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Abstract—This article deals with the optimization of a full 

magnetic indirect drive (FMID) with magnetic gears which 

uses an analytical model based on subdomain resolution of 

Laplace’s and Poisson’s equations of the magnetic gear. A 

bi-objective analytical optimization is performed with a 

PSO algorithm with a minimization of the mass of the 

magnetic parts and a maximization of the gear ratio. This 

intermediate optimization is a step to optimize a 6MW 

FMID for a offshore wind turbine with one or two magnetic 

gears stages. It also compares FMID magnetic parts masses 

with a direct drive conversion chain with the same 

generator topology (hybrid excitation synchronous 

generator). 

Keywords— magnetic gear; conversion chain; full 

magnetic indirect drive (FMID); optimization; 
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I. NOMENCLATURE 

𝐴(𝑘) : Magnetic vector potential of the region k 

𝐵𝑟
(𝑘)

 : Radial flux density in the region k [T] 

𝐵𝛼
(𝑘)

 : Tangential flux density in the region k [T] 

𝐶𝑓: Cogging torque factor 

𝐷𝑀𝐺  : Magnetic diameter of the magnetic gear [m] 

𝐷𝑆𝐺  : Magnetic diameter of the synchronous generator 

[m] 

FMID: Full magnetic indirect drive 

𝐺 : Gear ratio 

𝐺 𝑖 : Gear ratio of the stage i of the FMID 

𝐺𝐹𝑀𝐼𝐷−𝑖 𝑆 : Global gear ratio of the FMID with i stages 

𝑘 : Index of the magnetic gear region 

𝐿𝑀𝐺  : Magnetic length of the magnetic gear [m] 

𝐿𝑆𝐺  : Magnetic length of the synchronous generator [m] 

𝑀𝐹𝑀𝐼𝐷−𝑖 𝑆 : Mass of the FMID with i stages [kg] 

𝑀𝑆𝐺  : Mass of the synchronous generator [kg] 

𝑁 : Number of harmonics taken into account in the other 

regions (region X, I, II, IV, V and VI) 

𝑁𝑄  : Number of harmonics taken into account in the air 

space between pole pieces (region III) 

𝑝𝑖𝑛𝑡  : Number of internal ring pole pairs 

𝑝𝑒𝑥𝑡  : Number of external ring pole pairs 

𝑄 : Number of ferromagnetic pole pieces 

𝑟 : Radius cylindrical coordinate [m] 

𝑅𝑀
(𝑘)

 : External radius of the region k [m] 

𝑅𝑚
(𝑘)

 : Internal radius of the region k [m] 

𝑇(𝑘) : Torque computed in the region k [Nm] 

𝑇𝑆𝐺  : Torque of the synchronous generator [Nm] 

𝑇𝑟𝑎𝑡𝑒𝑑  : Rated torque of the wind turbine [Nm] 

𝛼 : Angular cylindrical coordinate [rad] 

𝜎𝑡: Tangential stress of the generator [N/m²] 

ξ: Filling factor of the synchronous generator (0< ξ <1) 

µ(𝑘): Relative permeability of region k 

𝜔𝑖𝑛𝑡/0: Rotational speed of the internal ring [rad/s] 

𝜔𝑒𝑥𝑡/0: Rotational speed of the external ring [rad/s] 

𝜔𝑄/0: Rotational speed of the pole piece ring [rad/s] 

II. INTRODUCTION 

For multi-megawatt wind turbines, mechanical 

gearboxes are frequently used in indirect drive; this 

design allows to obtain a lower cost of investment and a 

lower weight compared to direct drive designs [1]. 

However, failures of mechanical gearboxes, induced 

production interruptions and operating costs are higher 

than in direct drive design [2]-[3]. 

In this paper, we investigate an intermediate solution i.e 

a combination of a hybrid excitation synchronous generator 

with one or two magnetic gears stages. We call it full 



magnetic indirect drive (FMID) [4]-[5]. The most attractive 

magnetic gears topology has been proposed by Martin [6] 

and was the subject of different studies proposed by Atallah 

[7]-[8] and others [9]-[10]. This magnetic gear can be 

integrated in a one or two stages of FMID like Fig.1. This 

architecture includes a rapid rotor with permanent magnets 

(internal permanent magnets ring), a slow rotor with 

ferromagnetic pole pieces and a fixed permanent magnets 

ring (external permanent magnets ring) for each stage of 

magnetic gear, as shown in the Fig.2. A hybrid excitation 

synchronous generator developed by Jeumont Electric [11]-

[12] is integrated in the conversion chain after the last stage 

of gear (Fig.1). This topology potentially offers high 

performance and must be strongly optimized to give a hope 

of competitiveness compared to indirect drive with 

mechanical gears and even for high torque applications 

(offshore wind turbine for instance) [13]. 

 
Fig. 1: Functional scheme of magnetic Indirect Drive (MID) 

conversion chain with (a) one stage of magnetic gear, (b) two magnetic 

gear stages. 

Some magnetic gear drive optimization work has 

already been done on the magnetic parts masses of the 

magnetic gear [14]-[15]. However, to our knowledge, no 

work has been conducted on the optimization of drive chain 

with two magnetic gears stages, including the generator. 

The major contribution of this work is the implementation 

of a second objective function (the gear ratio) which permit 

to optimize a two stages FMID (Fig. 1b) with analytical 

model and compared with a single stage FMID (Fig. 1a) 

optimized solution and a direct drive hybrid excitation 

synchronous generator design. 

III. DESCRIPTION OF THE MAGNETIC GEAR 

The one stage magnetic gear topology [6] is composed 

of three rings : 

 An internal ring with 𝑝𝑖𝑛𝑡 pole pairs of permanent 

magnets with a ferromagnetic yoke, 

 An external ring with 𝑝𝑒𝑥𝑡 pole pairs of permanent 

magnets with a ferromagnetic yoke, 

 A ring with Q ferromagnetic poles between both 

permanent magnets ring,(an example is given in 

Fig. 2 with low pole numbers, to improve 

readability: 𝑝𝑖𝑛𝑡 = 2, 𝑝𝑒𝑥𝑡 = 7 and 𝑄 = 9). 

 

FigG.2. Magnetic gear architecture proposed by [6] in an exploded 

drawing with low pole numbers (in this example: 𝑝𝑖𝑛𝑡 = 2, 𝑝𝑒𝑥𝑡 = 7 

and 𝑄 = 9). 

Each permanent magnets ring generates in air gaps a 

wave of magnetomotive force. Ring with ferromagnetic 

pole pieces aims to modulate the magnetic field in the two 

air gaps to obtain common harmonics. The result is a 

magnetic torque with an average different from zero and 

a transmission of power with a synchronism between 

fundamental magnetic field frequencies in both air gaps. 



To achieve this power transmission, the pole numbers of 

the three rings must respect equation (1). Then, it is 

possible to define the ratio 𝜆 (2) and the Willis relation for 

a magnetic gear (3) like a planetary gear [16] where 

𝜔𝑖𝑛𝑡/0, 𝜔𝑒𝑥𝑡/0 and 𝜔𝑄/0 are the speed rotation of the 

internal ring, the external ring and the pole pieces ring 

respectively. Depending on the fixed ring, the gear ratio 

𝐺 is given by (4). In this article, only the case where the 

external permanent magnet ring is fixed is studied 

because this case maximizes the gear ratio and then 

minimizes the output torque. 

𝑝𝑖𝑛𝑡 + 𝑝𝑒𝑥𝑡 =  𝑄 (1) 

𝜆 =
𝜔𝑖𝑛𝑡/0 −𝜔𝑄/0

𝜔𝑒𝑥𝑡/0 −𝜔𝑄/0
= −

𝑝𝑒𝑥𝑡
𝑝𝑖𝑛𝑡

 (2) 

𝜔𝑖𝑛𝑡/0 − 𝜆.𝜔𝑒𝑥𝑡/0 + (𝜆 − 1). 𝜔𝑄/0 = 0 (3) 

{
  
 

  
 𝜔𝑖𝑛𝑡/0 = 0 → 𝐺 =

𝜔𝑒𝑥𝑡/0

𝜔𝑄/0
=
(𝜆 − 1)

𝜆

𝜔𝑄/0 = 0 → 𝐺 =
𝜔𝑖𝑛𝑡/0

𝜔𝑒𝑥𝑡/0
= 𝜆

𝜔𝑒𝑥𝑡/0 = 0 → 𝐺 =
𝜔𝑖𝑛𝑡/0

𝜔𝑄/0
= −(𝜆 − 1)

 (4) 

To minimize the torque ripple, a cogging torque factor 

𝐶𝑓 has been defined by [8] which represents the number 

of symmetries of the system (5). It is then possible to 

impose the relation 𝐶𝑓 = 1 to ensure the minimum of 

torque ripple where 𝑁𝑐  ( 2. 𝑝𝑖𝑛𝑡  , 𝑄) is the smallest 

common multiple between 2. 𝑝𝑖𝑛𝑡 and 𝑄. This relation 

also minimizes the number of magnetic symmetries. 

𝐶𝑓 =
2. 𝑝𝑖𝑛𝑡 . 𝑄

𝑁𝑐  ( 2. 𝑝𝑖𝑛𝑡  , 𝑄)
 (5) 

IV. MAGNETOSTATIC ANALYTICAL MODEL OF THE 

MAGNETIC GEAR 

To evaluate the magnetic torque, it is first necessary to 

determine the magnetic field distribution in the different 

regions of the system, presented in Fig. 3. To compute it, 

a 2-D magneto static model, developed by [17] without 

any magnetic field computation in yokes and by [18] with 

magnetic field computation in yokes, is used with radial 

magnetization of magnets, constant remanence of the 

magnets and a constant relative permeability for all 

materials. This analytical model requires to solve 

Poisson’s and Laplace’s equation (6) in the k region of the 

system [19] (yokes region, permanent magnet region, air 

gap region and each air space between pole pieces) where 

𝐴(𝑘) and 𝑀(𝑘) are the magnetic vector potential and the 

radial magnetization distribution respectively, 𝑟 and 𝛼 are 

the cylindrical coordinates. 

 

Fig.3. Magnetic gear parametrization of the different regions (in this 

example: 𝑝𝑖𝑛𝑡 = 2, 𝑝𝑒𝑥𝑡 = 7 and 𝑄 = 9). 

𝛥𝐴(𝑘) = {−
1

𝑟

𝜕𝑀(𝑘)

𝜕𝛼
0

 (6) 

For Poisson’s and Laplace’s equations, a general 

solution (7) can be found in the 𝑘 region of the system by 

using the method of the separation of variable [20] 

where 𝑋0
(𝑘)

, 𝑌0
(𝑘)

, 𝐶𝑛
(𝑘)

, 𝐷𝑛
(𝑘)

, 𝐾𝑛
(𝑘)

, 𝐸𝑛
(𝑘)
 are constants of 

integration, 𝑎𝑛
(𝑘)

 and 𝑏𝑛
(𝑘)
 are the general solution of the 

Poisson’s equation and 𝑅𝑀
(𝑘)
= 𝑅𝑚

(𝑘+1)
 in agreement with 

Fig. 3. For region III, the expression is different due to 

boundary conditions (based on an infinite relative 

permeability of pole pieces). The analytical solution is then 

(8), where 𝛽 is the slot opening angle and 𝛼𝑞  is described 

in (9) with 1 < q <𝑄. 

𝐴(𝑘)(𝑟, 𝛼, 𝜃(𝑘)) =𝑋0
(𝑘)
+𝑌0

(𝑘)
 𝑙𝑛 (

𝑟

𝑅𝑀
(𝑘)
) 

+∑(𝐶𝑛
(𝑘) (

𝑟

𝑅𝑀
(𝑘)
)

𝑛

+ 𝐷𝑛
(𝑘) (

𝑟

𝑅𝑚
(𝑘)
)

−𝑛

+ 𝑎𝑛
(𝑘))

𝑁

𝑛≥1

cos(𝑛. 𝛼) 

+∑(𝐾𝑛
(𝑘)
(
𝑟

𝑅𝑀
(𝑘)
)

𝑛

+ 𝐸𝑛
(𝑘)
(
𝑟

𝑅𝑚
(𝑘)
)

−𝑛

+ 𝑏𝑛
(𝑘)
)

𝑁

𝑛≥1

sin(𝑛. 𝛼) 

 

 

(7) 



𝐴(𝐼𝐼𝐼,𝑞)(𝑟, 𝛼) =𝑋0
(𝐼𝐼𝐼,𝑞)

+𝑌0
(𝐼𝐼𝐼,𝑞)

 𝑙𝑛 (
𝑟

𝑅𝑀
(𝐼𝐼𝐼,𝑞)

) 

 +∑ (𝐶𝑚
(𝐼𝐼𝐼,𝑞)

(
𝑟

𝑅𝑀
(𝐼𝐼𝐼,𝑞)

)

𝑚
𝜋
𝛽

+ 𝐷𝑚
(𝐼𝐼𝐼,𝑞)

(
𝑟

𝑅𝑚
(𝐼𝐼𝐼,𝑞)

)

−𝑚
𝜋
𝛽

)

𝑁𝑄

𝑚≥1

 

. cos (𝑚
𝜋

𝛽
(𝛼 − 𝛼𝑞)) 

(8) 

𝛼𝑞 = −
𝛽

2
+
2. 𝑞. 𝜋

𝑄
 (9) 

For the various problem boundaries, conditions should 

be given by the equations presented in (10). From these 

boundary conditions, it is possible to obtain a matrix system 

of equations Z where the constants of integration presented 

in (7)-(8) are the unknowns of the problem. The dimension 

of the matrix Z presented in (11) is dependent of 𝑁𝑄  the 

number of harmonics taken into account in the air space 

between pole pieces (region III), 𝑄 the number of pole 

pieces and 𝑁 the number of harmonics taken into account 

in the other regions (region X, I, II, IV, V and VI) [18]. This 

matrix must be inverted to determine the magnetic field 

distribution. 

{
 
 
 
 
 

 
 
 
 
 𝑟 = 𝑅𝑚

(𝑋)
, 𝑅𝑀

(𝑉𝐼)
→ 𝐴(𝑘) = 0

{
𝑟 = 𝑅𝑀

(𝐼𝐼)
, 𝑅𝑚

(𝐼𝑉)

∀ 𝛼 ∈ [𝛼𝑞 + 𝛽, 𝛼𝑞+1]
→
𝜕𝐴(𝑘)

𝜕𝑟
= 0

{
𝛼 = 𝛼𝑞 , 𝛼𝑞 + 𝛽

∀ 𝑟 ∈ [𝑅𝑚
(𝐼𝐼𝐼), 𝑅𝑀

(𝐼𝐼𝐼)
]
→
𝜕𝐴(𝐼𝐼𝐼,𝑞)

𝜕𝛼
= 0

𝑘 = 𝑋…𝑉 →
𝜕𝐴(𝑘)

. 𝜕𝑟
|
𝑟=𝑅𝑀

(𝑘)
=
𝜕𝐴(𝑘+1)

𝜕𝑟
|
𝑟=𝑅𝑚

(𝑘+1)

𝑘 = 𝐼 …𝑉𝐼 → 𝐴(𝑘)|
𝑟=𝑅𝑚

(𝑘) = 𝐴(𝑘−1)|
𝑟=𝑅𝑀

(𝑘−1)

 (10) 

𝐷𝑖𝑚 (𝑍) =(20𝑁 + (2𝑁𝑄 + 2)𝑄)² (11) 

When the magnetic potential vector is determined in 

several subdomains of the magnetic gear, it is possible to 

draw the magnetic flux line distribution as shown in Fig.4. 

The magnetic torque can be computed with (12) where the 

radius 𝑅𝑚
(𝑘)

< R <𝑅𝑀
(𝑘)
 , 𝐵𝑟

(𝑘)
 is the radial flux, 𝐵𝛼

(𝑘)
 is the 

tangential flux (13). Comparison can then be drawn 

between the magnetic torque of the internal and external 

rings obtained with the analytical model and finite element 

model with a rotation of the internal ring while keeping the 

pole-piece ring and the external ring fixed (Fig.5). 

𝑇(𝑘) = 
𝐿𝑧. 𝑅

2

µ0
∑∫ 𝐵𝑟

(𝑘)
(𝑅, 𝛼). 𝐵𝛼

(𝑘)
(𝑅, 𝛼) 𝑑𝛼

2𝜋

0𝑛≥1

 (12) 

{
 

 𝐵𝑟
(𝑘)

=
1

𝑟

𝜕𝐴(𝑘)

𝜕𝛼

𝐵𝛼
(𝑘)
= −

𝜕𝐴(𝑘)

𝜕𝑟

 
(13) 

 

Fig. 4: 2-D representation of the magnetic flux line distribution in a 

magnetic gear obtained with the magnetostatic analytical model [18]. 

In this example: 𝑝𝑖𝑛𝑡 = 2, 𝑝𝑒𝑥𝑡 = 7 and 𝑄 = 9 (flux line distribution is 

not represented in pole pieces because the analytical model does not 

permit to compute the magnetic vector potential in these regions). 

 
Fig.5: Magnetic torque evolution using an analytical model and a finite 

element model with a rotation of the internal ring while keeping the 

pole-piece ring and the external ring fixed for a magnetic gear with 

𝑝𝑖𝑛𝑡 = 2, 𝑝𝑒𝑥𝑡 = 7 and 𝑄 = 9. 



For high power application like wind turbines (on the 

order of the MW), magnetic gears have high pole number 

which increases the dimension of the matrix Z (11) and 

then the computation time. To reduce the computation 

time, [18], an harmonics selection method is proposed. It 

permits to build the matrix system of the analytical model 

𝑍 only with harmonics which generate magnetic fields. 

The number of harmonics taken into account is  𝑁𝑄 = 5 

and 𝑁 = 3. 𝑝𝑒𝑥𝑡. With these values, the computation time 

of the torque is equal to 0.4 sec with an error lower than 

1% for high pole number magnetic gears and it can be 

done for only one position. 

V. PRELIMINARY BI-OBJECTIVE OPTIMIZATION OF MAIN 

GEOMETRIC PARAMETERS OF MAGNETIC GEAR 

A. Objective functions 

The objective functions of the preliminary bi-objective 

optimization (14) are to minimize the magnetic gear 

masses with the objective function 𝐶1 and to minimize the 

opposite of the gear ratio with the objective function 𝐶2    

(which correspond to maximize the gear ratio). The 

different parts which are considered for the calculation of 

the mass are the yokes of the internal and external rings, 

permanent magnets of the internal and external rings and 

the pole pieces. Material properties of this different parts 

are defined in Table 2 (pole pieces and yokes are in the 

same ferromagnetic steel). 

{

𝐶1 = 𝜌𝑃𝑀 . 𝑉𝑃𝑀 + 𝜌𝑠. 𝑉𝑠

𝐶2 = −
𝑛𝑠
𝑝𝑖𝑛𝑡

 (14) 

TABLE 2: MATERIAL PHYSICAL PROPERTIES 

Symbol Quantity Value 

N38SH Permanent magnet designation  - 

Br Remanence of the magnets 1.26 T 

𝜌𝑃𝑀  Density of permanent magnets 7,500 kg/m3 

M400-65 Ferromagnetic steel designation - 

𝜌𝑠 Density of the ferromagnetic steel 7,800 kg/m3 

B. Geometric parameters 

The optimization is composed of seven parameters: 

yoke thicknesses, permanent magnet thicknesses, 

ferromagnetic pole thicknesses and pole pair number of 

the permanent magnet rings. For the optimization step, it 

is necessary to define a value range for all geometric 

parameters (see Table 3 below). 

TABLE 3: VALUE RANGE OF THE GEOMETRIC PARAMETERS 

Symbol Quantity Minimum 

value 

Maximum 

value 

𝑝𝑖𝑛𝑡 Number of internal ring pole 

pairs 

5 100 

𝑝𝑒𝑥𝑡 Number of external ring pole 

pairs 

50 200 

𝑒𝑦𝑜𝑘𝑒 𝑖𝑛𝑡  Radial thickness of the 

internal ring yoke 

20 mm 400 mm 

𝑒𝑦𝑜𝑘𝑒 𝑒𝑥𝑡  Radial thickness of the 

external ring yoke 

20 mm 400 mm 

𝑒𝑃𝑀 𝑖𝑛𝑡  Radial thickness of the 

internal ring permanent 

magnets 

20 mm 200 mm 

𝑒𝑃𝑀 𝑒𝑥𝑡  Radial thickness of the 

external ring permanent 

magnets 

20 mm 200 mm 

𝑒𝑠  Radial thickness of 

ferromagnetic pole pieces 

20 mm 200 mm 

C. Constraints 

The magnetic gear is optimized to be integrated in a 

wind turbine conversion chain 6 MW, 12.5 rpm with one 

or two magnetic gear stages. Some magnetic gear 

dimensions were imposed by the wind turbine, whereas 

other dimensions, like the air gap length, were imposed 

by assembly feasibility constraints. All fixed magnetic 

gear dimensions are listed in Table 4. 

TABLE 4: DATA AND CONSTRAINTS ASSOCIATED WITH THE 

WIND TURBINE CONVERSION CHAIN 

Symbol Quantity Value 

𝑃𝑟𝑎𝑡𝑒𝑑  Rated power 6 MW 

𝑁𝑟𝑎𝑡𝑒𝑑  Rated speed of the turbine 12.5 rpm 

𝑇𝑟𝑎𝑡𝑒𝑑  Rated torque 4.6 MNm 

TG Maximum magnetic gear torque 5.1 MNm 

DGM Magnetic parts external diameter 5.5 m 

δint Length of radial internal airgap 5 mm 

δext Length of radial external airgap 5 mm 

Considering that the analytical model contains linear 

material properties, it is necessary to impose a maximal 

tolerated induction in yokes. Then, a maximal induction 

of 1.5 T is fixed in yokes. 

D. Procedure of optimization 

Fig. 6 describes the bi-objective optimization 

procedure. To begin, an initial set of parameters is 

computed, then the magnetostatic 2D analytical 

computation is conducted. This analysis provides the 

magnetic torque per unit length. Next, the magnetic part 

length 𝐿𝑧 is assumed to transmit a torque of 1 MNm. This 

value has been chosen to normalize the problem in order 

to achieve the two stages conversion chain problem. The 

magnetic part masses of the magnetic gear is then 

determined in kg/MNm. The objective functions and 



inductions constraints are evaluated for this pair of 

parameters. 

To complete this optimization procedure, a Particle 

Swarm Optimization (PSO) algorithm was used, as 

described in [21] and [22]. PSO is a stochastic search and 

optimization algorithm, in which the trajectory of each 

particle (parameter) is adjusted towards its own best 

position, and the overall best position is calculated using 

neighbors as well as the whole swarm [23]. This 

algorithm then chooses different parameter sets in order 

to minimize the objective function until the maximum 

iteration number has been reached. The optimal solution 

minimizes the objective functions while respecting the 

induction constraints. This optimization is performed 

with 400 particles and 200 iterations. 

 
Fig. 6 Procedure of the optimization algorithm with the PSO 

(Particle Swarm Optimization) method. 

E. Result of the preliminary optimization 

Fig. 7 shows the front of Pareto of the PSO bi-

objective optimization with the objective function (14). 

From this optimization, it is possible to fit a curve passing 

through the front of Pareto which is a three-order function 

𝑃𝑎𝑟𝑒𝑡𝑜(𝐺) in Tons/MNm (15) visible Fig.7 with a=-0.41, 

b=20.9, c=247 and d=1790 with 95 % confidence bounds. 
This result will be used to optimize the gear ratio of a 6 

MW, 12.5 rpm conversion chain with one or two magnetic 

gear stages and a hybrid excitation synchronous generator 

(Jeumont Electric). Considering 𝐺1 the gear ratio of the 

first stage of magnetic gear and 𝐺2 the gear ratio of the 

second stage of magnetic gear, the global gear ratio of a 

FMID with one stage of magnetic gear 𝐺𝐹𝑀𝐼𝐷−1𝑆 is given 

by (16) and the global gear ratio of a FMID with two 

magnetic gear stages 𝐺𝐹𝑀𝐼𝐷−2𝑆 is given by (17). A 

comparison can then be done with a direct drive design 

which contains the same topology of hybrid excitation 

synchronous generator. 

𝑃𝑎𝑟𝑒𝑡𝑜(𝐺) = a. 𝐺3 + b. 𝐺2 + c.𝐺 + d (15) 

𝐺𝐹𝑀𝐼𝐷−1𝑆 = 𝐺1 (16) 

𝐺𝐹𝑀𝐼𝐷−2𝑆 = 𝐺1. 𝐺2 (17) 

 

Fig. 7 Front of Pareto of the PSO bi-objective optimization with its 

order function three fitted curve for only one stage of magnetic gear 

and a constant external diameter. 

VI.  CONVERSION CHAINS OPTIMIZATION 

A. Hybrid excitation synchronous generator 

consideration 

 

To evaluate the conversion chain active masses of a 

full magnetic indirect drive (FMID), it is necessary to 

integrate a model of the active part masses of the 

generator. The generator studied in this article is a hybrid 

excitation synchronous generator developed by Jeumont 

Electric [11]-[12]. Considering the conversion chain 

presented in Table 4, the input torque of the generator 𝑇𝑆𝐺 

depend on the gear ratio of the FMID 𝐺𝐹𝑀𝐼𝐷−𝑖 𝑆 with 𝑖 
stages (𝑖 = 1 or 2) (18). To determine the mass of this 

generator, it is considered that the torque 𝑇𝑆𝐺  of the 

generator is a function of the external diameter 𝐷𝑆𝐺 and 

the length 𝐿𝑆𝐺  of the generator with a constant tangential 

stress 𝜎𝑡 = 5.104 N/m² (19). 



𝑇𝑆𝐺  =
𝑇𝑟𝑎𝑡𝑒𝑑
𝐺𝐹𝑀𝐼𝐷−𝑖 𝑆

 (18) 

𝑇𝑆𝐺  = 𝜎𝑡. 2𝜋
𝐷𝑆𝐺²

4
𝐿𝑆𝐺 (19) 

For an external diameter of the generator 𝐷𝑆𝐺 equal to 

the external diameter of the magnetic gear, (19) permits 

to impose the length of the synchronous generator 

(because the torque of the generator is imposed by the 

relation (18)) as shown in (20). From a generator active 

length equal to 0.2 m (for high global gear ratio), the 

length of the generator is fixed equal to 0.2 m and the 

external diameter of the generator is determined from (19) 

as shown in (21). 

{

𝐷𝑆𝐺 = 𝐷𝐺𝑀

𝐿𝑆𝐺 =
𝑇𝑆𝐺

𝜎𝑡. 2𝜋
𝐷𝑆𝐺²
4

 (20) 

{

𝐿𝑆𝐺 = 0.2 m

𝐷𝑆𝐺 = √
𝑇𝑆𝐺

𝜎𝑡. 2𝜋
𝐿𝑆𝐺
4

 
(21) 

It is then possible to compute the mass of the 

synchronous generator 𝑀𝑆𝐺  with the relation (20) which 

depends directly on the gear ratio of the FMID 𝐺𝐹𝑀𝐼𝐷−𝑖 𝑆, 

where 𝜌𝑒𝑞 corresponds to the equivalent density of the 

magnetic part materials of the generator (𝜌𝑒𝑞 = 7500 

kg/m3) and ξ corresponds to the filling factor of the 

synchronous generator developed by Jeumont Electric (ξ 

= 0.45). 

𝑀𝑆𝐺(𝐺𝐹𝑀𝐼𝐷−𝑖 𝑆)  = 𝜌𝑒𝑞
𝜋. 𝐷𝑆𝐺²(1 − ξ)

4
𝐿𝑆𝐺  (22) 

 

B. Optimization of a conversion chain with one or two 

magnetic gear stages 

Considering the fitted curve 𝑃𝑎𝑟𝑒𝑡𝑜(𝐺) (15) which 

gives the evolution of the magnetic mass of the magnetic 

gear depending on the gear ratio, and considering (22) 

which give the mass of the synchronous generator, it is 

possible to define a function 𝑀𝐹𝑀𝐼𝐷−1𝑆(𝐺𝐹𝑀𝐼𝐷−1𝑆) (23) 

which gives the mass of the FMID conversion chain with 

one stage of magnetic gear. For a FMID with two stages, 

the mass of the active parts of the conversion chain 

𝑀𝐹𝑀𝐼𝐷−2𝑆(𝐺1, 𝐺𝐹𝑀𝐼𝐷−2𝑆)  is given by (24) and the 

evolution of the mass 𝑀𝐹𝑀𝐼𝐷−2𝑆 in function of 𝐺1, the 

gear ratio of the first stage is given by Fig.8.  

𝑀𝐹𝑀𝐼𝐷−1𝑆(𝐺𝐹𝑀𝐼𝐷−1𝑆)  = 
𝑇𝑟𝑎𝑡𝑒𝑑 . 𝑃𝑎𝑟𝑒𝑡𝑜(𝐺𝐹𝑀𝐼𝐷−1𝑆) + 𝑀𝑆𝐺(𝐺𝐹𝑀𝐼𝐷−1𝑆) 

(23) 

𝑀𝐹𝑀𝐼𝐷−2𝑆(𝐺1, 𝐺𝐹𝑀𝐼𝐷−2𝑆) = 𝑇𝑟𝑎𝑡𝑒𝑑. 𝑃𝑎𝑟𝑒𝑡𝑜(𝐺1) 

+ 
𝑇𝑟𝑎𝑡𝑒𝑑

𝐺1
. 𝑃𝑎𝑟𝑒𝑡𝑜 (

𝐺𝐹𝑀𝐼𝐷−2𝑆

𝐺1
) + 𝑀𝑆𝐺(𝐺𝐹𝑀𝐼𝐷−2𝑆) 

(24) 

 
Fig. 8 Evolution of active mass of the FMID conversion chain with 

two magnetic gear stages versus the gear ratio (G1) of the first stage 

for the wind turbine presented in Table 4. 

Fig. 8 shows that the optimum of the first stage gear 

ratio increases with the global gear ratio of a FMID with 

two magnetic gear stages 𝐺𝐹𝑀𝐼𝐷−2𝑆. From the curve of 

Fig.8, it is possible to extract the optimums for different 

global gear ratio and compared the mass of the active parts 

of the two FMID conversion chain (with one or two 

magnetic gear stages) with the mass of a direct drive 

conversion chain with the same hybrid excitation 

synchronous generator developed by Jeumont Electric. 

C. Comparison of the three conversion chain 

Fig. 9 shows the evolution of the minimal mass of the 

active parts of a FMID with two magnetic gear stages 

(Fig.8). Table 5 lists, for the optimal solutions of the three 

conversion chains (single stage FMID, double stage 

FMID and direct drive), the repartition of the masses 

between magnetic gears and synchronous generator. It 

can be observed that for the single stage FMID, the mass 

of the magnetic gear corresponds to 55% of the mass of 

the conversion chain and for the double stage FMID, the 

mass of the both magnetic gears correspond to 79% of the 

mass of the conversion chain. 



 
Fig. 9 Comparison between conversion chains composed of a 

single stage FMID, a two stages FMID and a direct drive with the same 

topology of hybrid excitation synchronous generator developed by 

Jeumont Electric for the wind turbine presented in Table 4. 

TABLE 5: ACTIVE MASSES REPARTITION OF THE THREE STUDIED 

CONVERSION CHAINS (SINGLE STAGE FMID, DOUBLE STAGE 

FMID AND DIRECT DRIVE). 

 Single stage 

FMID 

masses 

Double stage 

FMID masses 

Direct drive  

1e3 kg % 1e3 kg % 1e3 kg % 

First stage of 

magnetic gear 

26.2 55 17.7 60 - - 

Second stage of 

magnetic gear 

- - 5.7 19 - - 

Synchronous 

generator 

21.5 45 6.1 21 65 100 

Total 47.7 100 29.5 100 65 100 

Results of this FMID conversion chains optimization 

(for a 6 MW 12.5 rpm wind turbine) show that the optimal 

global gear ratio is equal to 8.5 for a single stage FMID 

and 46 for a two stages FMID. The active parts masses of 

the conversion chain are then equal to 47.7 Tons and 29.5 

Tons for the single and double stage FMID respectively 

(visible Fig.9). They are equal to 65 Tons for the direct 

drive design with the same topology of hybrid excitation 

synchronous generator. For a global gear ratio 3.6< 

𝐺𝐹𝑀𝐼𝐷−1𝑆 <18.3 for the single stage FMID and 4.2< 

𝐺𝐹𝑀𝐼𝐷−2𝑆 <50 for the double stage FMID, the mass of the 

active parts of the conversion chain is lower than the mass 

of the active parts of the direct drive conversion chain. 

These results - which show that the double stage FMID 

optimal masses is lower than the single stage FMID 

optimal masses which is also lower than the direct drive 

masses - have to be weighted because the optimization 

does not take into account the structural part which 

constitutes  an important contribution of the conversion 

chain. Furthermore, adding magnetic gear stages to a 

direct drive will inevitably strongly increase the total 

mass of the structural parts (this is reinforced with the 

double stage FMID). 

VII. CONCLUSION 

This article deals with the optimization of full magnetic 

indirect drive (FMID) with magnetic gears described with 

an analytical model. A bi-objective analytical 

optimization is performed with a PSO algorithm with 

minimization of the mass of the magnetic parts and 

maximization of gear ratio for a magnetic gear. This 

intermediate optimization was a step to optimize a 6MW 

FMID for offshore wind turbine with one or two magnetic 

gears stages necessary to compare the mass of the FMID 

configuration with the mass of a direct drive conversion 

chain with the same topology of hybrid excitation 

synchronous generator. 

It can be concluded that: 

1) The full magnetic indirect drive conversion chain 
designed with 1 or 2 magnetic gear stages has a lower 
mass than the direct drive design if only the active parts 
of the conversion chain are taken into account. Then, in 
this example, the optimal global gear ratio for the single 
stage FMID is 8.5 and 46 for the double stage FMID. 

2) The conversion chain which offers the minimal 
masse of the active parts between the three studied 
configurations (single stage FMID, double stage FMID 
and direct drive) is the double stage FMID with an active 
part masses repartition between magnetic gears and 
generator composed of 23.4 Tons for the magnetic gear(s) 
and 6.1 Tons for the synchronous generator (which 
corresponds to 21% of the active part masses of the 
conversion chain). 

To improve the design and the optimization of the 

conversion chains with magnetic gears in a wind turbine 

context, it is possible to develop an analytical mechanical 

model of a FMID structural parts to perform a 

mechatronic global optimization of single or double 

stages FMID. The result of this optimization will be 

different to the optimization described in this article 

because the structural part masses correspond to the major 

contribution of the conversion chain mass and may 

benefit the direct drive solution. 
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