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Abstract

In product development, the optimization of hectovariate systems (that is, depending on
more than a hundred variables) is hard to handle with usual black box methods, since they
require a huge number of experiments. That is an issue since each experiment can be both ex-
pensive and time-consuming. Furthermore, these methods can’t even handle such big problems
within a reasonable period of time. The Lean optimization algorithm [1] was one approach to
overcome these difficulties. In this paper, we will come up with a new lean algorithm, inspired
from [1] and developing new ideas. It will then be tested on some classical mathematical prob-
lems of various sizes and a practical example of combustion simulation engine issued from Volvo
Technology. We will see that this new algorithm has a faster and more robust convergence,
and is able to significantly improve most systems within a number of experiments less than the
number of variables.
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1 Introduction

Black box systems are such that their constituents are unknown and one can’t apply any heuris-
tics to optimize them. The only way to get information is to perform experiments. When these
are expensive and time-consuming (like in many complex industrial models), they should be very
carefully planned.

In DoE (Design of Experiments) optimization, an experimental plan is made with the idea
of getting as much information as possible. From that information, important parameters can be
found and the system can be optimized in some way. The main problem is that it requires a number
of experiments increasing exponentially with the number of parameters, and is hence not applicable
if the system we study is hectovariate or larger.
Efficient global optimization(EGO), described in [7], is trying to create a good model of the system
by perfoming the experiments sequentially, in a way that new experiments are smartly performed
where the model is likely to be the less accurate (using a statistical analysis), until reaching a pre-
defined approximation error. That requires about 10 times more experiments than the dimension
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of the system. Again, that algorithm starts to be unable to handle problems when the number
of parameters gets above 30 (the running time becomes unreasonable and the solution gets worse
when you increase the size of the problem).

Another technique is to use a gradient algorithm. By making small changes for each variable
but one at a time, one can get a good approximation of the gradient at the current point. One can
then take a step following that direction and re-evaluate the gradient. For each step, this method
requires as many experiments as the dimension of the sytem.
One can also be tempted to use Newton’s method, which is known to be more robust than the
steepest descent algorithm for example. However, to get an approximation of the hessian, a number
of experiments proportional to the square of the number of parameters is needed for each step.

All those methods require a lot of experiments (In this article, we consider that the number of
experiments is ”a lot” when it is larger than a small multiple of the number of variables in the
system). In lean optimization, we try to do as a whole very few experiments (even less than the
number of degrees of freedom of the system when that is possible) and still find a satisfying op-
timum. The algorithm performs experiments sequentially, using a special branch of DoE, which
are supersaturated designs (designs where the number of experiments is less than the number of
variables).

We present more precisely which problems we are interested in in the next section. In section
3, we explain the basic concept behind lean optimization. An analysis of supersaturated design is
made in section 4. Section 5 shows ways to improve the lean algorithm from [1] and presents the
new algorithm. Section 6 will present the performance of the algorithm on both theoretical and
practical examples, before section 7 where conclusions will be drawn.

2 Type of problem considered

The type of problem we are interested in must contain at least 100 degrees of freedom. We assume
that each degree of freedom has a known range. The goal is to optimize that system as much as
possible with a very limited number of experiments. The type of optimization problem we want to
solve can be formulated this way:

min f(X) = f(x1, x2, ..., xN )

Llow ≤ X ≤ Lup (⇔ llowi ≤ xi ≤ lupi , i = 1, ..., N) N > 100

c(X) ≤ 0
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where c(X) =


c1(X)
c2(X)

...
cp(X)

 is the constraints function that can be linear or non-linear.

Two extra specifications make the problem more difficult:

• Functions f and c are black boxes: the only way to get information about them is to perform
experiments.

• Performing one experiment to evaluate f or the constraints c is expensive. Hence, experiments
must be performed parsimoniously. More precisely, we assume the number of affordable
experiments is about N (the number of variables).

For most cases, it is not possible to find the actual optimum within so few experiments. The
goal is then to find a set X = x1, x2, ..., xN which optimizes f much more than would the best out
of N random tries do (randomly picking N sets Xi within the predefined range, evaluating f(Xi)
and picking the best one).

3 What is the idea behind lean optimization, and why have we
hope for it to work?

In the lean optimization algorithm, we perform very few experiments at a time , and we fit the
results of these experiments to a linear model, that will then give us a direction to follow. Since we
have to do several steps, and that we try to do less experiments that the number of variables as a
whole, we have to use designs extremely supersaturated for each step (less than the square root of
the number of variables).

For example, if the function f you want to optimize has N variables x1, x2, ..., xN , you seek
N + 1 coefficients β0, β1, ..., βN so that

f(x1, x2, ..., xN ) ≈ β0 + β1x1 + ...+ βNxN for (x1, x2, ..., xN ) ∈ current area.

If one performs m experiments for each step, one gets a linear system of m equations and N +1
variables to solve (after some scaling on the x’s):


1 −1 1 1 −1 . . . −1
1 1 −1 1 −1 . . . −1
...

...
...

...
... . . . −1

1 1 −1 1 1 . . . 1
1 −1 −1 −1 −1 . . . 1





β0
β1
β2
β3
...

βN−1

βN


=


f1
f2
...

fm−1

fm


which can be simply written in the form[

1 D
]
β = D̃β = F
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where D is the design matrix (The first column is always made of 1’s since that corresponds to the
coefficient β0. A scaling is made for each step so that D is always made of −1’s and 1’s).
This system is very highly underdetermined since we choose m much smaller than N . This means
not only that there are infinitely many solutions but also that the solution space is of rather high
dimension compared to the dimension of the problem. We solve it by using the Moore-Penrose
pseudoinverse [8] and [9]: β = D̃+F . This gives the solution with minimal norm. This implies all
variables are treated with the same importance (Since they are all scaled between −1 and 1), and
that seems a fair choice, since we have no a priori knowledge about the influence of each variable.
Despite that, one can legitimally get worried on how bad the gradient approximation will be, since
you have to pick a solution vector β out of a very large set. One could think that the accuracy of
the solution β is on average proportional to number of experiment

number of variables . Ahlinder and Gustafsson [2] showed

that the average accuracy one gets is actually
√

number of experiments
number of variables for a well choosen design (Here,

the accuracy measure is the correlation between what is the real direction and what direction is
actually calculated, that is, the cosine of the angle between the two directions).

For example, consider a problem depending on 200 variables, and try to find its optimum with
the lean algorithm by performing only 10 experiments per step. For each step, it could be conjec-
tured that the direction obtained from the regression analysis is 10

200 = 5% in the right direction
(this means the correlation between the right direction and the one calculated is 0.05, that is, the

cosine between the two directions is 0.05) but from [2] we get that it is about
√

10
200 ≈ 22%. So we

can see that despite a very large saturation, the direction taken is not as bad as expected. Instead
of doing 1 step 100% in the right direction (which requires 200 experiments), we will do several
steps 22% in the right direction (that requires only 10 experiments times the number of steps). One
can hope that few of these cheap steps are sufficent to reach the same result. All the lean strategy
of the algorithm is based on that concept.

4 Supersaturated designs: which are the good ones?

4.1 Why supersaturated design?

In DoE, a design is a matrix representing a number of experiments to be performed. A column is
assigned to each variable and each row represents one set of values for each variable, that we call an
experiment. In a 2-level case, we evaluate each variable only at its lowest and its highest value,
represented respectively by −1 and +1 in the design matrix.

In a 2-level case, one tries to find a linear fit of the system studied. In usual cases, where ex-
periments are cheap, one performs many experiments and then find the linear approximation that
is the most consistent with the experiments for example in a least square sense. In a saturated
case, the number of experiments performed is such that there is exactly one linear solution that fits
all the experiments. That happens when the number of rows in the design is equal to the number
of columns plus one. In a supersaturated case, the number of rows is smaller than the number
of columns, and to find the linear approximation, one must actually solve an underdetermined
system, which implies that there are more than one solution. Supersaturated designs are such that
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the number of experiments performed is not large enough to caracterize the system by its first
order approximation. These kind of designs are used when one can only afford to make a couple of
experiments but still wants get a partial knowledge of the system’s behaviour. Several strategies
to derive 2-level supersaturated designs have been proposed in the last decades [3] [4] [6]. Since
2000, those have much less studied and the interest went into multi-level supersaturated design and
especially mixed-level ones (See for example [5]). We are more interested in 2-level supersaturated
designs in this paper and we will present a new method to construct them in the following section.

4.2 How to find a good supersaturated design?

The choice of the supersaturated design used in the lean optimization algorithm has a dramatic
influence on the performance. Indeed, it dictates how experiments are performed, and a bad
supersaturated design would provide too little information to choose effective directions and would
lead to the failure of the algorithm. Which supersaturated design will give the best result?

In the 2-level saturated case, it is known that an optimal design should have orthogonal columns
(Here, on a design matrix D, each column corresponds to one variable, and each row to one experi-
ment). In the supersaturated case, since there are more columns than rows, it is impossible to have
all the columns orthogonal. Hence, it is a common idea to say that they should be nearly-orthogonal
instead, which means that there is a low pairwise correlation between them. This criteria is called
E(s2)([4]).

Ahlinder and Gustafsson [2] showed that this criteria is actually not relevant, but that the row
rank is, since the solution of Dβ = F found by the pseudoinverse is a projection of the real solution
on the row space of D. That implies that the larger the row space of D is, the closer to the real
solution you can be. In [1], Siomina and Ahlinder used a design generated by Lin’s algorithm
([4]). [2] tells us that we have no guarantee on its quality, since it seeks a design with orthogonal
columns instead of orthogonal rows. Furthermore, it gets less efficient if the design is very much
supersaturated.

However, one can easily build much more efficient designs in this way (the idea comes from
Ahlinder and Gustafsson):

create first a full factorial design, then transpose it and take the first half of the columns away
(this is done to avoid an almost total correlation between the columns: the two halves are indeed
identical except for the first row). Then, among the remaining columns, keep the ones that
contains a ratio of 1’s and -1’s equal to 1 (or almost 1 if the columns are of odd length). We will
refer to it later by the name of AG design, as for Ahlinder and Gustafsson.

For example, take a full design of order 4:
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−1 −1 −1 −1
1 −1 −1 −1

−1 1 −1 −1
1 1 −1 −1

−1 −1 1 −1
1 −1 1 −1

−1 1 1 −1
1 1 1 −1

−1 −1 −1 1
1 −1 −1 1

−1 1 −1 1
1 1 −1 1

−1 −1 1 1
1 −1 1 1

−1 1 1 1
1 1 1 1



Transpose it and keep only the 2nd half
of the columns:

−1 1 −1 1 −1 1 −1 1
−1 −1 1 1 −1 −1 1 1
−1 −1 −1 −1 1 1 1 1
1 1 1 1 1 1 1 1


Then keep the ones with as many
1’s as −1’s:

1 −1 −1
−1 1 −1
−1 −1 1
1 1 1


Of course that design is not supersaturated (with 4 rows for only 3 variables), but the saturation

increases fast with the number of rows. For 10 rows, the design has 126 columns.

That design is actually the most supersaturated we found that is still giving enough informa-
tion for a relevant regression analysis to be done. Indeed, the most important property of a design
is that each column should have a ratio of −1’s and 1’s very close to 1. For a fixed number of rows
like m, the best one can do is to simply take all possible columns with m

2 1’s and m
2 −1’s (or for

example m−1
2 1’s and m+1

2 −1’s if N is odd). Given that set of columns, one can then improve the
information gain by adding one more row of 1’s, since that row will have the nice property of being
orthogonal to all the others. The procedure described above is actually just giving the same result,
with some nice ordering on the columns (if you consider that each column is a binary number by
changing -1 with 0) which will be used in a following section.
Here is another example, with a 6 rows design. First take all possible columns of 5 elements with
say two 1’s and three −1’s and classify them in order (a decreasing binary order if you exchange

−1 with 0):


1 1 1 1 −1 −1 −1 −1 −1 −1
1 −1 −1 −1 1 1 1 −1 −1 −1

−1 1 −1 −1 1 −1 −1 1 1 −1
−1 −1 1 −1 −1 1 −1 1 −1 1
−1 −1 −1 1 −1 −1 1 −1 1 1



And then add one row of 1’s:



1 1 1 1 −1 −1 −1 −1 −1 −1
1 −1 −1 −1 1 1 1 −1 −1 −1

−1 1 −1 −1 1 −1 −1 1 1 −1
−1 −1 1 −1 −1 1 −1 1 −1 1
−1 −1 −1 1 −1 −1 1 −1 1 1
1 1 1 1 1 1 1 1 1 1


That design is actually identical to the AG design.

Some properties of the AG design
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• A design with 2p rows (respectively 2p+1) has

(
2p
p

)
columns (respectively

(
2p+ 1

p

)
).

The saturation increases rather fast with p.

• Each column has the same number of −1’s and 1’s in an even case (or p (−1)’s and (p + 1)
1’s for an odd case). Experience shows that this property is necessary for a stable regression
analysis. It could be explained by the fact that each variable has to be evaluated fairly from
its smallest values to its highest values.

• Its rank is not full. It is the number of rows minus one. That is the price to pay for having a
fair ratio of −1’s and 1’s for each column. This property indeed implies that the rows of the
design are not linearly independant (since their sum is zero).

• Its columns are rather strongly correlated. It might be thought as a drawback, according to
[4], but it is not at all, as will be seen in section 6. This will strengthen the idea developed
in [2].

• It is column-ordered: the column are classified in order if you consider each column to be a
binary number (exchanging all −1’s with 0’s). This property will be crucial for a strategy
explained in section 5.2.2.

For a fixed number of variables N , one can get its design by choosing the number of rows that gives
a number of columns the closest from above to N , and then delete as many columns as needed.
For the sake of keeping the rows as different as possible, it is better to perform the deletion of
these extra columns all other the design and not simply on the last columns. For example, if the
problem has 202 parameters, you can choose the AG design with 11 rows (since the one with 10
rows only has 126 columns). It has 252 columns, so you have to delete 50 columns to fit the design
to the problem. You could just delete the last 50 columns, but we expect the design to be giving
more information on average if you delete a set of columns which is spread out all other the design
matrix, for example the 5th column, the 10th column, ... the 250th column.

5 Lean optimization algorithm: extension to constrained prob-
lems and improvements

5.1 Extension to constrained problems

In [1], the algorithm was presented in the unconstrained case. We extend it to the constrained case
in this paper. What the algorithm of [1] is doing in each step is first selecting a sub-area of experi-
mentation inside the domain, then performing some experiments on that sub-area according to the
design chosen. Through regression analysis, the system is fitted to a local linear approximation,
and from that analysis, another area of experimentation is chosen.
In the constrained version of the algorithm, a linear approximation of the constraints by regression
is made as well, and the new area of experimentation is chosen so that it is around a point that
optimizes the approximation of the function under the approximation of the constraints.
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Of course, since the constraints are approximated, we can’t guarantee that the local solution
found will not be unfeasible, but we can hope for it to be at least close to feasibility, and not
misleading the algorithm.

We end up with an LP problem (both the objective and the constraints are linear). It becomes
then possible to apply traditionnal LP-solvers, such as the simplex algorithm or interior point
methods. The function linprog from Matlab is used.

Here is a simple 2D example to illustrate the algorithm. It does not make much sense to apply the
algorithm in that case, since it is not a supersaturated case, but it still gives a more concrete idea
of what is happening.
Consider the minimisation problem

min
(x1,x2)

f(x1, x2) = (x1 − 0.7)2 + (x2 − 0.7)2

−9

2
x21 − x1 + 3x2 +

1

2
≤ 0

−1 ≤ x1 ≤ 1

−1 ≤ x2 ≤ 1

For the starting experiment area, we select 1
3 of the range of each parameter, as represented in

figure 1. You can also see the unfeasible zone indicated by the constraint in figure 2.
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Figure 1: Objective function and exper-
imentation area for step 1
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Figure 2: Objective and unfeasible area
for step 1

After performing some experiments according to a certain design(for example the corners), we
create a local linear approximation of the objective and of the constraint. We then find the optimum
of this linear optimization problem on the current area and select the point found as the center of
the new experiment area for step 2. So in our example, we get the minimization problem:

min
(x1,x2)

f̂(x1, x2) = −1.4x1 − 1.4x2

−x1 + 3x2 ≤ 0

−1

3
≤ x1 ≤

1

3
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−1

3
≤ x2 ≤

1

3

The solution is x1 = 1
3 , x2 = 1

9 (Please note that you don’t need to perform any new experiments
on the original objective function to find that optimum). Those linear approximations, as well as
the optimal point, are represented in figure 3. In figure 4, you can see where that point actually is
in the real problem.
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Figure 3: Linear problem and optimal
point
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Figure 4: Real problem and experiment
area selected for next step

In that case, it happened that the point choosen as the center for the new area is actually
the best you could choose, since the linear approximation of the functions is accurate enough for
the solution of the linearized problem to be the same than the original one. This almost never
happen when you consider a supersaturated problem with much more dimensions: in those cases,
you just expect to go in some percentage of the right direction (This percentage depends on how
supersaturated you chose your design).
Then, everything starts over again with the new experiment area. Note that it is important to
decide on a ”shrinking strategy”, that is to decide when and how much you should shrink the area
after each step.

We expect each new area to be ”half-feasible”, that is about a half of it is feasible, the other
half is not (according to the linear approximations).

5.2 Improvements

5.2.1 Shrinking strategy

In [1], the shrinking strategy is systematic. The experimentation area size in [1] is multiplied by
one coefficient at each step (for example 2

3), so that the total number of steps performed by the
algorithm is typically less than 10, since beyond that, the area gets very small and the moves are
not noticeable anymore.
In this paper, we choose the first experimentation area to be rather large (for example 1

5 of the
whole size of the domain). Here, large means that few steps will be necessary to reach a region
around the optimum. We keep its size constant until the direction of the last 2 moves are judged
to be in a ”nearly” opposite direction (for example when their correlation is smaller than −1

2). The
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idea is that when that happens, you have reached some place close to the optimum, but you are
going back and forth since your area is too large. Then it becomes interesting to shrink it. This is
done as often as needed. You could start with a small area at first, but the convergence would be
slower, which means extra experiments would be performed.
See figures 5 and 6, where we optimize some simple quadratic function in 2D, in the unconstrained
case. We take the origin as initial point (the center of the first experimentation area). The star
represents the optimum.
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Figure 5: The last 2 steps were sensibly
in opposite direction
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Figure 6: Then we take a smaller length
for the next step

5.2.2 Design permutation

A simple way of improving the performance of the algorithm is to randomly permutate the columns
of the design chosen after each step. That is a way to perform every time experiments that are very
different, and broaden the directions we take. Experience shows that not permuting the columns
leads to optimize along a very narrow set of directions, which makes the optimization stop early in
most cases. This is what was done in the previous version of the lean algorithm [1]: no permutation
were used.

For example, let’s assume we picked the design matrix D = [d1d2...dN ] to dictate our experi-
ments, where di is the ith column of D. In the original version of the algorithm [1], D was used
at each step to perform the experiments. In the random permutation version, it is not D which is
used, but a shuffled copy of it: D̂ = [dσ(1)dσ(2)...dσ(N)]. D̂ is recreated at each step. To understand
why this is likely to give better performance, we present here a simple problem (which be reanalysed
in the next section 6):

min
x

f(x) =
1

1000

N∑
i=1

(xi − i)2

−100 ≤ xi ≤ 250, i = 1, ..., N

N = 250

This function is simple sum of squares and its minimum is obviously 0, reached in
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x =
[
1 2 . . . 249 250

]
In Figure 7, is displayed the convergence of the algorithm using the 2

strategies.

Figure 7: Convergence of the algorithm using the 2 strategies (for clarity, only the average of the
experiments is printed)

We can see that when not performing any permutation on the design, the algorithm seems to
reach some optimum far away from the real solution and not to move out of it. This does not
happen with the random permutation. This phenomenon can actually be explained. To get some
insights, consider the same problem but with N = 2 only (becomes a 2 dimensional problem). In
Figure 8, we represent successives steps of the algorithm, assuming we picked a supersaturated

design with 2 rows D =

(
−1 1
−1 −1

)
, leading to make 2 experiments in the left corners of the

experiment area (represented in red in the figures).
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(a) Starting place (b) Step 1

(c) Step 2 (d) Step 3

Figure 8: 3 steps of the algorithm with a fixed design

Keeping exactly the same design leads to minimising along the y axis only, because it is always
the 2 left corners which are experimented. The algorithm with random permutation would time to
time perform some experiments on the left and right down corner (when the columns are permuted

we get D =

(
1 −1

−1 −1

)
, which would make it possible for the experiment area to move along the

x axis as well and hence find a better solution.

When working with a design such as the AG design (presented in section 4), another idea is
to make a permutation which is not random, but following the order of the components of the
gradient from the last step. Since the columns are in a particular order in that design, the idea
is to ”feed” it with variables that have some similar ordonancy. We will call that technique the
adaptive permutation.
To get a bit more of understanding, assume β is the first order Taylor expansion of the function f
on the current experiment area, and β̂ the approximation of β we are trying to find on that same
area. Then, we have

[
1 D

]
β = D̃β = F and we seek β̂ such that D̃β̂ = F too. We use the

12



solution given by the pseudoinverse, that is

β̂ = D̃+F = D̃+D̃β

Since D̃ has more columns than rows, D̃+D̃ is not the identity matrix, and hence β̂ ̸= β in

general. We just know that the correlation between β̂ and β is on average
√

number of experiments
number of variables

from Ahlinder Gustafsson [2]. Actually, experience shows that if D is column-ordered such as the
AG design, and if the components of β are in order (for example β1 < β2 < . . . < βN ; we don’t care
of β0 corresponding to the constant part), then that correlation becomes much higher. The idea of
adaptive design permutation is hence to reorder the design from the knowledge of the previous
step (some β̂ hopefully close to β) so that β gets a bit ordered with respect to this reordered design,
implying that the β̂ of the new step is closer to the β of the new experiment area.

More precisely, from the last β calculated, the permutation µ of {1, ..., 250} is choosen such that
βµ(1) < βµ(2) < . . . < βµ(N). Then the permutation µ−1 is applied to permute the columns of the
original design, so that its column-ordering is following the one of the last β calculated.

For example, consider a simple problem with 3 variables and

let’s assume we chose the design D =


1 −1 −1

−1 1 −1
−1 −1 1
1 1 1

 from section 4, and that the gradient we

got at the last step was g =

 5
−3
1

 (We actually have β =

[
β0
g

]
where β0 is the estimated

average of the objective on the current experiment area). Then, we will apply to D the permutation
that makes match its first column with the smallest value of g, the second column with the second

smallest and so on. We hence get D′ =


−1 1 −1
−1 −1 1
1 −1 −1
1 1 1

. Now, from the original design point of

view, it looks like the gradient is

 −3
1
5

, and the variables are classified in increasing variation

order. This manipulation is done at the beginning of each step, always starting from the original
design. In Figure 9, are compared the 3 permutations strategies on the test problem.
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Figure 9: Convergence of the algorithm using the 3 strategies

We see that adaptive permutation improves the convergence even more. It is though hard to
give a convincing reason for its good performance. Experimentation shows that it works well in
most cases (check section 6.1.2).

5.2.3 Design size used

One issue of the lean algorithm is to choose a size for the design used for the experiments. We will
here make some investigations that, even if they are not claiming to be a rigorous demonstration,
will give a hint.

Unlike usual algorithms, whose trajectory can be ideally thought as a straight line going from
the starting point to the optimum, the lean algorithm has a trajectory that can be thought as
a kind of a logarithmic spiral. Indeed, each step is on average only right at some fixed low
percentage, and we decrease the step size along its execution. See Figure 10 and 11.
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Figure 10: Representation of the be-
haviour of the algorithm with adaptive
permutation in a parabolic 2D case
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Figure 11: Representation of the algo-
rithm trajectory for the same case, but
with a smaller design (fewer rows)

In the limit case where the saturation is 1 (which means the number of columns equal to the
number of rows - 1), the spiral just becomes a straight line from the starting point to the optimum.

The higher the saturation is, the more the spiral takes time to reach its center and so the more
you need to do steps. On the other hand, having a high saturation means performing less exper-
iments per step. Which size should the design have, between the leanest one (AG design) and a
saturated one (with the number of columns equal to the number of rows - 1)?

At a fixed distance r from the center, the length of a spiral in 2D is finite and equal to r
cos(ϕ) ,

where ϕ is the angle caracterizing how fast the spiral converge to its center (At any point of the
spiral, it is the angle between the tangent and the radial line). Say now that the problem we are
interested in has N variables. If you choose a design with m rows, then from [2], we get that
cos(ϕ) =

√
(mN ). So for a small step length l, the number of steps that has to be done to reach the

optimum is roughly 1
l

r√
m
N

. That implies that the number of experiments done is

(
1

l

r√
m
N

)m = (
r

l

√
N)

√
m

We see that this number increases with m, the number of rows of the design. It is thus an advantage
to make m as small as possible. Choosing the AG design seems hence to be the best choice,
assuming that this stays true in higher dimensions.

5.3 New lean algorithm

In this part, we present what is intuitively the most promising version of the new lean algorithm.
Consider a minimization problem as defined in section 2.

1. Pick the smallest AG design that fits the problem as the original design: Doriginal
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2. Fix the current design to be the original design (D = Doriginal) and fix a starting experimen-
tation area A to be centered in the domain and choose its size (for example 1/10 of the whole
domain).

3. Perform experiments on the current area A according to the current design D

4. Evaluate β and βconst, respectively the first order Taylor approximation of f and c on A by
solving

[
1 D

]
β = D̃β = F and D̃βconst = C (where F is the result of the experiments for

f and C for the constraints c) using pseudoinverse: β = D̃+F and βconst = D̃+C

5. Set D to be Doriginal but with a column-permutation following the order of β (That is adap-
tive permutation). That D will be used for the next step.

6. Find Xsol, the solution of the minimization problem, an LP-problem:

min
X

βX

βconstX ≤ 0

X ∈ A

7. Select the new experimentation area A to be centered in Xsol and shrink it if this last step is
nearly opposite to the previous one.(Shrinking strategy)

8. Go back to step 3

For an unconstrained problem, the minimization problem in step 6 becomes trivial.

6 Numerical results

6.1 On classical mathematical functions

We first present the test examples and compare the performance of the new lean solver with a
simple gradient solver. Then, we check our intuition about which design permutation strategy and
which design size should be choosen.

6.1.1 Test problems

We here present several test problems and compare the result of a common gradient solver and the
lean solver using adaptive permutation and the AG design with as few rows as possible
(intuitively the most efficient strategy). Then, in section 6.1.2, we will check our intuition about
which design size and which design permutation should be choosen on those same test examples.
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Test problem 1: a parabolic problem

min
x

f(x) =
1

1000

N∑
i=1

(xi − i)2

−100 ≤ xi ≤ 250, i = 1, ..., N

N = 250

This function is simple sum of squares and its minimum is obviously reached in
x =

[
1 2 . . . 249 250

]
and it is zero. To make it more realistic (since the variables of a

problem are not classified in the order of their optimal value in practice), we mess that problem up
by introducing some permutation σ of {1,...,250}, so that the problem becomes:

min
x

f(x) =
1

1000

N∑
i=1

(xσ(i) − i)2 (1)

−100 ≤ xi ≤ 250, i = 1, ..., N

N = 250

Now the optimal solution is x =
[
σ−1(1) σ−1(2) . . . σ−1(249) σ−1(250)

]
. First of all, we

have to choose a design. We take the AG design with 11 rows. It hence has
(
11
5

)
= 252 columns,

and we delete 2 columns to fit it into the problem. Please note that it is the thinest design we
could have used, since the one of size 10 only has 126 columns, which is not sufficient in this case.

Make sure you don’t confuse the permutation σ used just as a trick to mess up the problem
and the design permutation strategies (No-permutation, Random permutation, Adaptive per-
mutation) used to improve the convergence of the algorithm.
In Figure 12 are displayed the comparative performance of the lean algorithm using adaptive per-
mutation and the steepest descent algorithm. Here the steepest descent algorithm uses a gradient
approximated by making very small variation for each variable one at a time (requires as many
evaluations as variables) and then performing a linesearch along that gradient direction (requires
a couple of experiments that we omit in our Figures).
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Figure 12: Lean algorithm using adaptive permutation versus steepest descent

In Figure 12, the x axis represents the successive experiments performed (step after step) and
the y axis the correspondant function response for each experiment. Since it would be messy to
display one point for each experiment, the points are a local average of the experiments performed.
For example, the first point represent the average of the 33 first experiments (equivalent to the 3
first steps), the second the 33 next ones, and so on. That is why, despite the fact we start from the
same center point, the curves does not start from exactly the same value on the graphs.

We see that it is not worth using the lean algorithm if one can afford doing more than 250 ex-
periments, since then a simple gradient solver finds the exact solution in 1 single step (not taking
into account the couple of experiments used for the linesearch). The lean algorithm can however
be preferable in the case one can afford only 100 experiments; it will then be able to give a solution
about 50% better than the starting point.

Of course, that example is a circular paraboloid that makes the gradient solver especially efficient.
We now spice it a bit up in this new fashion:

min
x

f(x) =
1

1000

N∑
i=1

e
1
50

i(xσ(i) − i)2 (1 bis)

−100 ≤ xi ≤ 250, i = 1, ..., N

N = 250

This function has now narrow valleys. Results are displayed in figure 13.
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Figure 13: Lean algorithm using adaptive permutation versus steepest descent

Now the steepest descent is not converging that fast, and we see that the lean algorithm is
actually converging faster, as long as the number of experiments is limited to around 600. The
result is especially interesting if one can for example only afford to perform 50 experiments. Then
the best solution found is 16680, which is still ”far” from 0 the real optimum, but which can be
compared with the value at the starting point: 135870. That represents an improvement of more
than 81% while performing a number of experiments less than a fifth of the number of variables.
To get some ideas on the behaviour of the algorithm, check Figure 14. In it are represented the
solutions found by the algorithm after 75 steps for problem (1) and (1 bis).
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(b) Solution for test problem 1 bis

Figure 14: Solutions found after 75 steps

In Figure 14(a), we see that the error between the calculated solution and the real one is spread
equally on all parameters. But in Figure 14(b), that error is very small for the parameters from
σ(200) to σ(250) but gets larger for the ones from σ(1) to σ(200). Actually, we can roughly say
that the error per parameter decreases with its importance. The importance of the parameters
in problem 1 bis is indeed following the term e

1
50

i. This means that the algorithm is taking care
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of the parameters having the biggest influence at first. That implies that the algorithm will be
particularly fast and efficient on problems where few parameters influence most of the system.

Test problem 2:

Consider now the unconstrained problem:

max
x

f(x) =

N∑
i=1

sin (ixi) (2 UNC)

− 3π

4
≤ xi ≤

3π

4
, i = 1, ..., N

N = 1700

and a constrained version:

max
x

f(x) =

N∑
i=1

sin (ixi) (2 CONST)

− 3π

4
≤ xi ≤

3π

4
, i = 1, ..., N

1500∑
i=1

sin (ixi) ≤ 300

N = 1700

Here, the objective function is a sum of sinus function, with increasing frequences. Small
variations of each parameter has a different influence on the response. For example, changing x1700
from 0 to 1

1700
π
2 adds 1 to the response, but doing such a change on x1 has almost no influence

(| sin( 1
1700

π
2 )| ≈

1
1700

π
2 ≤ 10−3). For the unconstrained problem, the optimum is 1700 and it is

reached when each sinus is 1 (there are hence several solutions). For the constrained problem, the
optimum is then obviously only 500.
We use the same design than in the previous example and solve both problems. Results obtained
after 300 steps and 300 · 14 = 4200 experiments are all displayed in Figure 15
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(b) Lean solver versus Gradient solver on the Uncon-
strained problem

Figure 15: Performance of the lean algorithm

In Figure 15(a), we can see that the constrained problem reaches its optimum in almost less
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experiments than the number of variables in the problem. Once the algorithm gets close to an opti-
mum, many unfeasible experiments actually occur, since the algorithm is stopped by the constraint
on its way and is hence standing just against it.
In the unconstrained case, the algorithm continues its way, and much faster than the steepest
descent as can be seen in Figure 15(b) (especially for the 3000 first experiments).

Test problem 3: pairwise interactions

Consider the problem:

min
x

f(x) =

N−1∑
i=1

xσ(i)xσ(i+1)

−2 ≤ xi ≤ 5, i = 1, ..., N

N = 1700

where σ is some permutation of {1, ..., 250}, just introduced for not to give any possible advantage
coming from some ordering to the algorithm (as used in the Test problem 1). This function is the
sum of pairwise interactions of the vector x. It has multiple saddle points and its minimum is
-16990. It is reached when the values of x are alternatively −2 and 5, with respect to σ. On such
an example, the steepest descent algorithm has a very poor convergence.
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Figure 16: Convergence of the lean algorithm versus steepest descent

In Figure 16, we see that the steepest descent stops after 1 step at 0. The lean algorithm is
doing much better than that, and again, even before the steepest descent has time to do one single
step, the lean algorithm has already improved significantly the objective function.

21



6.1.2 Overview of the performance of the lean algorithm with different design per-
mutation strategies and different design sizes
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(a) Test problem 1: minimization
(Circular paraboloid)
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(b) Test problem 1 bis: minimization
(Paraboloid with narrow valleys)
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(c) Test problem 2: maximization
(Sum of sinus functions with increasing frequency)
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(d) Test problem 3: minimization
(quadratic model restricted to interaction terms)

Figure 17: Convergence of the lean algorithm using different design permutation strategies

Figure 17 shows that without design permutation (that corresponds actually to applying the lean
algorithm from [1] but with the AG design instead of the Lin design), the algorithm has a quick
start but stops early after a couple of steps, and stays rather far from reaching the optimum.
With random permutation, the optimization continues along with the steps, and makes significant
improvements from the no-permutation strategy in most cases.
As expected, the adaptive permutation seems the most efficient strategy, improving even more the
speed of the random permutation.
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(a) Test problem 1: minimization
(Circular paraboloid)
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(b) Test problem 1 bis: minimization
(Paraboloid with narrow valleys)
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(c) Test problem 2: maximization
(Sum of sinus functions with increasing frequency)
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(d) Test problem 3: minimization
(quadratic model restricted to interaction terms)

Figure 18: Convergence of the lean algorithm using adaptive permutation, but different design sizes

In Figure 18, we see that, as expected in section 5.2.3, taking the smallest design seems the
best choice in almost all cases. Using a design twice bigger does not give twice more information
but just

√
2 times more (from Ahlinder and Gustafsson [2]). That is not sufficient to compensate

the fact that 2 times more experiments were performed.

6.2 On an industrial application

We will know try the algorithm on a concrete example issued from Volvo Technology. We will just
give a small description of the problem, without going into details. ICES (Internal Combustion
Engine Simulation Program) is a simulation program for four-stroke gasoline or diesel engines.
Models of engine can be built from components like pipes, cylinders, valves, turbine, compressor,
etc... Each of these components has several parameters that affect the efficiency of the whole en-
gine. The program is able to generate the performance for the complete engine.
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To create our optimization problem, we first picked some engine model, and then selected 162
relevant and possibly changeable parameters out of its components. We also decided on a rea-
sonnable range of variation for each parameter. With speed and fuel consumption fixed to some
value, keeping emissions, temperature and pressure below the starting value, our goal is to maxi-
mize the Brake mean effective pressure, which is the ratio between power and size of the engine.
We hence simply try to make a more efficient engine without increasing emissions or decreasing
lifetime.
The 162 parameters we have selected have preliminary values that have been pre-established by
engineers and are used as a starting point.

Results are displayed in Figure 19.
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Figure 19: Convergence of the algorithm on the engine optimization problem

We see that the system is improved, but the improvement is not done regularly. It comes
from the fact that the algorithm sometimes choose a direction that actually decrease the objective
function to find back feasibility. Since they are several tough constraints to fulfill, that often
happens.

Despite that, the improvement is noticeable: the value of the objective increases from about
1.78 to 1.93 MegaPascal (about 8% improvement) in just about 125 experiments which is less than
the number of parameters in our problem (162).
The most significant parameters were the bore and the stroke. This means that the engine brake
mean effective pressure was mainly increased by downsizing (making the engine smaller means
increasing the ratio between power and engine’s size). The total power was still slightly increased
without affecting fuel consumption i.e. we got a slightly higher efficiency of the engine.

7 Conclusion

The lean optimization algorithm presented in [1] was an interesting first approach for optimizing
very large problems with few experiments. In this paper, we have presented a new algorithm,
keeping the same basical idea, but also giving some new hints for getting significant improvements.
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We also presented the Ahlinder-Gustafsson supersaturated design (that can actually be called fully
saturated since it is the most supersaturated one that still keeps relevancy). That design would be
considered as bad according to the E(s2) criteria defined in [4], but its efficiency when used in the
lean algorithm gives credit to [2].

The main conclusions on the new lean algorithm are:

• it should be used with the smallest AG design possible

• the adaptive design permutation improves almost always its performance.
Note that adaptive permutation makes sense only if used with a column-ordered design, such
as the AG design

• it is especially efficient for problems where the response is mainly affected by a little percentage
of the parameters (for example 20%).

• it improves the performance of the previous version presented in [1], even when using the
AG design instead of the Lin design [4]. Unlike the former method, it keeps converging after
the first few steps (thanks to the new shrinking strategy), which is particularly beneficial
when the number of parameters is beyond 1000.

• it converges much faster than a simple gradient solver as long the problem is nasty enough
(for example, not a simple circular parabolic problem).
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Corporation, Göteborg, Sweden, for supporting this work.

References

[1] I.Siomina, S.Ahlinder, Lean Optimization using supersaturated design, Applied Numerical
Mathematics 58 (1) (2008) 1-15

[2] S.Ahlinder, I.Gustafsson, On Super Saturated Experimental Design, (to be published)

[3] D.K.J. Lin, A new class of supersaturated designs Technometrics 35 (1993) 28-31

[4] D.K.J. Lin, Generating systematic supersaturated design, Technometrics 37 (2) (1995) 213-225

[5] M Liu, R Zhang, Construction of E(s2) optimal supersaturated designs using cyclic BIBDs,
Journal of Statistical Planning and Inference 91 (2000) 139-150

[6] MQ Liu, D.K.J. Lin, Construction of optimal mixed-level supersaturated designs, Statistica
Sinica 19 (2009), 197-211

25



[7] D.Jones, M.Schonlau, W. Welch, Efficient global optimization of expensive black-box functions,
Journal of Global Optimization 34 (3) (2006) 441-466

[8] E. H. Moore,On the reciprocal of the general algebraic matrix, Bulletin of the American
Mathematical Society 26 (1920) 394-395

[9] Roger Penrose, A generalized inverse for matrices, Proceedings of the Cambridge Philosophical
Society 51 (1955) 406-413

26


