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CLASSIFICATION OF THE BOUNDS ON THE PROBABILITY

OF RUIN FOR LÉVY PROCESSES WITH LIGHT-TAILED JUMPS

JÉRÔME SPIELMANN*

LAREMA, Université d’Angers, 2 Bd. Lavoisier, 49045 Angers

Abstract. In this note, we study the ultimate ruin probabilities of a real-valued

Lévy process X with light-tailed negative jumps. It is well-known that, for such

Lévy processes, the probability of ruin decreases as an exponential function with

a rate given by the root of the Laplace exponent, when the initial value goes to

infinity. Under the additional assumption that X has integrable positive jumps,

we show how a finer analysis of the Laplace exponent gives in fact a complete

description of the bounds on the probability of ruin for this class of Lévy processes.

This leads to the identification of a case that is not considered in the literature

and for which we give an example. We then apply the result to various risk models

and in particular the Cramér-Lundberg model perturbed by Brownian motion.

Keywords: Bounds, Laplace exponent, Lévy processes, Lundberg equation, Per-

turbed model, Ruin probabilities.

MSC 2010 subject classifications: 60G51, 91B30

1. Introduction

Ruin theory studies the time of passage below 0 of stochastic processes that

represent the capital of an insurance company or a pension fund. In particular, it

studies the probability that the process becomes negative on an infinite time horizon

in function of the initial value of the process. The key result of Cramér [5] is that,

in the case of the compound Poisson process with drift, this probability decreases as

an exponential function with a rate given as a solution to the Lundberg equation. It

is well-know that, when the initial value goes to infinity, the result of Cramér holds
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for more general (light-tailed) Lévy processes where the rate is given by the root of

the Laplace exponent of the process, see Theorem XI.2.6 in [1], and also [3], [8] and

Section 7.2 in [9].

In this note, we show that a finer analysis of the Laplace exponent can lead to

a complete description of the bounds on the ultimate probability of ruin. The fact

that the proof of the asymptotic result also gives exponential bounds (and some-

times exact probabilities) is well-known. Our contribution is to give a systematic

description of all possible cases (Theorem 1), when the Laplace exponent does not

necessarily have a root. This leads to the identification of a case that is not treated

in the literature (Theorem 1, Case D). We show that in this case the ruin probability

also decreases at least as an exponential function and show that this case is indeed

possible (Example 3). Thus, Theorem 1 gives a method for obtaining exponential

bounds and conditions for ruin with probability one for a large class of risk models.

We illustrate this by applying the method to the Cramér-Lundberg model (Example

2), the model with positive risk sums (Example 1) and the Cramér-Lundberg model

perturbed by Brownian motion (Proposition 5).

We now give some classical models for the capital of an insurance company or a

pension fund. Let u ≥ 0 be the initial capital and Y u the process representing the

capital or risk process. Classically, it is assumed that the income of the company is

growing at a constant rate and that the random expenses happen at random times

(see e.g. Section 4 in [1]). The model for the capital is then given by

(1) Y u
t = u+ pt−

Nt
∑

n=1

Un, for all t ≥ 0,

where p > 0, N = (Nt)t≥0 is a standard Poisson process with rate β and (Un)n∈N is

a sequence of i.i.d. non-negative random variables, which are independent from N

and with common distribution F . When F is a light-tailed distribution (i.e., there

exists γ0 > 0 such that
∫

R+
eγ0xF (dx) < +∞), then Theorem 1 allows to classify

the ruin probabilities (see Example 2, for the Cramér-Lundberg case).

Another model, sometimes called perturbed risk process and studied first in [6] is

the following,

(2) Y u
t = u+ pt+ σWt −

Nt
∑

n=1

Un, for all t ≥ 0,

where p, σ > 0, N = (Nt)t≥0 and (Un)n∈N are defined as above and (Wt)t≥0 is a

Brownian motion that is independent of N and (Un)n∈N. Again, if F is a light-tailed
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distribution, Theorem 1 allows to classify the ruin probabilities (see Proposition 4,

for the exponential case).

The last model we mention is sometimes called risk process with positive risk sums

and is used to model the capital of a pension fund. Here it is assumed that the fund

is paying a constant annuity p and receives random sums (in the form of property or

accumulated premiums) at the time of death of the insured individuals. This model

is given by

(3) Y u
t = u− pt+

Nt
∑

n=1

Un, for all t ≥ 0,

where p > 0, N = (Nt)t≥0 and (Un)n∈N are defined as above. In this model, if

F is integrable (i.e.,
∫

R+
xF (dx) < +∞), Theorem 1 allows to classify the ruin

probabilities (see Example 1 for the exponential case).

1.1. Lévy Processes and Laplace Exponents. In this section we state some

basic facts about Lévy processes and present our assumptions for the rest of this

paper.

Definition 1 ([7], Definition II.4.1, p.101).

(i) A process with independent increments (abbreviated PII) X = (Xt)t≥0 on a

stochastic basis (Ω,F ,F = (Ft)t≥0,P) is a càdlàg adapted real-valued process

with X0 = 0 and for all 0 ≤ s ≤ t < +∞, Xt −Xs is independent of Fs.

(ii) A Lévy process (also called process with independent and stationary incre-

ments) on a stochastic basis (Ω,F ,F,P) is a PII X such that the distribution

of the increment Xt −Xs depends only on t− s, for all 0 ≤ s ≤ t.

Let X = (Xt)t≥0 be a real-valued Lévy process on (Ω,F ,F = (Ft)t≥0,P) where

the filtration F is assumed to satisfy the usual conditions. It is well-known that the

characteristic function of Xt for each t ≥ 0 is given by the Lévy-Khintchine formula:

E
(

eiλXt

)

= etΦ(λ), for all t ≥ 0 and λ ∈ R,

where

Φ(λ) = iaλ− σ2

2
λ2 +

∫

R

(

eiλx − 1− iλx1{|x|<1}
)

Π(dx), for all λ ∈ R,

for a ∈ R, σ ≥ 0 and Π a Lévy measure on R satisfying Π({0}) = 0 and
∫

R

(

x2 ∧ 1
)

Π(dx) < +∞.

The function Φ and the triplet (a, σ2,Π) are unique and are called the Lévy exponent

and the characteristics (or Lévy triplet) of X respectively.
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Assumption (I). X is integrable.

The first assumption we use is integrability. We say that X is integrable if

E(|X1|) < +∞ and it can be shown (see e.g. [11], Theorem 25.3, p.159) that

this is equivalent to the condition
∫

|x|≥1
|x|Π(dx) < +∞.

Under assumption (I), we can rewrite the Lévy exponent of X as

(4) Φ(λ) = iδλ − σ2

2
λ2 +

∫

R

(

eiλx − 1− iλx
)

Π(dx), for all λ ∈ R,

where

δ , E(X1) = a+

∫

|x|≥1
xΠ(dx).

Also, under assumption (I), the Lévy-Itô decomposition of X is

(5) Xt = δt+ σWt +

∫ t

0

∫

R

x
(

µX − νX
)

(ds, dx), for all t ≥ 0,

where µX is the jump measure ofX, νX(ds, dx) = dsΠ(dx) is the compensator of the

jump measure (see [7], Theorem I.1.8, p.66) and (Wt)t≥0 is a standard Brownian

motion. The following well-known proposition and its corollary (see Proposition

IV.1.2, p.73 in [1] in the case of the Cramér-Lundberg model, disscussion p.75 and

Proposition 8 p.84 in [2], Exercice 7.3 in [9], and Section 36 starting at p.245 in [11]

in the general case) give a strong law of large numbers and the tail behaviour for

integrable Lévy processes. For completeness, we give an alternative proof that is

not based on random walk theory.

Proposition 1. Let X = (Xt)t≥0 be real-valued Lévy process satisfying Assumption

(I). Then, Xt

t

a.s.→ δ, as t → +∞.

Proof. Using the Lévy-Itô decomposition (5), we obtain

Xt

t
= δ + σ

Wt

t
+

1

t

∫ t

0

∫

R

x
(

µX − νX
)

(ds, dx), for all t > 0.
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But, Wt

t

a.s.→ 0. Now let M ,
∫ .

0

∫

R
x
(

µX − νX
)

(ds, dx). We will show that Mt

t

a.s.→ 0.

Note that

Mt = M
(1)
t +M

(2)
t +M

(3)
t

,

∫ t

0

∫

|x|<1
x
(

µX − νX
)

(ds, dx) +

∫ t

0

∫

|x|≥1
xµX(ds, dx)

−
∫ t

0

∫

|x|≥1
xdsΠ(dx).

Let’s prove first that
M

(1)
t

t

a.s.→ 0. By Theorem 9, p.142 in [10] it is enough to show

that B̃∞ < +∞ a.s., where B̃ is the compensator of of the process (Bt)t≥0 defined

by

Bt =
∑

0≤s<t

(∆M
(1)
s /(1 + s))2

1 + |∆M
(1)
s /(1 + s)|

, for all t ≥ 0,

where ∆M
(1)
s is the jump of M (1) at s ≥ 0. But, by Theorem 1, p.176 in [10],

and using the fact that νX({s}, dx) = λ({s})Π(dx) = 0, because λ is the Lebesgue

measure, we obtain ∆M
(1)
s = ∆Xs1{|∆Xs |<1}. Next, note that

Bt =
∑

0≤s<t

(∆Xs)
2
1{|∆Xs |<1}/(1 + s)

1 + s+ |∆Xs1{|∆Xs |<1}|
=

∫ t

0

∫

R

x21{|x|<1}/(1 + s)

1 + s+ |x1{|x|<1} |
µX(ds, dx).

Therefore, B̃ satisfies

B̃t =

∫ t

0

∫

R

x21{|x|<1}/(1 + s)

1 + s+ |x1{|x|<1} |
dsΠ(dx) ≤

(
∫ t

0

1

(1 + s)2
ds

)

(

∫

|x|<1
x2Π(dx)

)

≤
(
∫ ∞

0

1

(1 + s)2
ds

)

(

∫

|x|<1
x2Π(dx)

)

=

∫

|x|<1
x2Π(dx) < +∞

for all t ≥ 0, where the last integral is finite because Π is a Lévy measure. So,

B̃∞ < +∞ a.s. and, if Π(|x| ≥ 1) = 0, we are finished. Therefore, without loss of

generality, we suppose that Π(|x| ≥ 1) > 0. Note that
M

(3)
t

t
= −

∫

|x|≥1 xΠ(dx), for

all t ≥ 0, so we need to show that
M

(2)
t

t

a.s.→
∫

|x|≥1 xΠ(dx).

It is well known that the jump measure µX is a Poisson random measure with

intensity λ×Π, where λ is the Lebesgue measure. Then, by Lemma 2.8, p.46-47 in

[9], M (2) can be represented as a compound Poisson process with rate Π(|x| ≥ 1) and

jump distribution Π(|x| ≥ 1)−1Π(dx)|{|x|≥1} (where Π(dx)|{|x|≥1} is the restriction
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of the measure Π to the set {|x| ≥ 1}). More precisely,

M
(2)
t =

Nt
∑

i=1

Yi, for all t ≥ 0,

where (Nt)t≥0 is a Poisson process with rate Π(|x| ≥ 1) and (Yi)i∈N is a sequence of

i.i.d. random variables, which is independent from N and with distribution Π(|x| ≥
1)−1Π(dx)|{|x|≥1}. Conditioning on Nt, using the strong law of large numbers and

noting that Nt
a.s.→ +∞, we obtain

M
(2)
t

Nt

=
1

Nt

Nt
∑

i=1

Yi
a.s.→ E(Y1) = Π(|x| ≥ 1)−1

∫

|x|≥1
xΠ(dx).

Finally, using the fact that Nt

t

a.s.→ Π(|x| ≥ 1), we obtain

M
(2)
t

t
=

Nt

t

M
(2)
t

Nt

a.s.→
∫

|x|≥1
xΠ(dx).

�

Corollary 1. Let X = (Xt)t≥0 be a (non-zero) real-valued Lévy process satisfying

Assumption (I).

(1) If δ > 0, then limt→+∞Xt
a.s
= +∞.

(2) If δ < 0, then limt→+∞Xt
a.s
= −∞.

(3) If δ = 0, then lim inft→+∞Xt
a.s.
= −∞ and lim supt→+∞Xt

a.s.
= +∞.

Proof. The assertions 1 and 2 follow directly from Proposition 1. For assertion

3, note that the condition δ = E(X1) = 0 implies, by Theorem 36.7, p.248 in

[11], that X is recurrent. This means that we have neither limt→+∞Xt
a.s
= +∞, nor

limt→+∞Xt
a.s
= −∞. Therefore, by Proposition 37.10, p.255 in [11], lim inft→+∞Xt

a.s.
=

−∞ and lim supt→+∞Xt
a.s.
= +∞.

�

Assumption (II). X has light-tailed negative jumps.

The second assumption we will use is a condition on the tail behaviour of the

negative jumps. Similar definitions to the one below can be found on p.338 in [1]

and p.164-165 in [11].

Definition 2. Let X = (Xt)t≥0 be a real-valued Lévy process with characteristics

(a, σ2,Π). Let

γc , sup

{

γ ≥ 0 :

∫ −1

−∞
e−γxΠ(dx) < +∞

}

.
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We say that X has light-tailed negative jumps if γc > 0. (Note that γc can take the

value +∞.)

Under Assumptions (I) and (II), it is possible to show that the Lévy exponent

exists also for any λ = iγ, with γ ∈ [0, γc). In fact, when γ ∈ [0, γc),

Φ(iγ) = −δγ +
σ2

2
γ2 +

∫

R

(

e−γx − 1 + γx
)

Π(dx),

and letting I− ,
∫

R
−

|e−γx − 1 + γx|Π(dx), we obtain using the Taylor formula,

I− ≤
∫ 0

−1

∣

∣e−γx − 1 + γx
∣

∣Π(dx) +

∫ −1

−∞
e−γxΠ(dx)

≤ γ2

2

∫ 0

−1
x2Π(dx) +

∫ −1

−∞
e−γxΠ(dx) < +∞.

On the other hand, letting I+ ,
∫

R+
|e−γx − 1 + γx|Π(dx) and using the Taylor

formula and the assumption of integrability,

I+ =

∫ 1

0

∣

∣e−γx − 1 + γx
∣

∣Π(dx) +

∫ ∞

1

∣

∣e−γx − 1 + γx
∣

∣Π(dx)

≤ γ2

2

∫ 1

0
x2Π(dx) + Π ([1,+∞)) + γ

∫ ∞

1
|x|Π(dx) < +∞.

Therefore, it is possible to define the Laplace exponent of X as the function Ψ given

by

Ψ(γ) , Φ(iγ) = −δγ +
σ2

2
γ2 +

∫

R

(

e−γx − 1 + γx
)

Π(dx), for all γ ∈ [0, γc).

Remark 1. The Laplace exponent is always defined on R− and can, under Assump-

tions (I) and (II), be defined on (−∞, γc).

From the Lévy-Khintchine formula, we see that the Laplace transform of Xt is then

given by

E
(

e−γXt

)

= etΨ(γ), for all t ≥ 0 and γ ∈ (−∞, γc).

The following well-known proposition gives the basic properties of the Laplace

exponent (see also Lemma 26.4, p.169 in [11]).

Proposition 2. Let X = (Xt)t≥0 be a (non-zero) real-valued Lévy process satisfying

Assumptions (I) and (II) and Ψ : [0, γc) → R the Laplace exponent of X. Then,

(1) Ψ is convex and starting from 0 and
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(2) Ψ is of class C∞ on (0, γc) and its derivative Ψ′ is non-decreasing and given

by

(6) Ψ′(γ) = −δ + σ2γ +

∫

R

x
(

1− e−γx
)

Π(dx), for all γ ∈ (0, γc).

2. Ruin Probabilities

We suppose thatX = (Xt)t≥0 is a real-valued Lévy process satisfying assumptions

(I) and (II). Let Y u
t , u + Xt, for t ≥ 0 and u ≥ 0. We define the ultimate ruin

probabilities of Y u as

P

(

inf
0≤t<+∞

Y u
t ≤ 0

)

= P

(

inf
0≤t<+∞

Xt ≤ −u

)

= P

(

sup
0≤t<+∞

(−Xt) ≥ u

)

.

This can also be written as P (τ(u) < +∞) where τ(u) , inf{t ≥ 0 : Xt ≤ −u} and

τ(u) , +∞, if X never goes below −u.

2.1. The Martingale Method for Exponential Bounds. The following propo-

sition is a well-known result in ruin theory (see e.g. Proposition II.3.1, p.29 in [1]

for the proof).

Proposition 3. Let X = (Xt)t≥0 be a real-valued Lévy process. Suppose that

(i) there exists γ0 > 0, such that (e−γ0Xt)t≥0 is a martingale,

(ii) Xt
a.s.→ +∞ as t → +∞ on the set {τ(u) < +∞}.

Then, for all u ≥ 0, P (τ(u) < +∞) = C(u)e−γ0u ≤ e−γ0u, where

C(u) ,
1

E(eγ0ξ(u) | τ(u) < +∞)
,

and ξ(u) , −u−Xτ(u).

Remark 2. As noted in [1], p.339, it is hard to obtain an explicit expression for

C(u). However, in some cases, it is possible to compute C(u). For example, if X

has no negative jumps then C(u) = 1, and if the jumps are bounded or exponential,

it is possible to compute the constant explicitly, see e.g. Section 6c in [1]. There

are also asymptotic expressions for C(u) as u → +∞, see e.g. Corollary XI.2.7

p.339 in [1] and Section 7.2. in [9]. As we concentrate on the rate of decay of the

probability of ruin in the general case, we will set C(u) = 1 and keep in mind that

more precise results can be obtained for specific models or asymptotics.

Proposition 4. Let X = (Xt)t≥0 be a real-valued Lévy process satisfying Assump-

tions (I) and (II) and Ψ : [0, γc) → R be the Laplace exponent of X. Suppose there

exists γ0 ∈ (0, γc) such that Ψ(γ0) = 0. Then, (e−γ0Xt)t≥0 is a martingale.
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Proof. From the definition of γc, we have that E(e−γXt) < +∞ for all t ≥ 0 and

γ ∈ [0, γc). Imitating the proof of Theorem II.1.2, p.23 in [1], we find that the

process (e−γXt −etΨ(γ))t≥0 is a martingale for each γ ∈ [0, γc). In particular, if there

exists γ0 > 0 such that Ψ(γ0) = 0, then (e−γ0Xt)t≥0 is a martingale. �

2.2. Bounds on the Ruin Probabilities. In this section, we classify the bounds

on the ruin probabilities with help of the properties of the Laplace exponent.

Ψ(γ)

γ

(B)

(A)

(C)

γ0

Ψ(γ)

γ

(B)

(A)

(D)

γcγ0

Figure 1. Possible behaviours of the Laplace exponent Ψ when γc =
+∞ (left) and γc < +∞ (right).

Proposition 2 implies that there are only four possible cases which are summarized

in the following theorem (see Figure 1). Note that case (B) is contained in Propo-

sition XI.2.3 and Theorem XI.2.6 p.337-338 in [1] and that case (A) is generally

implicitly excluded by the safety loading requirement δ > 0.

Theorem 1. Let X = (Xt)t≥0 be a (non-zero) real-valued Lévy process satisfying

Assumptions (I) and (II) and Ψ : [0, γc) → R be the Laplace exponent of X.

(A) If Ψ(γ) > 0, for all γ ∈ (0, γc), then P(τ(u) < +∞) = 1, for all u ≥ 0.

(B) If there exists γ0 ∈ (0, γc) such that Ψ(γ0) = 0, then P(τ(u) < +∞) ≤ e−γ0u,

for all u ≥ 0.

(C) If γc = +∞ and Ψ(γ) < 0, for all γ ∈ (0,+∞), then σ2 = 0, Π(R−) = 0, δ > 0

and which means that X is a subordinator. Therefore, P(τ(u) < +∞) = 0, for

all u ≥ 0.

(D) If γc < +∞ and Ψ(γ) < 0, for all γ ∈ (0, γc), then P (τ(u) < +∞) ≤ e−γcu,

for all u ≥ 0.
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Proof. Note that from (6) we obtain

lim
γ→0+

Ψ′(γ) = lim
γ→0+

(

−δ + σ2γ +

∫

R

x
(

1− e−γx
)

Π(dx)

)

= −δ.

Therefore, from the study of the function Ψ, we see that δ ≤ 0 in case (A), and

δ > 0 in cases (B), (C) and (D).

Case (A). Let u ≥ 0. In case (A), we have δ ≤ 0. Suppose first that δ < 0, then,

by Corollary 1, Xt
a.s.→ −∞ as t → +∞. This immediately implies that

P

(

inf
t≥0

Xt ≤ −u

)

≥ P

(

inf
t≥0

Xt = −∞
)

= 1.

If δ = 0, then by Corollary 1, P (lim inft→+∞Xt ≤ −u) = 1. As ({inft≥n Xt ≤ −u})n∈N
is a decreasing sequence of events, P (inft≥mXt ≤ −u) ≤ P (inft≥0 Xt ≤ −u), for

each m ∈ N and

P

(

inf
t≥0

Xt ≤ −u

)

≥ lim
m→∞

P

(

inf
t≥m

Xt ≤ −u

)

= lim
m→∞

P

(

m
⋂

n=0

{

inf
t≥n

Xt ≤ −u

}

)

= P

(

⋂

n∈N

{

inf
t≥n

Xt ≤ −u

}

)

= P
(

lim inf
t→∞

Xt ≤ −u
)

= 1.

Case (B). We will show that (i) and (ii) of Proposition 3 hold. Because (B) holds,

by Proposition 4, (i) is satisfied. Now note that in case (B) we have δ > 0 and, by

Proposition 1, that Xt
a.s.→ +∞, as t → +∞. So (ii) is also satisfied.

Case (C). Because (C) holds, we have Ψ(γ) < 0, limγ→0+Ψ′(γ) = −δ < 0. We

also have Ψ′(γ) < 0, for all γ > 0. But, from (6), we see that Ψ′(γ) ≤ 0, for all

γ > 0, if, and only if,

σ2γ +

∫

R

x
(

1− e−γx
)

Π(dx) ≤ δ, for all γ > 0.

If σ2 > 0, the limit of the left-hand side when γ → +∞ goes to +∞, so this

immediately implies that σ2 = 0. Now let I ,
∫

R
x (1− e−γx) Π(dx), and note that

I =

∫

R
−

x
(

1− e−γx
)

Π(dx) +

∫ 1

0
x
(

1− e−γx
)

Π(dx) +

∫ +∞

1
x
(

1− e−γx
)

Π(dx).

Note that x(1− e−γx) ≤ x, for all x ≥ 1 and γ > 0. So, taking the limit as γ → +∞
and using the dominated convergence theorem on the integral over (1,+∞) with

Assumption (I), we obtain

lim
γ→+∞

∫ 1

−∞
x
(

1− e−γx
)

Π(dx) ≤ δ −
∫ +∞

1
xΠ(dx).
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But, x(1 − e−γx) ≥ γx2, for all x < 0 and γ > 0. The above inequality, therefore

implies

lim
γ→+∞

(

γ

∫

R
−

x2Π(dx) +

∫ 1

0
x
(

1− e−γx
)

Π(dx)

)

< +∞,

which implies that
∫

R
−

x2Π(dx) = 0. Now note that the function x 7→ x2 is strictly

positive on R− except in 0. But, by definition of the Lévy measure Π({0}) = 0, so

x 7→ x2 is strictly positive Π-a.e. So,
∫

R
−

x2Π(dx) = 0 if, and only if, Π(R−) = 0.

Case (D). Let u ≥ 0. Fix ǫ ∈ (0, γc) and define

Zǫ
t =

Ψ(γc − ǫ)

γc − ǫ
t+Xt, for all t ≥ 0.

Then, because (D) holds Ψ(γc − ǫ) < 0, so that Zǫ
t ≤ Xt, for all t ≥ 0, and

P

(

inf
0≤t<+∞

Xt ≤ −u

)

≤ P

(

inf
0≤t<+∞

Zǫ
t ≤ −u

)

.

Note that the Laplace exponent Ψǫ of Zǫ is defined for γ ∈ [0, γc) and given by

Ψǫ(γ) = −
(

Ψ(γc − ǫ)

γc − ǫ
+ δ

)

γ +
σ2

2
γ2 +

∫

R

(

e−γx − 1 + γx
)

Π(x)

= −Ψ(γc − ǫ)

γc − ǫ
γ +Ψ(γ).

(7)

Now, we will show that Zǫ satisfies (i) and (ii) of Proposition 3. Condition (i) is

satisfied for γ0 = γc−ǫ, because Ψǫ(γc−ǫ) = 0. For condition (ii), note that because

Ψǫ has a root and is convex, we have limγ→0+(Ψ
ǫ)′(γ) < 0. Thus, by Proposition 1,

we obtain that Zǫ
t
a.s.→ +∞, so that (ii) is also satisfied. Therefore, we obtain

P (τ(u) < +∞) ≤ e−(γc−ǫ)u.

As this is true for each ǫ ∈ (0, γc), we can let ǫ → 0+ to finish the proof. �

2.3. Application to Risk Models. In this section, we apply our result to the risk

models given in the introduction.

Example 1. Consider a real-valued Lévy process X = (Xt)t≥0 with Lévy triplet

Π(dx) = βαe−αx
1{x≥0}dx, σ

2 = 0 and a = −p+
∫

|x|<1 xΠ(dx) for some p, α, β > 0.

Then, Y u
t = u +Xt, with u ≥ 0, corresponds to the model with positive risk sums

given by (3) with exponential jumps with intensity α > 0. We have γc = +∞
because Π(R−) = 0. We obtain δ = E(X1) = −p + β

α
. Then, Theorem 1 (A), tells

us that we have ruin with probability one when p ≥ β
α
. So, we assume that p < β

α
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(i.e., the safety loading requirement mentioned earlier.) For γ > 0, we have

Ψ(γ) = −δγ + βα

∫

R+

(e−γx − 1 + γx)e−αxdx

= pγ +
βα

γ + α
− β =

pγ2 + (pα− β)γ

γ + α
.

We see that Ψ has a root given by β−pα
p

> 0. Therefore, by Theorem 1 (B), we

obtain P(τ(u) < +∞) = exp
(

−
(

β−pα
p

)

u
)

(as, in this case, C(u) = 1).

Example 2. Consider a real-valued Lévy process X = (Xt)t≥0 with Lévy triplet

Π(dx) = βαeαx1{x≤0}dx, σ
2 = 0 and a = p +

∫

|x|<1 xΠ(dx) for some p, α, β > 0.

Then, Y u
t = u + Xt, with u ≥ 0, corresponds to the classical Cramér-Lundberg

model given by (1) with exponential jumps with intensity α > 0. In this case, we

have γc = α. In fact, for γ ∈ [0, α),
∫ −1

−∞
e−γxΠ(dx) = βα

∫ −1

−∞
e(α−γ)xdy = βα

eγ−α

α − γ
< +∞,

and the integral diverges if γ ≥ α. We obtain δ = E(X1) = p − β
α
. Then, Theorem

1 (A) tells us that we have ruin with probability one when p ≤ β
α
. So, we assume

that p > β
α
. For γ ∈ (0, α), we have

Ψ(γ) = −δγ + βα

∫ 0

−∞
(e−γx − 1 + γx)eαxdx

= −pγ − βα

γ − α
− β =

−pγ2 + (pα− β)γ

γ − α
.

We see that Ψ a root in (0, α) given by pα−β
p

. Therefore, by Theorem 1 (B), we

obtain P(τ(u) < +∞) ≤ exp
(

−
(

pα−β
p

)

u
)

.

We now give an example for case (D).

Example 3. Let α > 0, consider the Lévy process X = (Xt)t≥0 with σ2 = 0 and

Π(dx) = K(α)x−2eαx1{x≤−1}dx where K(α) > 0 is a constant such that
∫

R
Π(dx) =

1 and let Y u
t = u+Xt, for u ≥ 0. In fact, Π represents the large negative jumps of

a tempered 1-stable process (see e.g. [4], p.119 for the definition of these processes.)

It is possible to show that γc = α. In fact, if γ < α,
∫ −1

−∞
K(α)e−γxx−2eαxdx ≤ K(α)

∫ −1

−∞
e(α−γ)xdx = K(α)

eα−γ

γ − α
< +∞,

and if γ > α, limx→−∞ x−2e(α−γ)x = +∞ and the integral diverges. We can now

choose δ > 0, so that Ψ(γ) < 0 for all γ ∈ (0, α). In fact, it is enough to find δ > 0
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such that Ψ(α) < 0. But,

Ψ(α) = −δα+

∫ −1

−∞
(e−αx − 1 + αx)K(α)x−2eαxdx

= −δα+K(α) − 1− αK(α)Γ(0, α),

(8)

where Γ(0, α) ,
∫∞
α

t−1e−tdt is the upper incomplete gamma function. Therefore,

Ψ(α) < −δα +K(α), and if we choose δ > K(α)
α

, we have then Ψ(α) < 0 and, by

Theorem 1 (D), we obtain P(τ(u) < +∞) ≤ e−αu.

Finally, we obtain classification of the bounds on the ruin probabilities for the

Cramér-Lundberg model perturbed by Brownian motion. Note that in contrast

to the case when σ2 = 0, there are two possible regimes when the safety loading

condition is satisfied. This shows how the uncertainty in premium payments affects

the ruin probability.

Proposition 5. Let X = (Xt)t≥0 be a real-valued Lévy process with Lévy triplet

Π(dx) = βαeαx1{x≤0}dx, σ
2 > 0 and a = p +

∫

|x|<1 xΠ(dx) for some p, α, β > 0.

Then, Y u
t = u +Xt, with u ≥ 0, corresponds to the perturbed risk process given by

(2) with exponential jumps with intensity α > 0. Let ∆ , (σ2α − 2p)2 + 8σ2β and

γ− ,
σ2α+2p−

√
∆

2σ2 .

• If p ≤ β
α
, then P(τ(u) < +∞) = 1, for all u ≥ 0.

• If p > β
α
and γ− < α, then P(τ(u) < +∞) ≤ e−γ

−
u.

• If p > β
α
and γ− ≥ α, then P(τ(u) < +∞) ≤ e−αu.

Proof. Similarly to Example 2, we have γc = α and δ = p − β
α
. So, by Theorem 1

(A), we have ruin with probability one when p ≤ β
α
and we assume in the following

that p > β
α
. For γ ∈ (0, α), we obtain

Ψ(γ) = −δγ +
σ2

2
γ2 + βα

∫ 0

−∞
(e−γx − 1 + γx)eαxdx

= −pγ +
σ2

2
γ2 − βα

γ − α
− β

=
γ
(

σ2γ2 − (σ2α+ 2p)γ + 2(pα− β)
)

2(γ − α)
= −1

2
A(γ)B(γ),

where A(γ) ,
γ

α−γ
and B(γ) , σ2γ2 − (σ2α + 2p)γ + 2(pα − β). To see if Ψ has

an other root along 0, we need to consider the solutions of B(γ) = 0. This is an

equation of second order with determinant ∆. As ∆ > 0, B has two distinct roots

γ+ and γ−, given by

γ± =
σ2α+ 2p ±

√
∆

2σ2
.
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B(γ)

γ
α γ+

γ−

B(γ)

γ
α γ+

γ−

Figure 2. Behaviour of B when γ− < α (left) and γ− ≥ α (right).

First note that γ− < γ+ and that γ+ ≥ α and γ− ≥ 0, because (σ2α + 2p)2 ≥
∆ ≥ (σ2α − 2p)2. Additionally, note that B′′(γ) = 2σ2 > 0, so that B is convex.

Therefore, we only have two possible cases (see Figure 2) : either γ− < α and then

γ− is a root of B and of Ψ, or γ− ≥ α and then B(γ) > 0 and Ψ(γ) < 0, for all

γ ∈ [0, α). So, if γ− < α, then, by Theorem 1 (B), we obtain P(τ(u) < +∞) ≤ e−γ
−
u

and if γ− ≥ α, then, by Theorem 1 (D), we obtain P(τ(u) < +∞) ≤ e−αu. �
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