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CLASSIFICATION OF THE BOUNDS ON THE
PROBABILITY OF RUIN FOR LEVY PROCESSES WITH
LIGHT-TAILED JUMPS

JEROME SPIELMANN*

LAREMA, Université d’Angers, 2 Bd. Lavoisier, 49045 Angers

ABSTRACT. In this note, we study the ultimate ruin probabilities of a real-
valued Lévy process X with light-tailed negative jumps. It is well-known
that, for such Lévy processes, the probability of ruin decreases as an ex-
ponential function with a rate given by the root of the Laplace exponent,
when the initial value goes to infinity. Under the additional assumption
that X has integrable positive jumps, we show how a finer analysis of the
Laplace exponent gives in fact a complete description of the bounds on the
probability of ruin for this class of Lévy processes. This leads to the iden-
tification of a case that was not considered before. We apply the result to

the Cramér-Lundberg model perturbed by Brownian motion.

Keywords: Laplace exponent; Lévy processes; Lundberg equation; Per-
turbed model; Ruin probabilities.
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1. INTRODUCTION AND MAIN RESULT

Ruin theory studies in particular the time of passage below 0 of stochastic
processes that represent the capital of an insurance company or a pension fund.
In particular, it studies the probability that the process becomes negative on
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an infinite time horizon in function of the initial value of the process. The key
result of Cramér [4] is that, in the case of the compound Poisson process with
drift, this probability decreases as an exponential function with a rate given
as a solution to the Lundberg equation. It is well-know that, when the initial
value goes to infinity, the result of Cramér holds for more general (light-tailed)
Lévy processes where the rate is given by the root of the Laplace exponent of
the process, see Theorem XI.2.6 in [1], and also [3], [7] and Section 7.2 in [§].

In this note, we show that a finer analysis of the Laplace exponent can
lead to a complete description of the bounds on the ultimate probability of
ruin. Our main contribution is to give a systematic description of all possi-
ble cases (Theorem 1), where the case when it has a root (Theorem 1, Case
B) corresponds to the well-known Lundberg bound. This also leads to the
identification of a case that is not considered in the literature (Theorem 1,
Case D). We show that in this case the ruin probability also decreases at least
as an exponential function and identify the rate of decay. Thus, Theorem 1
gives a method for obtaining exponential bounds and conditions for ruin with
probability one for a large class of risk models. We illustrate this by applying
the method to the Cramér-Lundberg model perturbed by Brownian motion
(Proposition 1).

When the Lévy process has jumps only on one side (i.e., it is spectrally one-
sided), the results contained in Chapter 8 of [8] and the references therein give
a precise description of the ultimate ruin probability in terms of the so-called
scale functions. However, these scale functions are in general not very explicit.
In comparison, the method presented here is more elementary and less precise
but works also in the case where there are two-sided jumps and is, in some

cases, more explicit.

1.1. Lévy Processes and Laplace Exponents. In this section, we state
some basic facts about Lévy processes and present the main assumptions for
the rest of this paper.

Let X = (X;)i>0 be a real-valued Lévy process on (2, F,F = (Fi)>0, P) (in
the sense of [6], Definition I1.4.1, p.101) where the filtration F is assumed to
satisfy the usual conditions. It is well-known that the characteristic function
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of X, for each ¢ > 0 is given by the Lévy-Khintchine formula:
E (ei)‘Xt) =N forallt >0 and )\ € R,
where
d(\) = ia\ — %2/\2 + /R (€™ — 1 — idalyz<1y) (dz), for all A € R,

for a € R, o0 > 0 and II a Lévy measure on R satisfying I1({0}) = 0 and

/ (2* A1) H(dz) < 400.

The function ® and the triplet (a,c? II) are unique and are called the Lévy
exponent and the characteristics (or Lévy triplet) of X respectively.

Assumption (I). X is integrable.

The first assumption we use is integrability. We say that X is integrable if
E(]X1]) < 400 and it can be shown (see e.g. [10], Theorem 25.3, p.159) that
this is equivalent to the condition

/ |z|TI(dz) < +00.
|z|>1
Under assumption (I), we can rewrite the Lévy exponent of X as
2
(1) ®\) =id\ — %A2+/ (e — 1 —ixx) II(dz), for all A € R,
R
where

§2E(X)) = a+/ xll(dx).

|z|>1
Also, under assumption (I), the Lévy-Itd6 decomposition of X is

(2) Xt—5t+aVVt+// ) (ds,dz), for all t > 0,

where 1% is the jump measure of X, v*(ds, dz) = dsll(dz) is the compensator
of the jump measure (see [6], Theorem I.1.8, p.66) and (W;);>o is a standard
Brownian motion.

Assumption (II). X has light-tailed negative jumps.
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The second assumption we will use is a condition on the tail behaviour of
the negative jumps. Similar definitions to the one below can be found on p.338
in [1] and p.164-165 in [10].

Definition 1. Let X = (X;)i>o be a real-valued Lévy process with character-
istics (a, 02, 11). Let

-1
Ve & sup {7 >0: / e "Il(dx) < +oo} :

We say that X has light-tailed negative jumps if v. > 0. (Note that ~y. can take
the value +00.)

Under Assumptions (I) and (II), it is possible to show that the Lévy expo-
nent exists also for any A = iy, with 7 € [0,7.). In fact, when v € [0,~.),

2

D(iy) = =07+ 5+ /R (77" =1+ ya) T(da),

and letting /- £ [, |e77* — 1+ ~z|II(dz), we obtain using the Taylor for-
mula,
-1

0
I < / &7 — 1+ yz| (dx) —I—/ e *TI(dx)
—1

—00

N2 [0 -1
< ?/ 2?11 (dx) +/ e *II(dz) < 400.
-1 _

o0

On the other hand, letting I, = fR+ le™* — 1+ x| II(dx) and using the Tay-
lor formula and the assumption of integrability,

1 o
]+:/ ‘e‘w—l—i—fyx‘ﬂ(d:c)—i-/ |e77% — 1+ ya| TI(dax)
0 1

2 1 0

< %/ 2?11 (dx) + T ([1, +00)) +7/ |z|TI(dx) < 400.
0 1

Therefore, it is possible to define the Laplace exponent of X as the function

¥ given by

2

U(y) 2 ®(iy) = —0y + %72 + / (e_w -1+ vx) II(dz), for all v € [0,~,).
R

Remark 1. The Laplace exponent is always defined on R_ and can, under
Assumptions (I) and (II), be defined on (—o0,7.).
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From the Lévy-Khintchine formula, we see that the Laplace transform of X,
is then given by

E (e—vXt) = ") for all t > 0 and v € (—00, 7e).

1.2. Main Result and Application. Suppose that X = (X;):>o is a real-
valued Lévy process satisfying assumptions (I) and (II). Let Y;* £ u + X, for
t > 0 and v > 0. We define the ultimate ruin probability as

P( inf Yﬂg()):P( inf th—u):P( sup (—Xt)Zu).
0<t<+oc0 0<t<+o0 0<t<+00
This can also be written as P (7(u) < +00) where 7(u) £ inf{t > 0: X, < —u}

and 7(u) = +oo, if X never goes below —u. We are now ready to give the
main result.

Theorem 1. Let X = (X;)i>0 be a (non-zero) real-valued Lévy process satis-
fying Assumptions (1) and (II) and ¥ : [0,~.) — R be the Laplace exponent of
X. Then, there are only four possible cases.

(A) If U(vy) >0, for all v € (0,7,.), then P(1(u) < +00) =1, for all u > 0.

(B) If there exists 7o € (0,7.) such that ¥(yy) = 0, then P(1(u) < +o00) <
e~ % for all u > 0.

(C) If 4. = +00 and V() < 0, for all y € (0,+0c0), then o> =0, II(R_) = 0,
0 > 0 and which means that X is a subordinator. Therefore, P(T(u) <
+00) =0, for all u > 0.

(D) If v. < 400 and V(vy) < 0, for all v € (0,7.), then P (7(u) < +00) <
e vt for all u > 0.

Thus, Theorem 1 exhausts all possible cases and allows one to classify the
behaviour of the ruin probability in function of the behaviour of the Laplace
exponent for a large class of risk models. To illustrate how to use Theorem 1,
we apply it to the Cramér-Lundberg model perturbed by Brownian motion.
This model, which is sometimes also called perturbed risk process and was
studied first in [5], is given by

N

(3) K“:u—i-pthaWt—ZUn, for all ¢ > 0,

n=1
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where p > 0, 0 > 0, N = (Ny)>0 is a standard Poisson process with rate f,
(Wi)i>0 is a standard Brownian motion and U = (Up,)nen is a sequence of i.i.d.
exponential random variables with rate . Additionally, it is assumed that the
processes N, W and the sequence U are independent from each other.

Then, the following proposition gives the description of the ruin probabili-
ties for this model. Note that in contrast to the case when o2 = 0, there are
two possible regimes when the safety loading condition p > g is satisfied. This
shows how the uncertainty in premium payments affects the ruin probability.
Also note that this result is very explicit as the behaviour of the ruin probabil-
ity only depends on the value of the parameters and that it gives the complete

description of the possible cases.

Proposition 1. Let X = (X;)i>0 be a real-valued Lévy process with Lévy
triplet 1I(dz) = Pae* 1< dr, 0 > 0 and a = p + f\x\<1 zll(dx) for some
p,a, B> 0. Then, Y = u+ X, with uw > 0, corresponds to the perturbed risk
process given by (3). Let A 2 (c%a — 2p)? + 8028 and y_ = W.

o Ifp<Z, then P(r(u) < +00) = 1, for all u > 0.

o [fp>= andy_ < a, then P(1(u) < 400) < e 7",

o Ifp>L2 andvy_ > a, then P(7(u) < +00) < e .

Q@R @™

Proof. We have 7, = a and § = p — 2. So, by Theorem 1 (A), we have ruin

with probability one when p < g and we assume in the following that p > g
For v € (0, «), we obtain

2 0
U(y) =—0y+ 0—72 + Boz/ (€77 =14+ yx)e*dx

2 —oo
o? a
=P+ 57 - o _g
v —a
_q(@*P = (Pa+2p)y+2(pa—pB)) 1
where A(y) £ - and B(y) £ 027% — (0%a + 2p)y + 2(pa — B). To see if

a—y
U has an other root along 0, we need to consider the solutions of B(vy) = 0.

This is an equation of second order with determinant A. As A > 0, B has
two distinct roots v, and ~v_, given by

oo+ 2p+ VA

202

Y+



CLASSIFICATION OF THE BOUNDS ON THE PROBABILITY OF RUIN 7

B(v) B(v)

FIGURE 1. Behaviour of B when v_ < « (left) and v_ > « (right).

First note that v_ <+, and that v, > o and y_ > 0, because (0?a+2p)?
A > (o%a — 2p)?. Additionally, note that B”(y) = 20 > 0, so that B is
convex. Therefore, we only have two possible cases (see Figure 1) : either
7— < a and then v_ is a root of B and of ¥, or v_ > « and then B(y) > 0
and U(y) < 0, for all v € [0,a). So, if v_ < a, then, by Theorem 1 (B), we
obtain P(7(u) < 4+00) < e 7" and if 7~ > «, then, by Theorem 1 (D), we
obtain P(7(u) < +00) < e~ O

2. PROOF OF THEOREM 1

2.1. Law of Large Numbers and Properties of the Laplace Exponent.
We start with the following well-known proposition and corollary (see Propo-
sition IV.1.2, p.73 in [1] in the case of the compound Poisson process with
drift, disscussion p.75 and Proposition 8 p.84 in [2], Exercice 7.3 in [8], and
Section 36 starting at p.245 in [10] in the general case) that give a strong law
of large numbers and the tail behaviour for integrable Lévy processes. For
completeness, we give an alternative proof which is not based on the random
walk approximation.

Proposition 2. Let X = (X;);>0 be real-valued Lévy process satisfying As-
sumption (I). Then, % 225, ast = 400.

Proof. Using the Lévy—ItC) decomposition (2), we obtain

X
tt _ a— 4= / / (ds dx), for all t > 0.
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But, %t =% 0. Now let M £ [0 [ 2 (u™ —v¥) (ds,dx). We will show that
% “% 0. Note that

M, = Mt(l) + Mt(z) + M(3)

t
é/ / x (p* — (ds,dz) + / / X(ds, dx)
0 Jlz|<1 |m|>1

t
—/ / xdsll(dx).
0 Jlz|>1
(1) a.s . . .
M Theorem 9, p.142 in [9] it is enough to

show that BOO < 400 a.s., where B is the compensator of of the process (B;)i>o
defined by

]\/[(1 1+5))?
P (AL EER)
o<act LT IAM /(1+ )|
where AMY is the jump of M® at s > 0. But, by Theorem 1, p.176 in

9], and using the fact that vX({s},dz) = A({s})II(dz) = 0, because A is the
Lebesgue measure, we obtain AMY = AXlfax,|<13- Next, note that

AX,)"1 (1 1|z (1
Bt: Z( ) ﬂAXéKl}/ +s //1' 4 Kl}/ +S) X(dS,dSL’).

ooz, T s+ 1AX 1 ax, <y 1+ 5+ |21 jz|<1}]

, for all t >0,

Therefore, B satisfies

o [P [ ) ] )
< ( /0 (1+18)2ds) ( / <1:)32H(dx)) _ / ) < 40

for all ¢ > 0, where the last integral is finite because II is a Lévy measure.
So, By < +00 as. and, if II(Jz] > 1) = 0, we are finished. Therefore,

without loss of generality, we suppose that II(|xz| > 1) =
MO
- f\x\zl zl1(dx), for all t > 0, so we need to show that =+ %% 251 xll(dx).

It is well known that the jump measure pu~ is a P01sson random measure
with intensity A x II, where A is the Lebesgue measure. Then, by Lemma

2.8, p.46-47 in [8], M®) can be represented as a compound Poisson process
with rate II(Jz| > 1) and jump distribution II(|z| > 1)'I(dz)|{jz>13 (where
I(dw)|{jz/>1} is the restriction of the measure II to the set {|z| > 1}). More
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precisely,

Ny
M =", forallt >0,
i=1
where (N;)i>o is a Poisson process with rate II(|z| > 1) and (Y;);en is a se-
quence of i.i.d. random variables, which is independent from N and with
distribution II(|z| > 1)~'II(dz)|{jz/>13. Conditioning on Ny, using the strong
law of large numbers and noting that N, 23 400, we obtain

ZY “LE(Y) =1(|z] > 1)—1/ 211(dx).
TN j2]>1

Finally, using the fact that £t %3 II(|z| > 1), we obtain

M(2) N, M(2) s
o MM 4/ 2TI(dx).
t t Nt |z|>1

M@

N

U

Corollary 1. Let X = (X})i>0 be a (non-zero) real-valued Lévy process satis-
fying Assumption (I).

(1) If § > 0, then limy_, o X; = +00.

(2) If § < 0, then limy_, o X; & —00.

(3) If § = 0, then liminf; o X; = —o0 and limsup,_,, . X; = +oo.

Proof. The assertions 1 and 2 follow directly from Proposition 2. For assertion
3, note that the condition § = E(X;) = 0 implies, by Theorem 36.7, p.248
n [10], that X is recurrent. This means that we have neither lim;_, o X; &
400, nor lim;_, 1o, X; € —o0. Therefore, by Proposition 37.10, p.255 in [10],
liminf, e Xt 2 —o00 and lim SUD;_y 4 00 Xt 400,

[

Next, the following proposition gives the basic properties of the Laplace
exponent (see Lemma 26.4, p.169 in [10]).

Proposition 3. Let X = (X;)i>0 be a (non-zero) real-valued Lévy process
satisfying Assumptions (1) and (1I) and ¥ : [0,7.) — R the Laplace exponent
of X. Then,

(1) U is convex and starting from 0 and
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(2) ¥ is of class C* on (0,7.) and its derivative V' is non-decreasing and
given by

(4) U (y) = —6+0%*y + /Rx (1 —e ™) 1I(dx), for all v € (0,7c).

The convexity of the Laplace exponent then implies that there are only four
possible cases which are illustrated in Figure 2 and reflect the possible cases
for the behaviour of the ruin probability.

(v) U(y)
(A)  (A)
(B) | (B)
Yo 7 Yo %% 7
(D)
(©) !

F1GURE 2. Possible behaviours of the Laplace exponent ¥ when
Ye = +00o (left) and . < +oo (right).

2.2. The Martingale Method in Ruin Theory and the Proof. In this
final section, we recall the martingale method in ruin theory and apply it
to prove Theorem 1. For the proof of the following well-known martingale
method see e.g. Proposition 11.3.1, p.29 in [1].

Proposition 4. Let X = (X;)i>0 be a real-valued Lévy process. Suppose that
(i) there exists vo > 0, such that (e77°%t);>q is a martingale,
(ii) X; “% 400 ast — 400 on the set {1(u) = +oo}.
Then, for allu >0, P (1(u) < +00) = C(u)e 0% < 0% where
1
Clu) £
() = Eeme@ [7(u) < 1o0)
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Remark 2. As noted in [1], p.339, it is hard to obtain an explicit expression
for C(u). However, in some cases, it is possible to compute C(u). For example,
if X has no negative jumps then C(u) = 1, and if the jumps are bounded or
exponential, it is possible to compute the constant explicitly, see e.g. Section
6c in [1]. There are also asymptotic expressions for C(u) as u — +00, see e.g.
Corollary XI1.2.7 p.339 in [1] and Section 7.2. in [8]. As we concentrate on the
rate of decay of the probability of ruin in the general case, we will set C'(u) =1
and keep in mind that more precise results can be obtained for specific models
or asymptotics.

The following proposition now gives a simple sufficient condition for (i) in
Proposition 4 in terms of the Laplace exponent.

Proposition 5. Let X = (X;)i>0 be a real-valued Lévy process satisfying As-
sumptions (I) and (1I) and ¥ : [0,7.) — R be the Laplace exponent of X.
Suppose there exists o € (0,7.) such that W(yp) = 0. Then, (e77°%t)5q is a
martingale.

Proof. From the definition of 7., we have that E(e™**) < 400 for all t > 0
and v € [0,7.). Imitating the proof of Theorem I1.1.2, p.23 in [1], we find
that the process (e™7Xt — ¢1)),54 is a martingale for each v € [0,7.). In
particular, if there exists 79 > 0 such that U(vy) = 0, then (e70%);54 is a
martingale. U

Putting everything together, we can now prove the main theorem. Note
that case (B) can also be deduced with some work from Proposition XI.2.3
and Theorem XI.2.6 p.337-338 in [1] and that case (A) is generally implicitly
excluded by the safety loading requirement 6 > 0.

Proof of Theorem 1. Note that from (4) we obtain
. / _ . _ 2 o —yx —
,YIE& V() ,YIE& ( 0+ oy + /Rx (1—e) H(dl’)) J.

Therefore, from the study of the function ¥, we see that 6 < 0 in case (A),
and 6 > 0 in cases (B), (C) and (D).
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Case (A). Let uw > 0. In case (A), we have § < 0. Suppose first that 6 < 0,
then, by Corollary 1, X, “3 —co as t — +o00. This immediately implies that

P (iant < —u) >P (iant = —oo) =1.
>0 t>0

If § = 0, then by Corollary 1, P (liminf; , o X; < —u) = 1. As ({infi>,, X < —u})
is a decreasing sequence of events, P (inf;s,, X; < —u) < P (inf;5¢ X; < —u),

neN

for each m € N and

P (iant < —u) > lim P <inf X; < —u) = lim P (m {iant < —u})
t>0 m—00 t>m m—00 t>n

n=0

=P (ﬂ {%2£Xt < —u}) =P (li{gioant < —u) =1.
neN N

Case (B). We will show that (i) and (ii) of Proposition 4 hold. Because
(B) holds, by Proposition 5, (i) is satisfied. Now note that in case (B) we
have § > 0 and, by Corollary 1, that X, “3 400, as t — +o0. So (ii) is also
satisfied.

Case (C). Because (C) holds, we have ¥(y) < 0, lim,_,o4 ¥'(y) = =6 < 0.
We also have ¥'() < 0, for all ¥ > 0. But, from (4), we see that W'(y) <0,
for all v > 0, if, and only if,

oy + / z (1 —e ") II(dx) < 6, for all v > 0.
R

If 02 > 0, the limit of the left-hand side when v — +o00 goes to +o00, so this
immediately implies that 62 = 0. Now let [ £ [z (1 — ¢7*)II(dz), and note
that

I= / z(1—e ) H(d:c)+/01 z(1—e") H(dx)+/1+oo z (1 —e ") (dx).

Note that z(1 — e 7*) < z, for all x > 1 and v > 0. So, taking the limit as
v — +o00 and using the dominated convergence theorem on the integral over
(1,4+00) with Assumption (I), we obtain

1 +o0
lim z(1—e ) (dz) <6 — / oTl(dz).
1

Y=t J o
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But, z(1 —e™®) > ~a?, for all z < 0 and v > 0. The above inequality,
therefore implies

Vl_i>:5£1Oo (7 /R 2?1 (dx) + /01 z(1—e") H(da:)) < +o00,

which implies that [, 2?II(dz) = 0. Now note that the function x — z* is
strictly positive on R_ except in 0. But, by definition of the Lévy measure
I1({0}) = 0, so = ~— a? is strictly positive IT-a.e. So, [, 2?II(dx) = 0 if, and
only if, II(R_) = 0.
Case (D). Let u > 0. Fix € € (0,7.) and define

U(ry, —
Z;:MH)Q, for all £ > 0.
Ye — €

Then, because (D) holds ¥(y. —€) <0, so that Z; < X, for all t > 0, and
P< inf th—u) §P< inf Z; < u)

0<t<+o00 0<t<+o00

Note that the Laplace exponent W€ of Z¢ is defined for v € [0,7.) and given
by
U(y, — 2
V() = - (7(7 2 5) 7+ 5 +/ (€7 = 1+ ) T(x)
Ye — € 2 R
\If . — €
Ye —

Now, we will show that Z¢ satisfies (i) and (ii) of Proposition 4. Condition (i)
is satisfied for vy = 7. —¢€, because V(. —¢€) = 0. For condition (ii), note that

(5)

because V€ has a root and is convex, we have lim,_,o (¥)'(v) < 0. Thus, by
Corollary 1, we obtain that Zf 3 400, so that (ii) is also satisfied. Therefore,
we obtain

P (7(u) < +00) < e~ (e,

As this is true for each € € (0,7.), we can let € — 0+ to finish the proof. [
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