNF of a re-parametrized surface f � � is (q, �) =

(q � �)
q
J� , where J� is the determinant of the Jacobian of �. In order to regis-
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L(F ⇤) = 0.5334

Fig. 3. Example of a geodesic path (and distance) between endometrial tissue surfaces.

ter endometrial tissue surfaces with respect to rotation and re-parameterization, we
first define an equivalence class of an SRNF as [q] = {(Oq, �)|O 2 SO(3), � 2

�}. Each equivalence class represents an endometrial tissue shape uniquely. Then,
the registration problem can be stated as (O⇤, �⇤

) = arginf(O,�)2SO(3)⇥� kq1 �

(Oq2, �)k
2. This optimization problem is solved iteratively. First, one fixes � and

searches for an optimal rotation over SO(3) using Procrustes analysis. Then, given
this rotation, one searches for an optimal re-parameterization over � using a gradi-
ent descent algorithm [6]. In the following, we let f ⇤

2 = O⇤

(f2 � �
⇤

).

To compute geodesics between shapes of endometrial tissue surfaces, we utilize a
tool called parallel transport. We first give a brief summary of what parallel trans-
port accomplishes and refer the reader to [8] for more details. Recall that we have
defined an orthonormal basis, B, for the vector space F . Suppose we are interested
in transporting a deformation vector field v 2 TF (0)(F) along a path F (t) con-
necting two optimally registered surfaces F (0) = f1 and F (1) = f ⇤

2 . Since we
can express F (t) and v as F (t) ⇡

PN
k=1 ↵k(t)bk and v ⇡

PN
k=1 ak(0)bk, we want

to define the vector field Y (t) ⇡

PN
k=1 ak(t)bk along F (t) such that Y (0) = v

and DY
dt

= 0. In other words, we want to obtain a vector field Y (t) that has the
same “direction” and magnitude as the initial vector field Y (0). The coefficients
of this vector satisfy an appropriate differential equation with the initial conditionPN

k=1 ak(0)bk ⇡ Y (0). Next, we describe two procedures for computing geodesic
paths and distances between endometrial tissue surfaces.

Shooting Method (Exponential Map): Given a surface f and a deformation v0,
we can evaluate the exponential map expf (tv0) = F ⇤

(t), t = [0, 1] using m discrete
segments. First, we initialize F ⇤

(0) = f and v(0) = v0. For the ⌧ th segment, given
v( ⌧�1

m
) and F ⇤

(

⌧�1
m

), we first set F ⇤

(

⌧
m
) = F ⇤

(

⌧�1
m

)+

1
m
v( ⌧�1

m
). Then, we compute

the parallel transport of v( ⌧�1
m

) from F ⇤

(

⌧�1
m

) to F ⇤

(

⌧
m
) and denote it by v( ⌧

m
). We

repeat this procedure for ⌧ = 2, . . . ,m. The geodesic distance in this case is given
by the length of the initial deformation vector v0: L(F ⇤

) =

q
g
F

(v0, v0).

Path Straightening: The energy of a path F on the shape space of surfaces is given
by E(F ) =

R 1
0 g

F

(

d
dt
F (t), d

dt
F (t))dt. It is a standard result that the critical points

of E are geodesics. The gradient of E can be computed using parallel transport
as follows. First, compute the vector field u(t) defined as the covariant integral of
d
dt
F along F . Then, rE is defined as the vector field w(t) = u(t) � tu(1)

||

F (t),
where u(1)

||

F (t) is the parallel translation of u(1) to the point F (t). Once we have
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Fig. 4. Top: Two main directions of variation in the given data displayed as a path from �1
standard deviation (blue) to +1 standard deviation (red) around the Karcher mean (green).
Bottom: Principal direction deformation vector fields (left) and their point-wise magnitudes
(right) for the three principal directions of variation in the given data.

the gradient rE = w, the path F can be updated as F (t) = F (t) � ✏rE,
where ✏ > 0 and small. This is done until convergence resulting in the geodesic
path F ⇤. The geodesic distance is given by the length of this path: L(F ⇤

) =

R 1
0

q
g
F

(

d
dt
F ⇤

(t), d
dt
F ⇤

(t))dt. In Figure 3, we show an example of a geodesic be-
tween endometrial tissue shapes computed using path-straightening.

3 Statistical Shape Model of Endometrial Tissue Shapes

We begin by defining an intrinsic mean shape under the proposed metric, called the
Karcher mean. Let {f1, f2, . . . , fn} 2 F denote a sample of endometrial tissue sur-
faces. Also, let F ⇤

i denote a geodesic path between a surface f and a surface f ⇤

i that
was optimally registered to f . This geodesic is computed using path-straightening.
Then, the sample Karcher mean is given by ¯f = argminf2F

Pn
i=1 L(F

⇤

i )
2, where

F ⇤

i (0) = f and F ⇤

i (1) = f ⇤

i . A gradient-based approach for finding the Karcher
mean is given in [10].

Once the sample Karcher mean has been computed, the evaluation of the Karcher
covariance, which captures the observed variability around the mean, is performed
as follows. First, we optimally register all surfaces in the sample to ¯f , resulting
in {f ⇤

1 , . . . , f
⇤

n}. Next, we find the shooting vectors {⌫1, . . . , ⌫n} from ¯f to each
surface in {f ⇤

1 , . . . , f
⇤

n}. We perform principal component analysis (PCA), using
Gram-Schmidt under g

F

, to generate an orthonormal basis {Bj|j = 1, . . . , k},
k  n, of the observed {⌫i}. We project each ⌫i onto B using ⌫i ⇡

Pk
j=1 ci,jBj ,

where ci,j = g
F

(⌫i, Bj). Now, each original surface can be represented using
ci = {ci,j}. Then, K =

1
n�1

Pn
i=1 cic

T
i 2 Rk⇥k and the singular value decom-

position of K can be used to determine the principal directions of variation in the
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(a) (b) (c) (a) (b) (c)

Fig. 5. (a) Randomly sampled shape from the Gaussian model resembling MRI data. (b)
Random sample after additional deformation resembling TVUS data. (c) Deformation ap-
plied to the random sample displayed on a perfect cylinder.

given data. If u 2 Rk corresponds to a principal singular vector of K, then the
corresponding shooting vector is given by

Pk
j=1 ujBj; this vector is mapped to a

surface f using the exponential map. In Figure 4 (top), we display the path traced
by following the two main directions of variation from �1 standard deviation (blue)
to +1 standard deviation (red) around the Karcher mean (green). First, note that the
computed mean is a nice representative of the real data. The observed endometrial
tissue surfaces have local convex and concave structures and the Karcher mean is of
similar structure. Second, these paths provide a natural set of representative defor-
mations present in our data and an efficient summary of observed variability. Figure
4 (bottom) provides a different visualization of the first three principal directions of
variation. The left panel provides the deformation vector fields on the mean surface
corresponding to each positive principal direction. The right panel is a visualization
of the pointwise magnitude of this vector field. This allows for easy identification
of areas undergoing highest amounts of deformation.

We validate our model using random sampling. For this purpose, we utilize the
Gaussian distribution defined in the tangent space at the mean endometrial tissue
surface. A random tangent vector can be generated using v =

Pk
j=1 zj

q
SjjujBj ,

where zj
iid
⇠ N(0, 1), Sjj is the variance of the jth principal component, uj is
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Fig. 6. Principal component analysis (left) and multidimensional scaling (right) based eval-
uation of generality and specificity of the proposed shape model for non-deformed (MRI)
and deformed (TVUS) endometrial tissue shapes. (Simulated data=blue; Real data=red)

the corresponding principal singular vector and Bj is a basis element. One can
then obtain a sample from the Gaussian distribution using the exponential map
frand = expf̄ (v). To simulate semi-synthetic deformations of the simulated elastic
endometrial tissues, we first define a diffusion model with ten degrees of defor-
mation on the Karcher mean; each deformation describes density dynamics in soft
tissue undergoing diffusion. We parallel transport the semi-synthetic deformation
vectors from the Karcher mean to each of the random samples generated by our sta-
tistical shape model. We then shoot a geodesic path in that direction to obtain the
deformed random sample. As a consequence, the surfaces can be deformed in very
complicated manners with varying magnitudes. A random point on the Karcher
mean surface is selected as the center of the deformation, since the TVUS probe
can move freely in any direction. Then, the deformation vector field on the rest
of the surface is obtained by obeying the same boundary and initial conditions to
share common spatial and temporal evolutions; these comprehensive deformations
are learned to simulate tissue deformation and probe orientation. In Figure 5(a)
we display ten examples of randomly sampled endometrial tissue shapes from the
proposed Gaussian model. We also show a deformed version of these random sam-
ples in (b) based on the semi-synthetic deformations described above and displayed
in panel (c) as a deformed cylinder. The generated random samples and their de-
formed versions naturally resemble the given data, which is a desirable property of
our model. This visual evaluation was performed on 99 random samples.

Model Evaluation: Specificity, generality and compactness are three common eval-
uation criteria of a shape model. Compactness refers to the amount of variance in
the shape model. While we do not compare the proposed model to any other meth-
ods in current literature, we point out that our model is guaranteed to be compact
due to its invariance to re-parameterization. This idea was shown for curves and sur-
faces in [9,11]. Specificity refers to the ability of a shape model to represent only
valid shapes, while generality quantifies the ability of the model to describe unseen
shapes. Because there is a clear trade-off between these two measures, one would
ideally like to strike a balance between them. In order to evaluate the proposed
endometrial tissue shape models we utilize the statistical framework for analyzing
shapes of curves proposed in [12]. We use curves rather than surfaces for the eval-
uation because the only real data available for the TVUS deformed endometrial

8



tissues are manually segmented 2D curves. Thus, we first extract a random level
curve in proximity to the center of the applied deformation from each simulated,
deformed endometrial tissue shape. For consistency, we evaluate the non-deformed
shapes in the same manner. In this case, we also extract a random level curve from
the given MRI data. After these steps, we have 99 MRI-type and TVUS-type curves
coming from the simulated endometrial tissues and 10 MRI-type and TVUS-type
curves coming from real data. We then use the framework in [12] to perform the
evaluation separately for the MRI and TVUS shape models. First, we estimate the
mean and covariance structure for the simulated data. We perform PCA and retain
the two principal directions of variation. Then, we project the simulated data and
the real data onto these two directions, resulting in a two-dimensional plot shown
in Figure 6 (left). Note that we could have also estimated the principal directions
of variation using the real data, but due to the very small number of observations
we decided to use the simulated data instead. It is clear from this plot that both
shape models do a fairly good job at exploring the entire shape space of endome-
trial tissues satisfying generality. It is also clear that we do not stray very far from
the real data, which is related to specificity. As a second step, we compute the pair-
wise distance matrix after combining the simulated and real data. Then, we perform
multidimensional scaling (MDS) to visualize the similarity in the entire dataset. We
display the result as a two-dimensional plot in Figure 6 (right). As in the PCA re-
sults, we see evidence that our shape model is both specific and general.

We also sought evaluation from a radiologist with expertise in gynecology. Here,
the radiologist only evaluated the non-deformed (MRI) endometrial tissue shape
model. We first presented the radiologist with geodesic paths from the estimated
Karcher mean to each of the ten given observations; this provided an idea of shape
deformations generated via our model. Next, the radiologist examined 50 randomly
sampled shapes from the proposed Gaussian model. He was then asked to provide
ten scores (one for each original observation; 1=bad, 2=acceptable, 3=good, 4=very
good), based on the plausibility of the geodesic deformation, and how well the orig-
inal data is represented in the generated random samples. The three main criteria
considered by the radiologist, which are closely related to the generality and speci-
ficity of the model, were the consistency of the global shape based on his general
experience and on the given data, the deformability of the tissues, and the deforma-
tion/distance from the Karcher mean. The scores provided by the radiologist were
one 2, three 3s, and six 4s (mean=3.5, variance=0.5), which support our claim that
the proposed generative model produces valid endometrial tissue shape samples.

4 Summary

We have defined a statistical shape model of deformable, elastic endometrial tis-
sue shapes. The proposed model efficiently captures variability in the given clinical
data and produces natural random samples resembling MRI endometrial tissues.
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The described methodology allows for registration, deformation and efficient sta-
tistical modeling of endometrial tissue shapes. We utilize an additional elastic de-
formation model and parallel transport to generate deformed endometrial tissues
as would be observed in TVUS images. The proposed framework can be used in
simulation studies where a large number of observations is needed to validate au-
tomatic, multimodal image registration techniques. In our future work, we plan on
utilizing this model for such validation.
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