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Bacterial microbiota associated with
Rhipicephalus sanguineus (s.l.) ticks from
France, Senegal and Arizona
Magalie René-Martellet1,2†, Guillaume Minard3,4†, Raphael Massot1, Van Tran Van3, Claire Valiente Moro3,
Luc Chabanne1,2 and Patrick Mavingui3,5*

Abstract

Background: Ticks of the group Rhipicephalus sanguineus (sensu lato) are distributed worldwide and are major
pathogen vectors of both dogs and humans. Previous phylogenetic reconstructions have suggested the existence of
two main lineages within this group, “Tropical” and “Temperate”. Symbiotic interactions contribute to vector development,
survival, reproduction and competence. The diversity of microbial communities associated with different populations of R.
sanguineus (s.l.) remains poorly characterized, however, this knowledge will aid in future studies of hosts-microbiota-
pathogen interactions. To gain insight into the bacterial communities associated with R. sanguineus (s.l.) ticks, 40
specimens from France, Senegal and Arizona were analyzed by high-throughput 16S amplicon sequencing. All tick
specimens were taxonomically classified using the mitochondrial 12S rDNA gene, which provides sufficient
phylogenetic resolution to discriminate different lineages of R. sanguineus.

Results: Rhipicephalus sanguineus (s.l.) samples from Senegal belonged to the “Tropical” lineage, samples from France
belonged to the “Temperate” lineage, whereas both lineages were identified in samples from Arizona. Regardless of
origin, each bacterial microbiota was dominated by three genera: Coxiella, Rickettsia and Bacillus. Rickettsia and Coxiella
were the two main genera found in females whereas males had a higher proportion of Bacillus. Significant differences
of relative abundances were evidenced between specimens from different geographical origins.

Conclusions: This study highlights differences in the microbiota composition within R. sanguineus (s.l.) specimens from
different genotypes, genders and geographical origins. This knowledge will help in future studies of the symbiotic
interactions, biology and vector competence of the R. sanguineus (s.l.) complex.
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Background
Infectious diseases are the second most common cause of
death worldwide, behind cardiovascular diseases. Many
arthropod vectors are known to transmit infection of “vec-
tor-borne diseases”. The transmission cycles of such dis-
eases rely on complex pathosystems in which vectors,
hosts and microorganisms (from pathogens to mutualists)

interact within changing ecosystems. This complexity, and
the diversity of players/partners involved in pathosystems,
can make vector control difficult in the field. It has been
demonstrated that some microbe-microbe interactions
that occur within vectors, in particular mosquitoes, can
interfere with life-history traits, including vector compe-
tence [1–6]. Consequently, increasing numbers of studies
of vector-borne pathogen transmission and control now
adopt integrative approaches that take all interacting
players of each pathosystem into account.
Globally, ticks are considered as the second most

important disease vectors after mosquitoes [7]. But in
Europe, ticks are considered the most common vector of
both human and veterinary diseases to date [8]. The last
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decades have witnessed the emergence of new tick-borne
diseases and changes in the geographical distribution of
previously known tick-borne pathogens. This suggests that
the emergence and re-emergence of several tick-borne
pathogens is likely to be of significant socioeconomic
burden in the future [8–10].
Rhipicephalus sanguineus was first described by

Latreille in 1806 using specimens collected from Gallia
[11]. It is one of the most prevalent ticks found on dogs in
southern France [12] and specimens attributed to the spe-
cies have been described nearly worldwide. The taxonomic
status of R. sanguineus remains controversial and has
been subject to numerous debates over the last decades
[11, 13–18]. The main conclusions of these studies referred
to the absence of a reliable pictorial key to morphologically
identify R. sanguineus (Latreille, 1806), the existence of dif-
ferent populations within the morphotype R. sanguineus
and the possible confusion with R. turanicus. Therefore, all
the specimens harboring the original pictorial keys anno-
tated in the first description were gathered under the taxon
R. sanguineus (sensu lato) (s.l.). Within R. sanguineus (s.l.),
two parapatric lineages were identified based on phylogeny
of mitochondrial 16S and 12S rDNA genes: a temperate
southern American/western European lineage and a tropical
southern American/African lineage [13, 17, 19].
Rhipicephalus sanguineus (s.l.) is highly specialized for

dogs and, thus, occasionally colonizes human habitats. It
is considered as a significant vector due to its ability to
replicate and transmit many bacterial and parasitic
agents, including Ehrlichia canis, Mycoplasma haemoca-
nis, Babesia vogeli, Hepatozoon canis to carnivores and
Rickettsia conorii, the agent of the Mediterranean spot-
ted fever, to humans [18, 20]. Because of its vector role,
as well as its ability to colonize human habitats, this
species is a real threat to human and animal health [21].
Metazoans interact with a broad community of microor-

ganisms [22]. Those interactions are called symbiosis and
can result in positive, negative or neutral effects on both
partners [23, 24]. Symbiont-based strategies have been
proposed as a tool for vector control in mosquitoes [3] as
well as in ticks [25]. Such approaches will gain in effi-
ciency if fundamental knowledge is acquired on host-mi-
crobiota-pathogens interactions and dynamics. One of the
first steps to apply such strategies is the description of the
microbial communities that interact with populations of
R. sanguineus (s.l.) in natura. To date, few studies have
aimed at identifying bacterial communities within R. san-
guineus (s.l.). Analysis of specimens from laboratory col-
onies [26] or collected from the same area have shown the
dominance of the genera Coxiella and Rickettsia, as well
as the detection of the intracellular bacteria Wolbachia
spp. [27, 28]. In particular, a multicentric study conducted
in southern France from 2010 to 2012 showed significant
regional differences in the prevalence of R. sanguineus

(s.l.) ticks infection by Babesia vogeli, a hemoprotozoan
pathogen of dogs [12]. As no genetic difference (using 16S
and 12S rDNA fragments) was shown between tick speci-
mens collected in the sampled regions, the possibility that
such differences in prevalence of infection could be associ-
ated with differences in microbiota within R. sanguineus
(s.l.) specimens was suggested [12].
To get further insight into bacterial communities hosted

by R. sanguineus (s.l.) ticks, specimens were collected in
four areas of southern France, one area in Arizona and
one area in Senegal. To overcome misinterpretations
linked to the controversial taxonomic status, all R.
sanguineus (s.l.) specimens used were genetically charac-
terized by sequencing of a 400 bp mitochondrial 12S
rRNA fragment. Then, high-throughput 16S rRNA
amplicon sequencing was performed to describe the
diversity and structure of bacterial communities interact-
ing with R. sanguineus (s.l.) from different origins.

Methods
Sampling
The survey was conducted in four areas from southern
France (Corsica, Drôme, Gard and Var), one location in
Senegal (Dakar area) and one location in USA (San
Carlos area, Arizona) (Table 1). All study sites were se-
lected because of the high prevalence of R. sanguineus
(s.l.) ticks recorded from previous surveys. Sampling in
Senegal and Arizona was performed in order to compare
their bacterial microbiota to that of the French popula-
tions, encompassing the two lineages known as
“Temperate” and “Tropical”. The four French sites also
allowed exploration of possible differences in bacterial
communities of ticks from different locations within the
same country. Ticks were collected from either infested
dogs or the environment by visual picking, flagging or
CO2 trapping. Adults and nymphs were collected at each
site. All ticks were stored in 70% ethanol until used.
Collected ticks were sorted by developmental stage
(nymphs, adult males and females) and were identified
under light microscopy using pictorial keys [29, 30],
allowing selection of R. sanguineus (s.l.). Then ticks were
randomly selected within each group to be as represen-
tative for each stage and location as possible. Taking into
account the complex taxonomic status of R. sanguineus
(s.l.), and the possible misidentification with other
species of the genus, all morphological identification was
confirmed by amplification and sequencing of a 400 bp
fragment of mitochondrial 12S rRNA gene. In the case
of ticks collected from dogs, only the least blood-
engorged ticks were kept (Additional file 1: Table S1).

DNA extraction
DNA was extracted as previously described [31] and the
quality assessed by PCR amplification of a 400 bp
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fragment of mitochondrial 12S rRNA gene using primers
targeting ticks [19]. Quantification of total DNA was
systematically performed after each DNA extraction
using a spectrophotometer (SAFAS, Monaco, Principal-
ity of Monaco). For each series of extractions, a negative
control corresponding to an extraction tube without a
tick sample was performed in parallel.

Rhipicephalus sanguineus (s.l.) haplotyping
Products of PCR amplification of the mitochondrial 12S
rRNA genes of all R. sanguineus (s.l.) ticks used in the
study were sequenced by BIOFIDAL-DTAMB (FR
BioEnvironment and Health, Lyon, France). Sequences
obtained were manually corrected by visual analysis of
the electropherogram, aligned and assembled by
haplotypes using Bioedit v7.0.5.3 [32]. The consensus
sequence of each R. sanguineus (s.l.) haplotype was then
used as query sequences using BLAST against the NCBI
nucleotide database. The 400 bp sequences of R. sangui-
neus (s.l.) ticks were then aligned with sequences of R.
sanguineus (s.l.) from different parts of the world and a
phylogenetic tree was built using the Maximum
Likelihood method. The nucleotide evolution model of
Hasegawa, Kishino and Yano was selected based on
the Akaike Information Criterion corrected following
the previously described method [33]. The mitochon-
drial 12S rDNA sequences from ticks of R. sanguineus
(s.l.) used in the study were deposited in the GenBank
database under the accession numbers KU255848–
KU255856.

Bacterial 16S rDNA analysis
Amplification of V5-V6 rrs hypervariable regions was
performed in triplicates as previously described [34].
Briefly, 30 ng of DNA were amplified with 200 nM of
each primer, 1.75 U of Expand High Fidelity Enzyme
Mix (Roche, Basel, Switzerland), 1× Expand High
Fidelity Buffer (Roche, Basel, Switzerland), 0.06 mg/ml
of T4 gene 32 protein (New England Biolabs, Evry,
France), 0.06 mg/ml of bovine serum albumin (New
England Biolabs, Evry, France), and 40 μM of dNTP.
The 784F (5′-AGG ATT AGA TAC CCT GGT A-3′)
and 1061R (5′-CRR CAC GAG CTG ACG AC-3′)
primers used also contained an 8 bp multiplex barcode
and Illumina adapters. Amplifications were performed
on Biorad C1000 thermal cycler (Biorad, CA, USA), with
5 min at 95 °C, 35 cycles with 40 s of denaturation at
95 °C, 1 min of hybridization at 54.2 °C, 30 s of
extension at 72 °C and a final extension step of 7 min at
72 °C. Amplicons were purified with Agencourt AMPure
XP PCR Purification kit (Beckman Coulter, Villepinte,
France) and quantified using the Quant-iT Picogreen
dsDNA Assay Kit (Life Technologies, NY, USA). Then
an equimolar mix of each amplicon was prepared for

Table 1 Information on the 40 R. sanguineus (s.l.) specimens used
for analyses of bacterial diversity
Sample Location (coordinates) Sex/Stage Collection

method
Haplotype

AR-1 San Carlos, Arizona
(33°20′N, 110°27′W)

F From the
environmenta

5

AR-2 F 5

AR-3 M 5

AR-4 M 6

AR-5 M 5

FR-CO1 Bastia, Corsica, France
(42°41′N, 9°27′E)

M From dogs 1

FR-CO2 F 1

FR-CO3 M 1

FR-CO4 N 1

FR-CO7 F 1

FR-D1 La Bégude de Mazenc,
Drôme, France
(44°32′N, 4°56′E)

F From dogs 1

FR-D2 F 1

FR-D3 F 1

FR-D4 F 1

FR-D5 F 1

FR-D6 F 1

FR-D7 M 1

FR-G1 Sommières, Gard, France,
(43°47′N, 4°05′E)

F From dogs 1

FR-G2 F 1

FR-G3 F 1

FR-G4 F 3

FR-G6 N 1

FR-G7 N 1

FR-G13 F From the
environmentb

3

FR-G14 F 1

FR-G5 Aigues-Vives, Gard, France
(43°42′N, 4°13′E)

F From a dog 1

FR-G11 F From the
environmentc

3

FR-G9 Saint-Gilles, Gard, France
(43°40′N, 4°26′E)

M From dogs 1

FR-V4 Toulon, Var, France
(43°07′N, 5°55′E)

F From dogs 3

FR-V5 F 3

FR-V6 F 1

FR-V7 M 1

FR-V8 M 1

SEN-1 Dakar, Senegal
(14°43′N, 17°25′W)

F From dogsd 7

SEN-3 F 7

SEN-4 F 8

SEN-5 F 7

SEN-6 M 6

SEN-7 M 8

SEN-8 F 7

Abbreviations: F, female; M, male; N, nymph
aUsing CO2 traps in sub-urban private houses
bUsing the flagging method, in a rural location, along a small wooded river
occasionally frequented by dogs
cUsing the flagging method, along the river “Le Vidourle” in a park within this
middle town of southern France
dDogs from the same kennel
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sequencing. A negative control (pool of 3 amplifica-
tions of a blank extraction) was sequenced with the
library pool. Sequencing of libraries was performed
on the Illumina Miseq Platform (2 × 250-bp pared-
end reads) by ProfileXpert - ViroScan 3D (Lyon,
France). Analysis of the V5-V6 rrs sequences was
performed with Mothur v.1.33.3 pipeline [35]. Briefly,
sequences were trimmed based on (i) index presence
with less than two errors on primers; (ii) size com-
prised between 250 bp and 350 bp; and (iii) no
ambiguous sequences and less than 9 homopolymers.
Sequences were then aligned on Silva v.119 and
chimeras were removed with UCHIME implemented
in Mothur [36]. A total of 8,972,702 sequences of
good quality were available for the analysis. According
to neighbor-joining method, similar sequences were
then clustered as a unique OTU if they harbored less
than 3% divergence. The taxonomy assignments of
OTUs were performed with Naive Bayes Classifier
using Silva database v.119. Contaminants were re-
moved from the analysis using a homemade script
that suppresses OTUs if their relative abundance
(proportion of reads) in a given sample was not at
least 10× higher than in the negative control. For all
the analyses, an even number of sequences were used.
Richness (sobs, chao1), α-diversity (1/λ, H′) and β-
diversity (Bray-Curtis) indices were calculated
(Additional file 1: Table S2). Non-parametric analysis
of microbiota homogeneity (Homogeneity of Variance,
HOMOVA) and differentiation (Analysis of Molecular
Variance, AMOVA) among samples were performed
with MOTHUR pipeline, following the method previ-
ously described [37]. The HOMOVA analysis com-
pares the homogeneity of the communities within the
groups and the AMOVA compares the differences of
the microbial communities among the groups. Fastq
files were deposited on the European Nucleotide
Archive under the project accession number
(PRJEB21785).

Results
Haplotyping of R. sanguineus (s.l.) ticks and samples
selection
Forty-nine R. sanguineus (s.l.) ticks were first
selected according to morphological criteria and named:
AR-1–AR-5; FR-CO1–FR-CO7; FR-D1–FR-D7; FR-G1–
FR-G14; FR-V1–FR-V8; SEN-1–SEN-8, according to
their geographical origin (AR: Arizona; FR-CO: France-
Corsica; FR-D: France-Drôme; FR-G: France-Gard; FR-V:
France-Var; SEN: Senegal). Among these, 49 individuals,
analyses of the 400 bp segment of mitochondrial 12S
rRNA gene distinguished 8 different haplotypes (haplo-
types 1–8). After BLAST analysis, ticks of haplotypes 1
(KU255848), 2 (KU255849), 3 (KU255850), 4 (KU
255851) and 5 (KU255852), all collected in France or
Arizona, showed 99–100% homology with R. sangui-
neus (s.l.) ticks sequences from western Europe, USA
and southern South America. Haplotypes 6 (KU255853
and KU255854), 7 (KU255855) and 8 (KU255856), were
associated with ticks collected in Senegal, except one
sample (AR-4) that was collected in Arizona. Those
sequences showed 98–99% of homology with R. san-
guineus (s.l.) ticks sequences from Brazil (AY559842)
and Asia (JX416325, DQ003001 and AY987377). The
proportion of nucleotide identity between the 8 R.
sanguineus (s.l.) haplotype sequences identified in the
study is presented in Table 2.
Phylogenetic analysis (Fig. 1) confirmed the existence of

two monophyletic clusters. The first cluster, labeled as the
“Tropical” lineage, included R. sanguineus (s.l.) specimens
from Asia and the northern part of South-America (Brazil).
The second cluster, labelled as the “Temperate” lineage, in-
cluded sequences from Europe, Egypt, USA and southern
South America (Argentina, Uruguay). All R. sanguineus
(s.l.) sequences of the study originating from Senegal clus-
tered in the “Tropical” lineage, all R. sanguineus (s.l.)
sequences from France clustered in the “Temperate”
lineage whereas sequences of R. sanguineus (s.l.) from
Arizona were distributed within both lineages. Interestingly,

Table 2 Sequence identity matrix between the eight R. sanguineus (s.l.) haplotypes detected in the study

haplotype 1a haplotype 2a haplotype 3a haplotype 4a haplotype 5a haplotype 6b haplotype 7b haplotype 8b

haplotype 1 –

haplotype 2 0.982 –

haplotype 3 0.997 0.979 –

haplotype 4 0.984 0.997 0.982 –

haplotype 5 0.994 0.977 0.997 0.979 –

haplotype 6 0.745 0.742 0.745 0.745 0.742 –

haplotype 7 0.747 0.745 0.747 0.747 0.745 0.997 –

haplotype 8 0.750 0.747 0.75 0.75 0.747 0.995 0.997 –
aR. sanguineus (s.l.) haplotypes of the “Temperate” lineage
bR. sanguineus (s.l.) haplotypes of the “Tropical” lineage
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within the “Temperate” cluster, several specimens of R.
sanguineus (s.l.) from France, including specimens of the
study assigned to haplotypes 2 and 4, formed a monophy-
letic sub-group supported by a bootstrap value of 84%.
Finally, among the 49 samples initially selected, two

samples assigned to haplotypes 2 and 4 (FR-CO6 and
FR-G8) were excluded from the study because of their
genetic divergence within the “Temperate” lineage.
Among the remaining ticks, five were discarded for in-
sufficient amplification of the V5-V6 rrs hypervariable
regions (samples FR-V1, FR-V2, FR-V3, FR-G10 and
FR-G12) and 2 were excluded due to insufficient read
number after Miseq sequencing (samples SEN-2 and
FR-CO5). A total of 40 samples were kept for subse-
quent analyses of bacterial diversity. Information on the
40 analyzed samples is given in Table 1.

Bacterial diversity
The number of sequences obtained was between
85,388–386,478 per sample. This depth was sufficient to
reach reliable diversity estimates (Coverage > 0.999)
(Additional file 1: Table S2). The bacterial estimated
richness of R. sanguineus (s.l.) was comprised of between
34 and 562 OTUs per individual (Chao1 = 243 ± 132)
(Additional file 1: Table S2). The bacterial microbiota of
R. sanguineus (s.l.) was dominated by 3 genera (Fig. 2),
namely Coxiella (phylum Proteobacteria, class Gamma-
proteobacteria), Rickettsia (phylum Proteobacteria, class
Alphaproteobacteria) and Bacillus (phylum Firmicutes,
class Bacilli). Both Coxiella and Rickettsia genera
represented up to 99% of the total R. sanguineus (s.l.)
microbiota. However, some samples had significantly
higher proportions of Bacillus (up to 75%).

Fig. 1 Phylogenetic analysis of R. sanguineus (s.l.) ticks based on mitochondrial 12S rRNA gene. Sequences (400 bp) of R. sanguineus (s.l.) ticks from
France, Senegal and Arizona were assembled by haplotypes and compared to sequences of R. sanguineus (s.l.) from different parts of the world.
Identification and GenBank accession numbers are indicated for each sample. Countries or regions where individuals were isolated are also given in
brackets. The Maximum Likelihood phylogenetic tree was constructed using the Hasegawa, Kishino and Yano method with bootstrap analysis of 1000
pseudoreplicates. Numbers on branches indicate support for each clade ≥ 75%. Subsequent analyses using Kimura’s two-parameter (K2P) distance and
parsimony methods in the same conditions confirmed the topology of the tree (not shown)
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The effect of sample categories (sex/stage), origin,
habitat and their interactions on the β-diversity was
estimated by a permutational multivariate analysis of
variance (adonis ANOVA test) with 999 permutations.
Those three factors were correlated with 48% of the
overall variability. Only the sample categories, namely
males, females, nymph (adonis permutational
ANOVA: F(2,28) = 2.29, P = 0.013) and the origin
(adonis permutational ANOVA: F(2,28) = 2.02,
P = 0.002) showed a difference in the microbiota
similarity. Any differences in heterogeneity were
evidenced between sample categories. The females
harbored a microbiota dominated by both genera,
Rickettsia and Coxiella, whereas the males were
mainly associated with a higher proportion of Bacillus
(Welsh corrected t-test: t = -2.4, df = 10, P = 0.03)
(Fig. 3a). In addition, adults harbored a higher
proportion of Rhodococcus, Propionibacterium, Micro-
coccus and Bacillus, compared to nymphs (Fig. 3b).
Significant differences in the microbiota homogeneity
(higher within group similarity) and composition were
observed between “Tropical” and “Temperate” tick
lineages (HOMOVA: Bv = 2.19, P < 0.001; AMOVA:
Fs(1,37) = 4.46, P = 0.001) (Fig. 3b). However, the

genetic divergence is confounded with the sampling
site effect as the “Tropical” genotype was mainly as-
sociated with specimens collected from Senegal. Con-
sequently, the differences between “Tropical” and
Mediterranean populations reflected also the differ-
ences between Senegal and other locations. Indeed,
Senegalese individuals harbored a more homogenous
microbiota than those from France-Drôme and
France-Gard (HOMOVA: Bv = 1.75, P = 0.002 and
Bv = 1.19, P < 0.001, respectively). They also har-
bored a different microbiota from those collected in
France-Corse, France-Gard and France-Var (AMOVA:
Fs(1,9) = 4.64, P = 0.002; Fs(1,15) = 6.64, P < 0.001 and
Fs(1,9) = 3.53, P = 0.003, respectively). Generally, a
higher abundance of Coxiella was associated with
Senegalese specimens, compared to those of the last
three populations from France (Fig. 3c).
Within specimens collected from France, micro-

biota of female ticks collected in Gard was charac-
terized by a high abundance of Rickettsia and
Coxiella compared to ticks from the other three
sites. However, the number of samples is not
sufficient to generalize those observations with a
statistical analysis.

Fig. 2 Histograms of bacterial Operational Taxonomic Units (OTU) abundances. The OTUs relative abundances are represented for samples
collected in France-Corse (FR-CO), France-Drome (FR-DR), France-Gard (FR-GA), France-Var (FR-VA), Senegal-Dakar (SE-DA), USA-Arizona (USA-AR)
as well as for “Temperate” or “Tropical” lineage. Samples of males (M), females (F) and nymphs (N) samples are also specified. OTUs which do not
reach a relative abundance of 0.1 in at least one sample were pooled in a category named “Other”
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Discussion
Few studies have aimed at identifying bacterial commu-
nities within ticks to date [25–28]. To provide new
insight in bacterial communities hosted by R. sanguineus
(s.l.) ticks, a survey of natural tick populations was
conducted in 2014 in four locations at southern France,
as well as in one site in Senegal and one site in Arizona.
Taking into account the current controversial taxonomic
status of R. sanguineus (s.l.) ticks, all specimens used in
the study were genetically characterized by sequencing
of a 400 bp mitochondrial 12S rRNA fragment. As ex-
pected, all R. sanguineus (s.l.) sequences associated with
Senegalese and French individuals were associated with
the “Tropical” and “Temperate” lineages, respectively. In
Arizona, ticks of both lineages were detected, which

suggested that individuals from those two groups live in
sympatry within this site. Two specimens were discarded
from subsequent analyses because of their genetic
divergence with the genotype of the most frequently en-
countered under “temperate” regions in the study. Analysis
of bacterial communities within those particular specimens
would result in difficulties in results interpretation.
High-throughput screening of variable V5-V6 bacterial

16S rRNA gene was performed on all the forty selected
R. sanguineus (s.l.) specimens. We found that the bacter-
ial microbiota of R. sanguineus (s.l.) was dominated by
three genera, namely Coxiella, Rickettsia and Bacillus
representing up to 99% (Coxiella and Rickettsia) and
75% (Bacillus) of the total relative abundance. Interest-
ingly, females harbored a microbiota dominated by

Fig. 3 Extended error bar plots of the most abundant OTUs associated with the covariates. Differences of abundances among OTUs were tested
with a Welsh corrected t-test for R. sanguineus (s.l.) from: a Nymphs (N), females (F) and males (M); b “Tropical” lineage (RT) and “Temperate” lineage
(RM); c Senegal (SEN); France-Var (VAR), France-Gard (GA) and France-Corsica (CO). The extended error bars represent the 95% confidence interval of
the fold change in relative abundance for an OTU between two modalities
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Rickettsia and Coxiella, whereas males harbored a higher
proportion of Bacillus. Previous surveys on both genders
have also shown that R. sanguineus (s.l.) ticks were
mainly infected by the symbiotic/pathogenic bacterial
genera Coxiella and Rickettsia [27, 28, 38]. Coxiella-like
endosymbionts have already been shown to be mainly
associated with females [27]. They can colonize
Malpighian tubules, ovaries of females and can also be
maternally transmitted [27, 28]. If no clear tissue trop-
ism was detected for Rickettsia sp. in R. sanguineus (s.l.),
maternal transmission of such symbionts has previously
been observed [28, 39–41]. Lalzar et al. also suggested
that a competition for the ovary colonization occurs be-
tween Coxiella sp. and Rickettsia sp. [28]. Our results
support such hypothesis, since individuals infected by
Rickettsia spp. or Coxiella spp. bacteria were mainly fe-
males and were found dominantly infected by either one
of those symbionts, but never both at the same
abundance.
Coxiella-like endosymbionts are widespread among

the hard ticks, in which they present patterns of co-
evolution and genome reduction, which often occur in
vertically-inherited endosymbionts [38, 42, 43]. Genome
comparisons between Coxiella-like endosymbiont from
the tick Amblyomma americanum and the Q fever
ethiological agent Coxiella burnetii revealed an enrich-
ment of genes involved in B vitamins and cofactors me-
tabolism within the genome of the symbiotic strain [43].
The authors suggested that those bacterial functions are
involved in a mutualistic interaction with the tick host
by compensating nutritional deficiencies. Such a hypoth-
esis is consistent with the observed decreases in ticks
fecundity and life-history traits successive to the
symbiont elimination [44]. The possible impact of
Coxiella spp. and Rickettsia spp. on R. sanguineus (s.l.)
survival, reproduction and vector competence needs to
be explored further as it could open avenues for new
control strategies.
Several species from the genus Bacillus were shown to

colonize Arthropods. As an example, Bacillus
thuringiensis, producing the Cry and Cyt toxins, has
been broadly used for its biopesticide properties on
Insects, whichhave shown interesting properties on
Acarians [45, 46]. Bacillus spp. have previously been
detected in several tick genera such as Ixodes,
Amblyomma, Aponomma, Haemaphysalis and the spe-
cies Rhipicephalus (Boophilus) microplus [47]. In the
present study, Bacillus spp. represent 75% of the total
relative abundance within R. sanguineus (s.l.) ticks and
was mostly associated with males. The nature of the as-
sociation between male R. sanguineus (s.l.) ticks and
Bacillus spp. has not yet been characterized.
Finally, our results suggest variations of microbiota

composition within R. sanguineus (s.l.) ticks related to

origin. Similarly, Ixodes ticks originating from eastern
USA presented a significant differentiation of their
microbiota according to the distance among local
populations [48]. In that study, variations in Rickettsia
spp. and Enterobacteriaceae abundances were mainly
responsible for those differentiations. In R. sanguineus
(s.l.), site variations were related to a shift in the
dominant taxa of Coxiella spp. to Rickettsia spp., and
could be attributed to habitats or genetic changes
associated with the ticks’ populations belonging to
“Temperate” or “Tropical” lineages. Interestingly, R.
sanguineus (s.l.) ticks from Gard are associated with a
highest relative abundance of Rickettsia compared to
other French sampling sites. The Gard region has also
been identified as a hotspot for the prevalence of the
hemoprotozoan Babesia vogeli in dogs [12]. During
the development of the Babesia protozoa in the tick
the following events occur: (i) sexual reproduction in
the lumen of the digestive tract then (ii) invasion of
different organs, including Malpighian tubules and the
ovaries [49, 50]. Further investigations should be con-
ducted to determine whether interactions between
bacteria and the protozoa occur in ticks, and if they
could interfere with its development or transmission
as it has been previously shown with Plasmodium
falciparum in mosquitoes [51].
Even though we have selected ticks that were not visu-

ally engorged, samples from some regions were collected
on dogs and might have already ingested blood. Blood
ingestion is responsible of transient changes in the mi-
crobial communities, and might have had an influence
on our results [52]. More controlled studies should be
conducted in order to tease apart those effects.

Conclusions
This study used a high-throughput sequencing ap-
proach to characterize the bacterial microbiota associ-
ated with R. sanguineus (s.l.) ticks obtained from
different origins. Our results highlight differences in
the structure of the microbiota, according to tick ge-
notypes, geographical origin of specimens and stages
(nymphs, male or female). Three dominant bacterial
genera, namely Rickettsia, Coxiella and Bacillus,
emerged from these analyzes with strong correlations
with the samples category, geographical origin and
lineage. The genus Coxiella is strongly associated with
“Tropical” ticks from Africa whereas the genus Rick-
ettsia is mainly found in “Temperate” ticks from the
Gard region of France. This study is the first compre-
hensive overview of the structure of the microbiota,
and its variation factors, within R. sanguineus (s.l.)
ticks. These results provide a basis for future work on
symbiotic interactions, biology and vector competence
within the R. sanguineus (s.l.) complex.
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