
  

Abstract -- This article deals with the dynamic behaviour of 

magnetic gear. This study is based on a nonlinear analytical 

model of magnetic gear which gives an analytical expression of 

the magnetic torque for a step disturbance. From this expression, 

various criteria will be defined in order to reach a good 

performance of the magnetic gear with step or sinusoidal 

disturbance. These results will be compared with a nonlinear 

simulation. Simulations show that it is possible to have, in a 

transitory regime, a load angle higher than the limit load angle 

maintaining a coupling between the low speed and the high speed 

rotor. Simulations will illustrate the importance of defining 

design rules based on the system application domain. A high 

power wind turbine (MW) example is proposed. In that case 

studies, loads generated by wind induce strong disturbances. 

 
Index Terms—Damping factor, disturbance, dynamic, high 

torque application, load angle, magnetic gear, nonlinear 

simulation, operating range, transfer function, wind turbine. 

I.   NOMENCLATURE 

𝑇𝐺  : Maximum Gear torque [Nm]: 𝑇𝐺  = max(𝑇𝑙 ) 

𝑇ℎ  : High speed rotor magnetic torque [Nm] 

𝑇𝑖𝑛 : Input torque [Nm] 

𝑇𝑙  : Low speed rotor magnetic torque [Nm] 

𝑇𝑙0 : Low speed magnetic torque after step disturbance [Nm] 

𝑇𝑛𝑜𝑚 : Nominal torque of the wind turbine [Nm] 

𝑇𝑜𝑢𝑡  : Output torque [Nm] 

𝐷𝑒𝑥𝑡 : External diameter of magnetic gear [m] 

𝑓𝑑𝑖𝑠𝑡 : Frequency of sinusoidal disturbance [Hz] 

𝑓ℎ : Fluid friction of the high speed rotor [Nm/rad/s] 

𝑓𝑙  : Fluid friction of the low speed rotor [Nm/rad/s] 

𝐺𝑟  : Gear ratio 

𝐽ℎ : Inertia of high speed rotor [kg.m²] 

𝐽𝑙  : Inertia of low speed rotor [kg.m²] 

𝑘 : Ratio between nominal torque and maximum gear torque 

Nℎ : Speed of high speed rotor [rpm] 

N𝑙  : Speed of high speed rotor [rpm] 

𝑛𝑠 : Number of ferromagnetic pole pieces 

𝑂𝑆φ : Overshoot of the load angle for a step disturbance [%] 

𝑝ℎ  : Number of magnetic pole pairs of high speed rotor 

𝑝𝑙  : Number of magnetic pole pairs of low speed rotor 
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𝛥𝑇 : Amplitude of torque step or sinusoidal disturbance [Nm] 

𝛥𝑇𝑙  : Torque overshoot on the low speed rotor [Nm] 

ω0ℎ: High speed rotor undamped resonance frequency [rad/s] 

ω0𝑙  : Low speed rotor undamped resonance frequency [rad/s] 

ωℎ  : Speed of high speed rotor [rad/s] 

ω𝑙  : Speed of low speed rotor [rad/s] 

φ : Load angle [rad]: 𝜑 = 𝑝𝑙 . 𝜃𝑙  + 𝑝ℎ. 𝜃ℎ  

φ0 : Final value of load angle (after step) [rad] 

φ𝑖  : Initial value of load angle (before step) [rad] 

θℎ  : Angle of high speed rotor [rad] 

θℎ0 : Angle of high speed rotor after step [rad] 

θℎ_𝑖  : Angle of high speed rotor before step [rad] 

θ𝑙  : Angle of low speed rotor [rad] 

θ𝑙0 : Angle of high speed rotor after step [rad] 

θ𝑙_𝑖  : Angle of low speed rotor before step [rad] 

ξℎ : Damping factor of high speed rotor 

ξ𝑙  : Damping factor of low speed rotor 

II.   INTRODUCTION 

OR wind turbine applications, mechanical gearboxes are 

frequently used in indirect drive (Fig.1a); this design 

allows a lower investment cost and a lower weight compared 

to direct drive designs (Fig.1b). However, failures of 

mechanical gearboxes and their induced production 

interruptions, which increase operating costs, are more 

frequently observed with indirect drive design [1]. 

 

Fig. 1.  Wind power conversion chains. (a) Mechanical indirect drive, (b) 
direct drive, and (c) magnetic indirect drive 
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An interesting intermediate solution is to use a generator 

and combine it with magnetic gear (Fig.1c) to obtain a 

magnetic indirect drive. An attractive topology of magnetic 

gear (Fig.2) has been proposed by [2] in the early 2000s and 

used in different studies [3]-[5]. This magnetic gear includes a 

high speed rotor, a low speed rotor and fixed ferromagnetic 

pole pieces. This topology of magnetic gear potentially offers 

high performance and gives a hope of competitiveness 

compared to mechanical solutions [6] even for high torque 

applications (off-shore wind turbine for instance) [7]-[10]. In 

this article, only the case of fixed ferromagnetic pole pieces 

will be studied. 

Their competitiveness must be evaluated in wind power 

context where the system is subjected to strong disturbances 

that can generate mechanical problems like resonance or loss 

of control of the magnetic gear after an overload. The 

uncoupling of the magnetic gear between two rotors due to 

overload is often described as an advantage (overload 

protection) but in the context of wind power, it can be 

dangerous. Indeed, when uncoupling occurs between rotors of 

the magnetic gear, the low speed rotor and the blades of the 

wind turbine are no longer subjected to torque breaking (𝑇�̅� =

𝑇ℎ̅̅ ̅ = 0, where 𝑇�̅� and 𝑇ℎ̅̅ ̅are the average value of the low and 

the high speed rotor respectively) and can go faster and faster 

until damaging the wind power conversion chains. Some 

strategies have been proposed to counteract the uncoupling 

between rotors of the magnetic gear [11]-[12]. These strategies 

are based on servo control of magnetic gear but these solutions 

are not adapted to wind application due to the difficulty of the 

input torque pitch control. 

 This paper, therefore, aims at providing an analysis of the 

intrinsic dynamic characteristics of magnetic gear. It proposes 

some design criteria to make sizing relevant for its application 

domain without servo control. These criteria are described 

using analytical analysis and nonlinear simulations. This paper 

illustrates the importance of defining design rules based on the 

application domain. An example of application domain, 

applied to high power wind turbine, is proposed. 

III.   NONLINEAR MAGNETO-MECHANICAL MODELLING OF 

MAGNETIC GEAR 

Magnetic gear [2] is composed of three rings: 

 A high speed rotor ring with ph pole pairs of permanent 

magnets and a ferromagnetic yoke, 

 A low speed rotor ring with pl pole pairs of permanent 

magnets and a ferromagnetic yoke, 

 A fixed ferromagnetic ring with ns pole pieces 

between the two rotors (an example is given in Fig. 2 with 

ph = 2, pl = 7, ns = 9). 

Each rotor generates in airgaps a wave of magneto-motive 

force. Ferromagnetic pole pieces aim to modulate the magnetic 

field in the two airgaps to obtain a common harmonic. The 

result is a magnetic torque with an average different from zero. 

 

 
Fig. 2.  Magnetic part of the magnetic gear (a) in side drawing (b) in 

exploded drawing (in this example ph = 2, pl = 7, ns = 9) 

 The three rings parameters must follow the relation (1) 

and the gear ratio is given by (2) [3]. According to the studied 

configuration (fixed ferromagnetic pole pieces), the rotational 

speeds of the two rotors are opposite to each other (the gear 

ratio is negative). The coupling between the two rotors results 

in a magnetic torque whose expression is given by (3) with 

𝑇𝐺which depends to geometry and materials properties and 

without torque modulation for the two rotors: 

𝑝𝑙 + 𝑝ℎ =𝑛𝑠 (1) 

𝐺𝑚 =−
𝑝𝑙
𝑝ℎ

 (2) 

{

𝑇𝑙 = 𝑇𝐺. 𝑠𝑖𝑛(𝑝𝑙 . 𝜃𝑙 + 𝑝ℎ. 𝜃ℎ)

𝑇ℎ =
𝑇𝐺
𝐺𝑚

𝑠𝑖𝑛(𝑝𝑙 . 𝜃𝑙 + 𝑝ℎ. 𝜃ℎ)
 (3) 

On the basis of this coupling, a block diagram of the 

magnetic gear can be proposed in Fig. 3: 

 
Fig. 3.  Block diagram of the magnetic gear 



  

The dynamic equations are then deduced for the two rotors 

as reported in equations (4) and (5) in agreement with [12]. 

This dynamic equation has been solved in [12] with a 

linearization of the magnetic torque around a single position of 

the load angle. The scope of the present article is to carry out 

a modelling which takes into account the non-linearity of the 

magnetic torque. 

{
 

 𝐽𝑙
𝑑²θ𝑙

𝑑𝑡²
= 𝑇𝑖𝑛 − 𝑇𝑙 − 𝑓𝑙

𝑑θ𝑙
𝑑𝑡

𝐽ℎ
𝑑²θℎ

𝑑𝑡²
= 𝑇ℎ −𝑇𝑜𝑢𝑡 − 𝑓ℎ

𝑑θℎ
𝑑𝑡

 
(4) 

{
 
 

 
 𝐽𝑙

𝑑²𝜃𝑙

𝑑𝑡²
= 𝑇𝑖𝑛 − 𝑇𝐺. 𝑠𝑖𝑛(𝑝𝑙 . 𝜃𝑙 + 𝑝ℎ. 𝜃ℎ) − 𝑓𝑙

𝑑𝜃𝑙
𝑑𝑡

𝐽ℎ
𝑑²𝜃ℎ

𝑑𝑡²
=

𝑇𝐺
𝐺𝑚

𝑠𝑖𝑛(𝑝𝑙 . 𝜃𝑙 + 𝑝ℎ. 𝜃ℎ) −𝑇𝑜𝑢𝑡 − 𝑓ℎ
𝑑𝜃ℎ
𝑑𝑡

 (5) 

IV.   ANALYTICAL EXPRESSION OF THE EVOLUTION OF THE 

MAGNETIC TORQUE FOR A STEP DISTURBANCE 

This section is dedicated to the analytical expression of the 

evolution of the magnetic torque for a step disturbance. This 

step can model, in a wind power context, a sudden increase of 

the wind, resulting in an increased𝛥𝑇. The evolution of the 

torque will be analysed when the disturbance is applied to the 

low speed rotor (like in a wind turbine context) but can be 

transposed to the other case (disturbance on the high speed 

rotor). It is possible to describe two expressions of the 

evolution of the magnetic torque in function of the damping 

factor (ξ𝑙 ). They correspond to the case where ξ𝑙 is less than 

one and to the case where ξ𝑙 is higher than one. 

A.   Transfer function of the magnetic gear with load angle 

Taylor expansion  

In order to obtain an analytical expression of the dynamic 

behaviour of the system from (5), a Taylor expansion of the 

load angle is performed at the first order around all positions 

taken by the load angle. Equations (6) correspond to the Taylor 

expansion aroundφ0.From the Laplace transform, it is 

possible to obtain the transfer function H𝑙(𝑠)and 

Hℎ(𝑠)available around φ0in (7) and identify the damping 

factor and the undamped resonance frequency for the two 

rotors, as shown in (8) and (9): 

{
 
 
 

 
 
 𝐽𝑙

𝑑2θ𝑙
𝑑𝑡2

= 𝑇𝑖𝑛 − 𝑓𝑙
𝑑θ𝑙
𝑑𝑡


−𝑇𝐺[𝑠𝑖𝑛(𝜑0) + 𝑐𝑜𝑠(𝜑0)(𝑝𝑙𝜃𝑙 + 𝑝ℎ 𝜃ℎ − 𝜑0)]

𝐽ℎ
𝑑2θℎ
𝑑𝑡2

= −𝑇𝑜𝑢𝑡 − 𝑓ℎ
𝑑θℎ
𝑑𝑡


+
𝑇𝐺
𝐺𝑚

[𝑠𝑖𝑛(𝜑0) + 𝑐𝑜𝑠(𝜑0)(𝑝𝑙𝜃𝑙 + 𝑝ℎ 𝜃ℎ − 𝜑0)]

 (6) 

{
 
 

 
 

θ𝑙(𝑠)

𝑇𝑖𝑛(𝑠)
= H𝑙(𝑝) =

1

𝐽𝑙 . 𝑠
2 + 𝑓𝑙. 𝑠 + 𝑝𝑙 . 𝑇𝐺𝑐𝑜𝑠(𝜑0)

θℎ(𝑠)

𝑇𝑜𝑢𝑡(𝑠)
= Hℎ(𝑝) =

1

𝐽ℎ. 𝑠
2 + 𝑓ℎ. 𝑠 −

𝑇𝐺
𝐺𝑚

. 𝑝ℎ𝑐𝑜𝑠(𝜑0)

 (7) 

{
 
 

 
 
𝜔0𝑙 = √

𝑝𝑙 . 𝑇𝐺𝑐𝑜𝑠(𝜑0)

𝐽𝑙


𝜉𝑙 =
𝑓𝑙
2
√

1

𝐽𝑙. 𝑝𝑙 . 𝑇𝐺𝑐𝑜𝑠(𝜑0)


 
(8) 

{
 
 

 
 

𝜔0ℎ = √
𝑝ℎ . 𝑇𝐺𝑐𝑜𝑠(𝜑0)

𝐽ℎ. |𝐺𝑚|

𝜉ℎ =
𝑓ℎ
2
√

|𝐺𝑚|

𝐽ℎ. 𝑝ℎ . 𝑇𝐺𝑐𝑜𝑠(𝜑0)


 (9) 

B.   Case where the damping factor is less than one 

In this case, the evolution of the position of low speed rotor 

(𝜃𝑙 ) valid for a small evolution of the load angle can be 

described by equation (10): 

𝜃𝑙(𝑡) = θ𝑙_𝑖 + 

𝛥𝑇 (1 −
𝑒−𝜉𝑙𝜔0𝑙𝑡

√1 − 𝜉𝑙
2
𝑠𝑖𝑛 (𝜔0𝑙𝑡√1 − 𝜉𝑙

2 + 𝑐𝑜𝑠−1(𝜉𝑙))) 
(10) 

 

It is possible to consider that the high speed rotor is not 

influenced by a small step disturbance. With this hypothesis, 

the load angle evolution is proportional to the low speed rotor 

angle (this hypothesis will be confirmed thereafter by 

simulation). The evolution of the magnetic torque is given by 

(11). To determine the maximal amplitude of the torque wave, 

the evaluation of the overshoot of the load angle is necessary. 

It is given in % by (12). The maximal amplitude of the torque 

wave can be then obtained by (13). 

𝑇𝑙(𝑡) = 𝑇𝐺 . 𝑠𝑖𝑛(𝑝𝑙 . 𝜃𝑙(𝑡) + 𝑝ℎ . 𝜃ℎ_𝑖) (11) 

𝑂𝑆φ = 100. 𝑒

−πξ𝑙

√1−𝜉𝑙
2

 
(12) 

𝛥𝑇𝑙 = 𝑇𝐺 𝑠𝑖𝑛(𝜑i + (𝜑0 − 𝜑i)𝑂𝑆𝜑) − 𝑇𝐺 𝑠𝑖𝑛(𝜑i) (13) 

Even if this expression is available for small disturbance, it 

represents correctly the behaviour of the magnetic gear for 

bigger disturbance (this result is confirmed by simulation). 

Moreover, this expression highlights that a disturbance has a 

direct consequence on the magnetic torque and can produce an 

uncoupling between the two rotors. 

C.   Case where the damping factor is higher than one 

In the case whereξ𝑙 ≥ 1 , the evolution of the position of low 

speed rotor (𝜃𝑙 ) can be described by equation (14). With the 

same hypothesis as in the last case, the new expression of the 

low speed rotor torque can be proposed in (15): 



  

{
  
 

  
 𝜃𝑙(𝑡) = θ𝑙_𝑖 + 𝛥𝑇 (1 +

1

𝜏2 − 𝜏1
(𝜏1𝑒

−𝑡
𝜏1⁄ − 𝜏2𝑒

−𝑡
𝜏2⁄ ))

𝜏1 = 𝜔0𝑙 (−ξ𝑙 − √𝜉𝑙
2 − 1)

𝜏2 = 𝜔0𝑙 (−ξ𝑙 +√𝜉𝑙
2 − 1)

 (14) 

𝑇𝑙(𝑡) = 𝑇𝐺 . 𝑠𝑖𝑛(𝑝𝑙 . 𝜃𝑙(𝑡) + 𝑝ℎ . 𝜃ℎ_𝑖) (15) 

In that case, the magnetic torque will not overshoot the 

amplitude of the disturbance. Considering the studied system, 

this result makes the system more robust to disturbances. 

Indeed, if there is no overshoot, it will be more difficult for the 

magnetic torque to reach the maximum gear torque value and 

create uncoupling between the two rotors.  

D.   Conclusion for the two cases 

The present study highlights the different types of dynamic 

behaviour when magnetic gear is submitted to a step 

disturbance. It appears that in order to avoid an excessive 

magnetic torque peak (which could cause an overload in 

function of the safety margin), the case where the damping 

factor is higher than one is preferred. 

To have a magnetic gear with a high torque density and a 

high efficiency, it is similar to minimize the damping factor 

(according to equation (8)) and the magnetic gear is likely to 

be in the case where the damping factor is less than one. To 

avoid any problem like uncoupling between rotors in this case, 

it will then transfer power with a nominal torque lower than 

the maximum gear torque to compensate the disturbance. 

Considering the nonlinear equation to be solved in order to 

know the evolution of the magnetic torque for large 

displacement (equation (5)), simulations are performed to 

describe more precisely the magnetic gear behaviour and 

validate the previous hypothesis. 

In the next section of this article, the dynamic study of a 

magnetic gear designed for wind power 3.9 MW, 15 rpm 

(corresponding to the case whereξ𝑙 ≥ 1 ) will be presented. It 

is possible to carry out the same study for the other case (ξ𝑙 ≤

1) with the same protocol as the one presented below. 

V.   SIMULATIONS OF THE MAGNETIC GEAR BEHAVIOUR WITH 

THE NONLINEAR MODELS 

In order to validate the analytical expressions established 

previously, it is possible to simulate the nonlinear behaviour 

of the magnetic gear. To do this, a block diagram is proposed 

in Fig. 6 where the input torque is imposed and the output 

speed is imposed. The simulation is performed for a magnetic 

gear designed for a wind turbine 3.9 MW, 15 rpm. Magnetic 

gear is obtained with an optimization described in [13] and 

dynamic parameters are defined in Table I. 

In this part, the dynamic behaviour of the magnetic gear is 

evaluated with a step torque disturbance, a sinusoidal torque 

disturbance and a representative wind turbine torque 

disturbance. 

 

 

TABLE I 

PARAMETERS OF THE MAGNETIC GEAR 

Symbol Quantity Value 
𝑃𝑛𝑜𝑚 Nominal power  3.9 MW 

N𝑙  Speed of high speed rotor 15 rpm 
𝑇𝑛𝑜𝑚 Nominal torque 2.5 MNm 

𝑇𝐺  Maximum gear torque 2.7 MNm 
𝐺𝑟  Gear ratio (absolute value) 6.5 
𝑝ℎ Number of magnetic pole pairs 

of high speed rotor 

20 

𝑝𝑙  Number of magnetic pole pairs 

of low speed rotor 

130 

𝐷𝑒𝑥𝑡  External diameter 4 m 
𝐽ℎ Inertia of high speed rotor 1.0 105 kg.m² 

𝐽𝑙 Inertia of low speed rotor 1.2 105 kg.m² 

𝑓ℎ Fluid friction of the high speed 

rotor 

3.7 102 Nm/rad/s 

𝑓𝑙 Fluid friction of the low speed 

rotor 

1.6 104 Nm/rad/s 

A.   Behaviour of the magnetic gear with a step torque 

disturbance. 

For the first part of the study, the behaviour of the magnetic 

gear is evaluated with a step torque disturbance (16) and a 

maximum gear torque equal to 2.7 MN.m. This disturbance 

happens when the magnetic gear is stabilized in its nominal 

working point. Fig. 4 and Fig. 5 show the evolution of the 

magnetic torque on low speed rotor for the magnetic gear 

described in Table I and the step disturbance described above. 

𝛥𝑇 =
3. 𝑇𝐺
100

 (16) 

 
Fig.4  Evolution of low speed rotor torque with the step disturbance (16) and 

with a torque overshoot on the low speed rotor equal to 69 kN.m. 

 
Fig.5  Determination of the undamped resonance frequency of low speed 

rotor (4.98 Hz) corresponding to the step disturbance (16). 



  

 
Fig.6  Block diagram of the magnetic gear in the nonlinear simulations 

For the same parameters, the analytical expression gives 

results described in (17). Even if the analytical values are 

obtained with a Taylor expansion, they are very close to those 

obtained with nonlinear simulation. Such result validates the 

analytical expression. 

{
𝑓0𝑙 = 4,85𝐻𝑧
𝛥𝑇𝑙 = 64𝑘𝑁𝑚

 (17) 

For bigger step torque disturbance, analytical expression 

gives results close to results obtained with simulations. Then, 

a comparison can be made for different torque step 

disturbances with an initial torque equal to 0.8*𝑇𝐺 (2.3 MN.m). 

For bigger step torque disturbance, analytical expression gives 

expected results and can describe correctly the behaviour of 

the magnetic gear as shown in Table II. 

TABLE II 

RESULTS OF SIMULATIONS AND NUMERICAL VALUES FOR DIFFERENT STEP 

DISTURBANCE WITH AN INITIAL TORQUE EQUAL TO 2.3 MNM 

𝛥𝑇  Simulation (torque in 

kN.m and frequency in 

Hz) 

Analytical expression 

(torque in kN.m and 

frequency in Hz) 
3%.𝑇𝐺 𝛥𝑇𝑙 = 81𝑓0𝑙 = 6.77 𝛥𝑇𝑙 = 80𝑓0𝑙 = 6.64 

5%.𝑇𝐺 𝛥𝑇𝑙 = 131𝑓0𝑙 = 6.58 𝛥𝑇𝑙 = 125𝑓0𝑙 = 6.46 

8%.𝑇𝐺 𝛥𝑇𝑙 = 188𝑓0𝑙 = 6.25 𝛥𝑇𝑙 = 175𝑓0𝑙 = 6.15 

12%.𝑇𝐺 𝛥𝑇𝑙 = 227𝑓0𝑙 = 5.56
 𝛥𝑇𝑙 = 193𝑓0𝑙 = 5.59 

B.   Stability of the magnetic gear 

Following different simulations of the behaviour of the 

magnetic gear with step torque disturbance, it is observed that 

a load angle value higher than 𝜋/2can be reached without 

uncoupling between the two rotors except during a transitory 

phase as shown in Fig. 7 and Fig. 8. Then, the operating range 

of a magnetic gear can be increased during the transitory phase 

or when a magnetic gear is installed in an application with 

disturbances. 

 
Fig.7  Evolution of the load angle with a step disturbance who generates a 

load angle value higher than 𝜋/2 without uncoupling between two rotors. 

Fig.8  Evolution of the magnetic torque on a low speed rotor with a step 
disturbance which generates a load angle value higher than 𝜋/2 without 

uncoupling between two rotors (𝑇𝐺 = 2.73 MN.m). 

According to the result and for magnetic gear characterized 

in Table I with a step torque disturbance, it is possible to define 

dynamic limit of stability without uncoupling between the two 

rotors in function of the initial torque (before step torque 

disturbance) and 𝛥𝑇, see Fig. 9.  

 
Fig.9  Dynamic and static limit of stability without uncoupling between rotors 

for a torque step disturbance (𝑇𝐺 = 2.73 MN.m). 

 If the torque disturbance can be represented with a sinusoid 

instead of a step, operating range could be defined in function 

of the average torque𝑇𝑎𝑣 , the amplitude and the frequency of 

the sinusoid respectively 𝛥𝑇  and 𝑓𝑑𝑖𝑠𝑡 (Fig. 10-12) with an 

input torque proposed in (18). Fig. 10-12 illustrate that the 

operating range is reduced when the frequency of the sinusoid 

is close enough to the resonance frequency of the low speed 

rotor. Indeed, in regard of the equation (8), the resonance 

frequency of the low speed rotor depends on the average 

torque and evolves like (19). 

𝑇𝑖𝑛(𝑡) = 𝑇𝐺 (
𝑇𝑎𝑣
𝑇𝐺

+
𝛥𝑇

𝑇𝐺
𝑠𝑖𝑛(2𝜋. 𝑓𝑑𝑖𝑠𝑡 . 𝑡)) 

 

(18) 



  

{

10. 𝑇𝐺
100

≤ 𝑇𝑎𝑣 ≤
90. 𝑇𝐺
100

8.6𝐻𝑧 ≥ 𝑓0𝑙 ≥ 5.5𝐻𝑧
 (19) 

 
Fig.10  Operating range without uncoupling between rotors for a sinusoidal 

torque disturbance with frequency up to 7 Hz (𝑇𝐺 = 2.73 MN.m). 

 
Fig.11  Operating range without uncoupling between rotors for a sinusoidal 

torque disturbance with frequency from 7 Hz to 20 Hz (𝑇𝐺 = 2.73 MN.m). 

 
Fig.12  Maximum value of 𝛥𝑇/𝑇𝐺 in function of the frequency of the 

disturbance without uncoupling between rotors for different value of 𝑇𝑎𝑣/𝑇𝐺  

(𝑇𝐺 = 2.73 MN.m). 

C.   Behaviour simulation of the magnetic gear with wind 

turbine disturbance 

 The previous results are independent of the application 

field. This section will focus on a wind turbine application with 

conversion chains proposed in Fig. 1c. Input torque of the 

magnetic gear follows (20): 

𝑇𝑖𝑛(𝑡) = 𝑇𝑛𝑜𝑚(1 +
5

100
𝑠𝑖𝑛(3𝜃𝑙(𝑡)) +

0.3

100
𝑠𝑖𝑛(0,10𝑡) 

+
3

100
𝑠𝑖𝑛(0,27𝑡) +

1

100
𝑠𝑖𝑛(1,29𝑡) +

0.3

100
𝑠𝑖𝑛(3,66𝑡)) 

(20) 

 In this expression, the first term corresponds to the nominal 

torque, the second term corresponds to the influence of 

passage of the blades in front of the tower for a three blades 

wind turbine. The other terms correspond to typical wind 

fluctuations. 

 With a mechanical torque on the input of the magnetic 

gear following (20), it is not possible to have a nominal torque 

too close to the maximal gear torque. Also, to maintain a high 

torque density of the magnetic gear, the ratio between nominal 

torque and maximum gear torque (21) must be maximized. 

With this load, iterative simulations are performed; the 

maximum value of the ratio is k = 92.5%. Fig.13-14 illustrate 

the evolution of the torque and the load angle with this value. 

𝑘 =
𝑇𝑛𝑜𝑚
𝑇𝐺

 (21) 

 
Fig.13  Evolution of the magnetic torque on low a speed rotor and the input 

torque of the magnetic gear with k = 92.5 % and the load described in (20) (𝑇𝐺 

= 2.73 MN.m and 𝑇𝑛𝑜𝑚 = 2.5 MN.m). 

 
Fig.14  Evolution of the load angle of the magnetic gear with k = 92.5% and 

the load described in (20) (𝑇𝐺 = 2.73 MN.m and 𝑇𝑛𝑜𝑚 = 2.5 MN.m).  

VI.   CONCLUSION 

This article brings several contribution to the modelling of 

magnetic gear: 

A.   An analytical expression has been proposed for small 

torque step disturbance on magnetic gear. Because of the non-

linearity of the equation, the analytical expression does not 

seem valid for bigger step disturbance. However, simulations 

have permitted to observe that the analytical expression 

describes with good agreement the magnetic gear behaviour 

for bigger disturbance. In function of the geometry of the 

magnetic gear, the damping factor can be small and the 



  

overshoot torque expression can be simplified, as shown in 

equation (22): 

{
𝜃𝑙(𝑡) = 𝜃𝑙_𝑖 + 𝛥𝑇 (1 − 𝑒

−𝜉𝑙𝜔0𝑙𝑡 . 𝑠𝑖𝑛 (𝜔0𝑙 . 𝑡 +
𝜋

2
))

𝑇𝑙(𝑡) = 𝑇𝐺 . 𝑠𝑖𝑛(𝑝𝑙 . 𝜃𝑙(𝑡) + 𝑝ℎ . 𝜃ℎ𝑖)
 

(22) 

B.   It is possible to define an operating range of magnetic 

gear in function of the average torque and the amplitude of the 

disturbance. For sinusoidal torque disturbance with the 

frequency lower than the resonance frequency of the low speed 

rotor, the operating range is similar than the operating range 

with a step disturbance. The operating range is strongly 

reduced for frequency similar than the resonance frequency of 

the low speed rotor as shown in Fig. 10. Given that the 

magnetic gear behavior is similar than a low pass filter, 

magnetic gear allow sinusoidal torque disturbance with 

frequency higher than there resonance frequency of the low 

speed rotor (Fig. 11). 

C.   Another important observation is the necessity to have a 

nominal torque away from the maximal gear torque in function 

of the application typical disturbance is planned to be 

integrated a magnetic gear. For wind power application, with 

the input torque described in equation (18), the maximal ratio 

between the nominal torque and the maximal gear torque is 

equal to 92.5%.  

D.   The last observation corresponds to load angle value 

higher than 𝜋/2 without uncoupling between the two rotors 

during a transitory phase. This result permits to increase the 

operating range of the magnetic gear when the magnetic gear 

is integrated in an application with lot of disturbances. 

In order to improve the dynamic behaviour analysis of the 

magnetic gear, it could be interesting to develop an analytical 

model of the induced current loose. The damping factors will 

be different and the coupling between the two rotors of the 

magnetic gear could be more robust. On the other hand, the 

different dynamic criteria developed in this article will be used 

in a future mechatronic optimization of this magnetic gear. 
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