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In this note, we study the ultimate ruin probabilities of a realvalued Lévy process X with light-tailed negative jumps. It is well-known that, for such Lévy processes, the probability of ruin decreases as an exponential function with a rate given by the root of the Laplace exponent, when the initial value goes to infinity. Under the additional assumption that X has integrable positive jumps, we show how a finer analysis of the Laplace exponent gives in fact a complete description of the bounds on the probability of ruin for this class of Lévy processes. This leads to the identification of a case that was not considered before. We apply the result to the Cramér-Lundberg model perturbed by Brownian motion.

Introduction and Main Result

Ruin theory studies in particular the time of passage below 0 of stochastic processes that represent the capital of an insurance company or a pension fund. In particular, it studies the probability that the process becomes negative on an infinite time horizon in function of the initial value of the process. The key result of Cramér [START_REF] Cramér | Sur un nouveau théorème-limite de la théorie des probabilités[END_REF] is that, in the case of the compound Poisson process with drift, this probability decreases as an exponential function with a rate given as a solution to the Lundberg equation. It is well-know that, when the initial value goes to infinity, the result of Cramér holds for more general (light-tailed) Lévy processes where the rate is given by the root of the Laplace exponent of the process, see Theorem XI.2.6 in [START_REF] Asmussen | Ruin Probabilities[END_REF], and also [START_REF] Bertoin | Cramér's estimate for Lévy processes[END_REF], [START_REF] Klüppelberg | Ruin probabilities and overshoots for general Lévy insurance risk processes[END_REF] and Section 7.2 in [START_REF] Kyprianou | Fluctuations of Lévy Processes with Applications[END_REF].

In this note, we show that a finer analysis of the Laplace exponent can lead to a complete description of the bounds on the ultimate probability of ruin. Our main contribution is to give a systematic description of all possible cases (Theorem 1), where the case when it has a root (Theorem 1, Case B) corresponds to the well-known Lundberg bound. This also leads to the identification of a case that is not considered in the literature (Theorem 1, Case D). We show that in this case the ruin probability also decreases at least as an exponential function and identify the rate of decay. Thus, Theorem 1 gives a method for obtaining exponential bounds and conditions for ruin with probability one for a large class of risk models. We illustrate this by applying the method to the Cramér-Lundberg model perturbed by Brownian motion (Proposition 1).

When the Lévy process has jumps only on one side (i.e., it is spectrally onesided ), the results contained in Chapter 8 of [START_REF] Kyprianou | Fluctuations of Lévy Processes with Applications[END_REF] and the references therein give a precise description of the ultimate ruin probability in terms of the so-called scale functions. However, these scale functions are in general not very explicit. In comparison, the method presented here is more elementary and less precise but works also in the case where there are two-sided jumps and is, in some cases, more explicit.

1.1. Lévy Processes and Laplace Exponents. In this section, we state some basic facts about Lévy processes and present the main assumptions for the rest of this paper.

Let X = (X t ) t≥0 be a real-valued Lévy process on (Ω, F , F = (F t ) t≥0 , P) (in the sense of [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF], Definition II.4.1, p.101) where the filtration F is assumed to satisfy the usual conditions. It is well-known that the characteristic function of X t for each t ≥ 0 is given by the Lévy-Khintchine formula: E e iλXt = e tΦ(λ) , for all t ≥ 0 and λ ∈ R, where

Φ(λ) = iaλ - σ 2 2 λ 2 + R e iλx -1 -iλx½ {|x|<1} Π(dx), for all λ ∈ R,
for a ∈ R, σ ≥ 0 and Π a Lévy measure on R satisfying Π({0}) = 0 and

R x 2 ∧ 1 Π(dx) < +∞.
The function Φ and the triplet (a, σ 2 , Π) are unique and are called the Lévy exponent and the characteristics (or Lévy triplet) of X respectively.

Assumption (I). X is integrable.

The first assumption we use is integrability. We say that X is integrable if E(|X 1 |) < +∞ and it can be shown (see e.g. [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF], Theorem 25.3, p.159) that this is equivalent to the condition |x|≥1 |x|Π(dx) < +∞.

Under assumption (I), we can rewrite the Lévy exponent of X as

(1) Φ(λ) = iδλ - σ 2 2 λ 2 + R e iλx -1 -iλx Π(dx), for all λ ∈ R, where δ E(X 1 ) = a + |x|≥1 xΠ(dx).
Also, under assumption (I), the Lévy-Itô decomposition of X is

(2)

X t = δt + σW t + t 0 R
x µ X -ν X (ds, dx), for all t ≥ 0, where µ X is the jump measure of X, ν X (ds, dx) = dsΠ(dx) is the compensator of the jump measure (see [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF], Theorem I.1.8, p.66) and (W t ) t≥0 is a standard Brownian motion.

Assumption (II). X has light-tailed negative jumps.

The second assumption we will use is a condition on the tail behaviour of the negative jumps. Similar definitions to the one below can be found on p.338 in [START_REF] Asmussen | Ruin Probabilities[END_REF] and p.164-165 in [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF].

Definition 1. Let X = (X t ) t≥0 be a real-valued Lévy process with characteristics (a, σ 2 , Π). Let

γ c sup γ ≥ 0 : -1 -∞ e -γx Π(dx) < +∞ .
We say that X has light-tailed negative jumps if γ c > 0. (Note that γ c can take the value +∞.) Under Assumptions (I) and (II), it is possible to show that the Lévy exponent exists also for any λ = iγ, with γ ∈ [0, γ c ). In fact, when γ ∈ [0, γ c ),

Φ(iγ) = -δγ + σ 2 2 γ 2 + R e -γx -1 + γx Π(dx),
and letting I - R -|e -γx -1 + γx| Π(dx), we obtain using the Taylor formula,

I -≤ 0 -1 e -γx -1 + γx Π(dx) + -1 -∞ e -γx Π(dx) ≤ γ 2 2 0 -1 x 2 Π(dx) + -1
-∞ e -γx Π(dx) < +∞.

On the other hand, letting I + R + |e -γx -1 + γx| Π(dx) and using the Taylor formula and the assumption of integrability,

I + = 1 0 e -γx -1 + γx Π(dx) + ∞ 1 e -γx -1 + γx Π(dx) ≤ γ 2 2 1 0 x 2 Π(dx) + Π ([1, +∞)) + γ ∞ 1 |x|Π(dx) < +∞.
Therefore, it is possible to define the Laplace exponent of X as the function Ψ given by

Ψ(γ) Φ(iγ) = -δγ + σ 2 2 γ 2 + R e -γx -1 + γx Π(dx), for all γ ∈ [0, γ c ).
Remark 1. The Laplace exponent is always defined on R -and can, under Assumptions (I) and (II), be defined on (-∞, γ c ).

From the Lévy-Khintchine formula, we see that the Laplace transform of X t is then given by E e -γXt = e tΨ(γ) , for all t ≥ 0 and γ ∈ (-∞, γ c ).

1.2. Main Result and Application. Suppose that X = (X t ) t≥0 is a realvalued Lévy process satisfying assumptions (I) and (II). Let Y u t u + X t , for t ≥ 0 and u ≥ 0. We define the ultimate ruin probability as

P inf 0≤t<+∞ Y u t ≤ 0 = P inf 0≤t<+∞ X t ≤ -u = P sup 0≤t<+∞ (-X t ) ≥ u .
This can also be written as P (τ (u) < +∞) where τ (u) inf{t ≥ 0 : X t ≤ -u} and τ (u) +∞, if X never goes below -u. We are now ready to give the main result.

Theorem 1. Let X = (X t ) t≥0 be a (non-zero) real-valued Lévy process satisfying Assumptions (I) and (II) and Ψ : [0, γ c ) → R be the Laplace exponent of X. Then, there are only four possible cases.

(A) If Ψ(γ) > 0, for all γ ∈ (0, γ c ), then P(τ (u) < +∞) = 1, for all u ≥ 0. (B) If there exists γ 0 ∈ (0, γ c ) such that Ψ(γ 0 ) = 0, then P(τ (u) < +∞) ≤
e -γ 0 u , for all u ≥ 0. (C) If γ c = +∞ and Ψ(γ) < 0, for all γ ∈ (0, +∞), then σ 2 = 0, Π(R -) = 0, δ > 0 and which means that X is a subordinator. Therefore, P(τ (u) < +∞) = 0, for all u ≥ 0. (D) If γ c < +∞ and Ψ(γ) < 0, for all γ ∈ (0, γ c ), then P (τ (u) < +∞) ≤ e -γcu , for all u ≥ 0.

Thus, Theorem 1 exhausts all possible cases and allows one to classify the behaviour of the ruin probability in function of the behaviour of the Laplace exponent for a large class of risk models. To illustrate how to use Theorem 1, we apply it to the Cramér-Lundberg model perturbed by Brownian motion. This model, which is sometimes also called perturbed risk process and was studied first in [START_REF] Gerber | An extension of the renewal equation and its application in the collective theory of risk[END_REF], is given by (3)

Y u t = u + pt + σW t - Nt n=1
U n , for all t ≥ 0, where p > 0, σ > 0, N = (N t ) t≥0 is a standard Poisson process with rate β, (W t ) t≥0 is a standard Brownian motion and U = (U n ) n∈N is a sequence of i.i.d. exponential random variables with rate α. Additionally, it is assumed that the processes N, W and the sequence U are independent from each other. Then, the following proposition gives the description of the ruin probabilities for this model. Note that in contrast to the case when σ 2 = 0, there are two possible regimes when the safety loading condition p > β α is satisfied. This shows how the uncertainty in premium payments affects the ruin probability. Also note that this result is very explicit as the behaviour of the ruin probability only depends on the value of the parameters and that it gives the complete description of the possible cases.

Proposition 1. Let X = (X t ) t≥0 be a real-valued Lévy process with Lévy triplet Π(dx) = βαe αx ½ {x≤0} dx, σ 2 > 0 and a = p + |x|<1 xΠ(dx) for some p, α, β > 0. Then, Y u t = u + X t , with u ≥ 0, corresponds to the perturbed risk process given by (3). Let ∆ (σ 2 α -2p) 2 + 8σ 2 β and γ -

σ 2 α+2p- √ ∆ 2σ 2 . • If p ≤ β α , then P(τ (u) < +∞) = 1, for all u ≥ 0. • If p > β α and γ -< α, then P(τ (u) < +∞) ≤ e -γ -u . • If p > β α and γ -≥ α, then P(τ (u) < +∞) ≤ e -αu .
Proof. We have γ c = α and δ = p -β α . So, by Theorem 1 (A), we have ruin with probability one when p ≤ β α and we assume in the following that p > β α . For γ ∈ (0, α), we obtain

Ψ(γ) = -δγ + σ 2 2 γ 2 + βα 0 -∞ (e -γx -1 + γx)e αx dx = -pγ + σ 2 2 γ 2 - βα γ -α -β = γ (σ 2 γ 2 -(σ 2 α + 2p)γ + 2(pα -β)) 2(γ -α) = - 1 2 A(γ)B(γ),
where

A(γ) γ α-γ and B(γ) σ 2 γ 2 -(σ 2 α + 2p)γ + 2(pα -β).
To see if Ψ has an other root along 0, we need to consider the solutions of B(γ) = 0. This is an equation of second order with determinant ∆. As ∆ > 0, B has two distinct roots γ + and γ -, given by

γ ± = σ 2 α + 2p ± √ ∆ 2σ 2 . B(γ) γ α γ + γ - B(γ) γ α γ + γ - Figure 1. Behaviour of B when γ -< α (left) and γ -≥ α (right).
First note that γ -< γ + and that γ + ≥ α and γ -≥ 0, because (σ 2 α +2p) 2 ≥ ∆ ≥ (σ 2 α -2p) 2 . Additionally, note that B ′′ (γ) = 2σ 2 > 0, so that B is convex. Therefore, we only have two possible cases (see Figure 1) : either γ -< α and then γ -is a root of B and of Ψ, or γ -≥ α and then B(γ) > 0 and Ψ(γ) < 0, for all γ ∈ [0, α). So, if γ -< α, then, by Theorem 1 (B), we obtain P(τ (u) < +∞) ≤ e -γ -u and if γ -≥ α, then, by Theorem 1 (D), we obtain P(τ (u) < +∞) ≤ e -αu .

Proof of Theorem 1

2.1. Law of Large Numbers and Properties of the Laplace Exponent. We start with the following well-known proposition and corollary (see Proposition IV.1.2, p.73 in [START_REF] Asmussen | Ruin Probabilities[END_REF] in the case of the compound Poisson process with drift, disscussion p.75 and Proposition 8 p.84 in [START_REF] Bertoin | Lévy processes[END_REF], Exercice 7.3 in [START_REF] Kyprianou | Fluctuations of Lévy Processes with Applications[END_REF], and Section 36 starting at p.245 in [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF] in the general case) that give a strong law of large numbers and the tail behaviour for integrable Lévy processes. For completeness, we give an alternative proof which is not based on the random walk approximation. Proposition 2. Let X = (X t ) t≥0 be real-valued Lévy process satisfying Assumption (I). Then, Xt t a.s.

→ δ, as t → +∞.

Proof. Using the Lévy-Itô decomposition (2), we obtain

X t t = δ + σ W t t + 1 t t 0 R
x µ X -ν X (ds, dx), for all t > 0.

But, Wt t a.s.

→ 0. Now let M . 0 R x µ X -ν X (ds, dx). We will show that Mt t a.s.

→ 0. Note that

M t = M (1) t + M (2) t + M (3) t t 0 |x|<1 x µ X -ν X (ds, dx) + t 0 |x|≥1
xµ X (ds, dx)

- t 0 |x|≥1
xdsΠ(dx).

Let's prove first that

M (1) t t a.s.
→ 0. By Theorem 9, p.142 in [START_REF] Sh | Theory of martingales[END_REF] it is enough to show that B∞ < +∞ a.s., where B is the compensator of of the process (B t ) t≥0 defined by

B t = 0≤s<t (∆M (1) s /(1 + s)) 2 1 + |∆M (1) s /(1 + s)|
, for all t ≥ 0, where ∆M

is the jump of M (1) at s ≥ 0. But, by Theorem 1, p.176 in [START_REF] Sh | Theory of martingales[END_REF], and using the fact that ν X ({s}, dx) = λ({s})Π(dx) = 0, because λ is the Lebesgue measure, we obtain ∆M

(1) s = ∆X s ½ {|∆Xs |<1} . Next, note that B t = 0≤s<t (∆X s ) 2 ½ {|∆Xs |<1} /(1 + s) 1 + s + |∆X s ½ {|∆Xs |<1} | = t 0 R x 2 ½ {|x|<1} /(1 + s) 1 + s + |x½ {|x|<1} | µ X (ds, dx).
Therefore, B satisfies

Bt = t 0 R x 2 ½ {|x|<1} /(1 + s) 1 + s + |x½ {|x|<1} | dsΠ(dx) ≤ t 0 1 (1 + s) 2 ds |x|<1 x 2 Π(dx) ≤ ∞ 0 1 (1 + s) 2 ds |x|<1 x 2 Π(dx) = |x|<1 x 2 Π(dx) < +∞
for all t ≥ 0, where the last integral is finite because Π is a Lévy measure. So, B∞ < +∞ a.s. and, if Π(|x| ≥ 1) = 0, we are finished. Therefore, without loss of generality, we suppose that Π(|x| ≥ 1) > 0. Note that

M (3) t t = -|x|≥1 xΠ(dx)
, for all t ≥ 0, so we need to show that

M (2) t t a.s.

→ |x|≥1 xΠ(dx).

It is well known that the jump measure µ X is a Poisson random measure with intensity λ × Π, where λ is the Lebesgue measure. Then, by Lemma 2.8, p.46-47 in [START_REF] Kyprianou | Fluctuations of Lévy Processes with Applications[END_REF], M (2) can be represented as a compound Poisson process with rate Π(|x| ≥ 1) and jump distribution Π(|x| ≥ 1) -1 Π(dx)| {|x|≥1} (where Π(dx)| {|x|≥1} is the restriction of the measure Π to the set {|x| ≥ 1}). More precisely,

M (2) t = Nt i=1 Y i , for all t ≥ 0,
where (N t ) t≥0 is a Poisson process with rate Π(|x| ≥ 1) and (Y i ) i∈N is a sequence of i.i.d. random variables, which is independent from N and with distribution Π(|x| ≥ 1) -1 Π(dx)| {|x|≥1} . Conditioning on N t , using the strong law of large numbers and noting that N t a.s.

→ +∞, we obtain

M (2) t N t = 1 N t Nt i=1 Y i a.s. → E(Y 1 ) = Π(|x| ≥ 1) -1 |x|≥1 xΠ(dx).
Finally, using the fact that Nt t a.s.

→ Π(|x| ≥ 1), we obtain

M (2) t t = N t t M (2) t N t a.s. → |x|≥1 xΠ(dx).
Corollary 1. Let X = (X t ) t≥0 be a (non-zero) real-valued Lévy process satisfying Assumption (I).

(1) If δ > 0, then lim t→+∞ X t a.s

= +∞. (2) If δ < 0, then lim t→+∞ X t a.s = -∞. (3) If δ = 0, then lim inf t→+∞ X t a.s.
= -∞ and lim sup t→+∞ X t a.s.

= +∞.

Proof. The assertions 1 and 2 follow directly from Proposition 2. For assertion 3, note that the condition δ = E(X 1 ) = 0 implies, by Theorem 36.7, p.248 in [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF], that X is recurrent. This means that we have neither lim t→+∞ X t a.s = +∞, nor lim t→+∞ X t a.s = -∞. Therefore, by Proposition 37.10, p.255 in [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF], lim inf t→+∞ X t a.s.

= -∞ and lim sup t→+∞ X t a.s.

= +∞.

Next, the following proposition gives the basic properties of the Laplace exponent (see Lemma 26.4, p.169 in [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF]). Proposition 3. Let X = (X t ) t≥0 be a (non-zero) real-valued Lévy process satisfying Assumptions (I) and (II) and Ψ : [0, γ c ) → R the Laplace exponent of X. Then, (1) Ψ is convex and starting from 0 and

(2) Ψ is of class C ∞ on (0, γ c ) and its derivative Ψ ′ is non-decreasing and given by

(4) Ψ ′ (γ) = -δ + σ 2 γ + R x 1 -e -γx Π(dx), for all γ ∈ (0, γ c ).
The convexity of the Laplace exponent then implies that there are only four possible cases which are illustrated in Figure 2 and reflect the possible cases for the behaviour of the ruin probability. 2.2. The Martingale Method in Ruin Theory and the Proof. In this final section, we recall the martingale method in ruin theory and apply it to prove Theorem 1. For the proof of the following well-known martingale method see e.g. Proposition II.3.1, p.29 in [START_REF] Asmussen | Ruin Probabilities[END_REF]. Proposition 4. Let X = (X t ) t≥0 be a real-valued Lévy process. Suppose that (i) there exists γ 0 > 0, such that (e -γ 0 Xt ) t≥0 is a martingale, (ii) X t a.s.

Ψ(γ) γ (B) (A) (C) γ 0 Ψ(γ) γ (B) (A) (D) γ c γ 0
→ +∞ as t → +∞ on the set {τ (u) = +∞}.

Then, for all u ≥ 0, P (τ (u) < +∞) = C(u)e -γ 0 u ≤ e -γ 0 u , where

C(u) 1 E(e γ 0 ξ(u) | τ (u) < +∞) ,
and ξ(u) -u -X τ (u) .

Remark 2. As noted in [START_REF] Asmussen | Ruin Probabilities[END_REF], p.339, it is hard to obtain an explicit expression for C(u). However, in some cases, it is possible to compute C(u). For example, if X has no negative jumps then C(u) = 1, and if the jumps are bounded or exponential, it is possible to compute the constant explicitly, see e.g. Section 6c in [START_REF] Asmussen | Ruin Probabilities[END_REF]. There are also asymptotic expressions for C(u) as u → +∞, see e.g. Corollary XI.2.7 p.339 in [START_REF] Asmussen | Ruin Probabilities[END_REF] and Section 7.2. in [START_REF] Kyprianou | Fluctuations of Lévy Processes with Applications[END_REF]. As we concentrate on the rate of decay of the probability of ruin in the general case, we will set C(u) = 1 and keep in mind that more precise results can be obtained for specific models or asymptotics.

The following proposition now gives a simple sufficient condition for (i) in Proposition 4 in terms of the Laplace exponent.

Proposition 5. Let X = (X t ) t≥0 be a real-valued Lévy process satisfying Assumptions (I) and (II) and Ψ : [0, γ c ) → R be the Laplace exponent of X. Suppose there exists γ 0 ∈ (0, γ c ) such that Ψ(γ 0 ) = 0. Then, (e -γ 0 Xt ) t≥0 is a martingale.

Proof. From the definition of γ c , we have that E(e -γXt ) < +∞ for all t ≥ 0 and γ ∈ [0, γ c ). Imitating the proof of Theorem II.1.2, p.23 in [START_REF] Asmussen | Ruin Probabilities[END_REF], we find that the process (e -γXt -e tΨ(γ) ) t≥0 is a martingale for each γ ∈ [0, γ c ). In particular, if there exists γ 0 > 0 such that Ψ(γ 0 ) = 0, then (e -γ 0 Xt ) t≥0 is a martingale.

Putting everything together, we can now prove the main theorem. Note that case (B) can also be deduced with some work from Proposition XI.2.3 and Theorem XI.2.6 p.337-338 in [START_REF] Asmussen | Ruin Probabilities[END_REF] and that case (A) is generally implicitly excluded by the safety loading requirement δ > 0.

Proof of Theorem 1. Note that from (4) we obtain

lim γ→0+ Ψ ′ (γ) = lim γ→0+ -δ + σ 2 γ + R x 1 -e -γx Π(dx) = -δ.
Therefore, from the study of the function Ψ, we see that δ ≤ 0 in case (A), and δ > 0 in cases (B), (C) and (D).

Case (A). Let u ≥ 0. In case (A), we have δ ≤ 0. Suppose first that δ < 0, then, by Corollary 1, X t a.s.

→ -∞ as t → +∞. This immediately implies that

P inf t≥0 X t ≤ -u ≥ P inf t≥0 X t = -∞ = 1.
If δ = 0, then by Corollary 1, P (lim inf t→+∞ X t ≤ -u) = 1. As ({inf t≥n X t ≤ -u}) n∈N is a decreasing sequence of events, P (inf t≥m X t ≤ -u) ≤ P (inf t≥0 X t ≤ -u), for each m ∈ N and

P inf t≥0 X t ≤ -u ≥ lim m→∞ P inf t≥m X t ≤ -u = lim m→∞ P m n=0 inf t≥n X t ≤ -u = P n∈N inf t≥n X t ≤ -u = P lim inf t→∞ X t ≤ -u = 1.
Case (B). We will show that (i) and (ii) of Proposition 4 hold. Because (B) holds, by Proposition 5, (i) is satisfied. Now note that in case (B) we have δ > 0 and, by Corollary 1, that X t a.s.

→ +∞, as t → +∞. So (ii) is also satisfied.

Case (C). Because (C) holds, we have Ψ(γ) < 0, lim γ→0+ Ψ ′ (γ) = -δ < 0. We also have Ψ ′ (γ) < 0, for all γ > 0. But, from (4), we see that Ψ ′ (γ) ≤ 0, for all γ > 0, if, and only if,

σ 2 γ + R x 1 -e -γx Π(dx) ≤ δ, for all γ > 0.
If σ 2 > 0, the limit of the left-hand side when γ → +∞ goes to +∞, so this immediately implies that σ 2 = 0. Now let I R x (1 -e -γx ) Π(dx), and note that

I = R - x 1 -e -γx Π(dx)+ 1 0 x 1 -e -γx Π(dx)+ +∞ 1
x 1 -e -γx Π(dx).

Note that x(1 -e -γx ) ≤ x, for all x ≥ 1 and γ > 0. So, taking the limit as γ → +∞ and using the dominated convergence theorem on the integral over (1, +∞) with Assumption (I), we obtain lim x 1 -e -γx Π(dx) < +∞, which implies that Rx 2 Π(dx) = 0. Now note that the function x → x 2 is strictly positive on R -except in 0. But, by definition of the Lévy measure Π({0}) = 0, so x → x 2 is strictly positive Π-a.e. So, Rx 2 Π(dx) = 0 if, and only if, Π(R -) = 0.

Case (D). Let u ≥ 0. Fix ǫ ∈ (0, γ c ) and define

Z ǫ t = Ψ(γ c -ǫ) γ c -ǫ t + X t , for all t ≥ 0.
Then, because (D) holds Ψ(γ c -ǫ) < 0, so that Z ǫ t ≤ X t , for all t ≥ 0, and

P inf 0≤t<+∞ X t ≤ -u ≤ P inf 0≤t<+∞ Z ǫ t ≤ -u .
Note that the Laplace exponent Ψ ǫ of Z ǫ is defined for γ ∈ [0, γ c ) and given by (5)

Now, we will show that Z ǫ satisfies (i) and (ii) of Proposition 4. Condition (i) is satisfied for γ 0 = γ c -ǫ, because Ψ ǫ (γ c -ǫ) = 0. For condition (ii), note that because Ψ ǫ has a root and is convex, we have lim γ→0+ (Ψ ǫ ) ′ (γ) < 0. Thus, by Corollary 1, we obtain that Z ǫ t a.s.

→ +∞, so that (ii) is also satisfied. Therefore, we obtain P (τ (u) < +∞) ≤ e -(γc-ǫ)u .

As this is true for each ǫ ∈ (0, γ c ), we can let ǫ → 0+ to finish the proof.

Figure 2 .

 2 Figure 2. Possible behaviours of the Laplace exponent Ψ when γ c = +∞ (left) and γ c < +∞ (right).

x 1

 1 -e -γx Π(dx) ≤ δ -+∞ 1 xΠ(dx).But, x(1 -e -γx ) ≥ γx 2 , for all x < 0 and γ > 0. The above inequality,

Ψδ γ + σ 2 2 γ 2 +

 2 ǫ (γ) = -Ψ(γ c -ǫ) γ c -ǫ + R e -γx -1 + γx Π(x) = -Ψ(γ c -ǫ) γ c -ǫ γ + Ψ(γ).
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