Number of cycles of a permutation and characters of the symmetric group

A. Jacques University of Paris VIII Summary. We give the coefficients of the irreducible characters of the symmetric group that contribute to the number of cycles of a permutation, considered as a class function of the symmetric group.

Let z: n →  be the function that, for every permutation  of n , associates its number of cycles z(). It is a class function, so it can be expressed as a linear combination of the irreducible characters of n. We know [ 1 ] that Fröbenius has given a remarkable bijection between the characters of the irreducible representations of n and the conjugation classes; those classes are also in bijection with the partitions of the integer n: if   n is decomposed in cycles, we note 1, 2, …, m the lengths in decreasing order of its cycles and () = (1, 2, …, m) the partition of the integer n associated to the class of . We note  () the irreducible character associated to (), and the function z is linearly expressed as where Pn is the set of partitions of the integer n.

Because of the orthogonality of the irreducible characters, the coefficients < z,  () > can be written as

Theorem:

The coefficients < z,  () > have the following values in function of () = (1, 2, …, m):

The first case of the theorem represents the mean of the numbers of cycles of a permutation in n and had already be obtained through combinatorial methods [ 2 ].

This theorem can be directly deduced from the following proposition:

Proposition. If zk is the function 'number of cycles of length k' of the symmetric group n then:

For k = 1 we obtain again the number of fixed points The proof only uses a theorem by Murnaghan allowing the calculation of the character tables in function of the tables of inferior order. Before giving this theorem, we present a definition as to avoid introducing the Schur functions.

To any series {} = {1, 2, …, p} of integers whose sum is n, we associate the function recursively defined by:

The consistency of the definition comes from the fact that, in searching to arrange in decreasing order a series of integers using property (2), the only impossible cases are:

when i = i+1 -1, but then we have  {} = - {} i.e.  {} = 0, when all the parts being arranged in decreasing order, the last one is negative, but then, by completing with zeros (rule 3), we can return to the previous case.

Murnaghan theorem [ l ]. If the class  of n contains the same cycles as the class ' of n-k with, in addition, a cycle of length k, then:

Démonstration de la proposition.

Nous avons :

Proof of the proposition.

We have:

where h denotes the cardinal of the conjugation class associated with . 

< zk,  () > = 1/k if 1 = n (case i = 0). < zk,  () > = (-1) i /k = (-1) k - 2 /k if 1 = n -k, 2 = k -i + 2 and 3  1.
< zk,  () > = (-1) i + 1 /k = (-1) k -1 /k if 1 = k -i + 1, 2 = n -k + 1 and 3  1. < zk,  () > = 0 in all other cases (i.e. λ3  2).

This completes the proof of the proposition.
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  zk() being zero for the classes having no cycle of length k, let's consider the classes (') of n-k associated with the classes () of n having at least one cycle of length k : • by virtue of Murnaghan theorem and by the fact that, if  possesses a cycle of length k, we have We obtain, thus: As is equal to 1, if can be brought to , or if can be brought to else this term is 0. If k -i + 2  1, otherwise this term is 0. {n -k, k -i + 2, 1, …, 1} in decreasing order if n -k  k -i + 2, else we have to consider {k -i + 1, n -k + 1, 1, …, 1}. Thus,