N
N

N

HAL

open science

Integer Linear Programming for Pattern Set Mining;
with an Application to Tiling
Abdelkader Ouali, Albrecht Zimmermann, Samir Loudni, Yahia Lebbah,

Bruno Crémilleux, Patrice Boizumault, Lakhdar Loukil

» To cite this version:

Abdelkader Ouali, Albrecht Zimmermann, Samir Loudni, Yahia Lebbah, Bruno Crémilleux, et al..
Integer Linear Programming for Pattern Set Mining; with an Application to Tiling. Pacific-Asia
Conference on Knowledge Discovery and Data Mining, May 2017, Jeju, South Korea. 10.1007/978-
3-319-57529-2_ 23 . hal-01597819

HAL Id: hal-01597819
https://hal.science/hal-01597819v1
Submitted on 28 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01597819v1
https://hal.archives-ouvertes.fr

Integer Linear Programming for Pattern Set Mining;
with an Application to Tiling

Abdelkader Ouali2, Albrecht Zimmermann?, Samir Loudni?, Yahia Lebbah', Bruno
Cremilleux?, Patrice Boizumault?, and Lakhdar Loukil®

L Lab. LITIO, University of Oran 1, 31000 Oran, Algeria.
2 Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France.

Abstract. Pattern set mining is an important part of a number of data mining
tasks such as classification, clustering, database tiling, or pattern summarization.
Efficiently mining pattern sets is a highly challenging task and most approaches
use heuristic strategies. In this paper, we formulate the pattern set mining problem
as an optimization task, ensuring that the produced solution is the best one from
the entire search space. We propose a method based on integer linear program-
ming (ILP) that is exhaustive, declarative and optimal. ILP solvers can exploit
different constraint types to restrict the search space, and can use any pattern set
measure (or combination thereof) as an objective function, allowing the user to
focus on the optimal result. We illustrate and show the efficiency of our method
by applying it to the tiling problem.

1 Introduction

Pattern mining is one of the fundamental tasks in the process of knowledge discovery,
and a range of techniques have been developed for producing extensive collections of
patterns. However, resulting pattern collections are generally too large, difficult to ex-
ploit, and unstructured — without interpretable relations between patterns. This explains
the interest of the community to pattern sets [18]. Instead of evaluating and selecting
patterns individually, pattern sets (i.e., sets of patterns) assemble local patterns to pro-
vide knowledge from a high-level viewpoint, using quality measures that evaluate, and
constraints that constrain, the entire set. Examples of problems related to pattern sets
include concept-learning, database tiling, data compression, or clustering, to cite a few.
However, as the number of possible pattern sets is exponential in the size of the set of
local patterns, which is itself huge, the computational efficiency of pattern set mining
is a very challenging task. For specific quality measures, such as joint entropy, rela-
tively tight upper bounds can be derived to prune candidate sets [13]. Unfortunately,
such pruning strategies are limited to very few cases. In practice, most approaches use a
step-wise strategy in which first all local patterns are computed, then heuristically post-
processed according to an objective function to be optimized. Therefore only a single
pattern set is returned; examples are [2,4,14,20]. Obviously this process does not ensure
the optimality of the returned pattern set according to the objective function. To the best
of our knowledge, only the algorithm proposed in [18] proceeds by exhaustive search
while pruning parts of the search space by using pattern set constraints. However, these
pruning effects can be weak, and the number of patterns being very large, this method
only works for small pattern collections.

In this paper, we formulate the pattern set mining problem as an optimization task,
ensuring that the produced solution is the best from the entire search space. In a sense,
we return to the spirit of the original idea of pattern set mining [18] based on a complete
method. However, we produce only the best solution, avoiding being drowned by pat-
terns. What’s more, we use constraint programming (CP) techniques since CP solvers
can exploit a wider range of constraints than data mining approaches that are typically
locked into a rather rigid search strategy. Modeling constraints independently from the
search strategy also allows them to accomodate a variety of constraints, and therefore
adapt the resulting pattern sets to the need of the user.

The key contribution of this paper is a method based on integer linear programming
(ILP) that is (1) exhaustive, avoiding the loss of interesting solutions, (2) declarative,
allowing us to make the most of provided constraints instead of being tied to a par-
ticular search strategy, (3) optimal, always returning the best solution according to an
optimization criterion that satisfies the given constraints. Any measure that can be used
as a constraint in an ILP model can also be chosen as an objective function to be op-
timized. This allows the user to prioritize particular aspects of the solution. Measures
to be optimized can be combined, as long as they can be expressed as a linear term.
This is once again an advantage over traditional mining, where a change would typ-
ically require the explicit redefinition of the search strategy. Our approach allows us
to provide the first practically useful algorithm for addressing this problem setting. As
an illustration, we experimentally address the tiling problem but our approach is broad
enough to cover and leverage many pattern mining problems such as clustering [1,5],
classification [14], or pattern summarization [21].

The rest of the paper is structured as follows. Section 2 recalls preliminaries. Sec-
tion 3 describes our approach. Section 4 introduces several complex queries, and Sec-
tion 6 shows the results of solving queries for the k-tiling problem on different data
sets. We discuss related work in Section 5.

2 Preliminaries

2.1 Local patterns

Let 7 be a set of n distinct items, an itemset (or pattern) is a non-null subset of Z. The
language of itemsets £ corresponds to 27\ (). A transactional dataset D is a multi-set of
m itemsets of £, with each ¢;,1 < i < m called a transaction. We assume the database
D is represented as a binary matrix of size n x m with Dy; = 1 > (¢,4) € D.

Let D a database, ¢ € L be a pattern, and match : L x L — {true, false} a
matching operator. The cover of ¢ w.r.t D, denoted by cov(¢, D), is the set of transac-
tions in D that ¢ matches: cov(¢, D) = {t € D | match(p,t) = true}. The support of
¢ is the size of its cover: sup(¢, D) = |cov(¢, D)|. The tile of a pattern ¢ contains all
tuples that are covered by the pattern: tile(¢, D) = {(¢,i) | t € cover(p, D),i € ¢}.
These tuples form a tile or rectangle of 1’s in the database D. The area of tile(¢, D) is
equal to its cardinality: area(¢p, D) = [tile(p, D)| = || . sup(¢p, D).

A pattern ¢ is said to be more general than a pattern v (¢ < 1)) (resp., ¢ is more
specific than @) iff Vt € L : match(y,t) = match(,t), i.e. if 1) matches any trans-
action ¢ then ¢ matches it as well. A pattern ¢ is strictly more general than a pattern

(¢ <v).if ¢ ¢ and =(X ¢).

The local pattern mining problem consists of finding a theory Th(L,D, q) = {¢ €
L | q(¢,D) is true}, where q(¢, D) a selection predicate that states the constraints
under which the pattern ¢ is a solution w.r.t. the database D. A common example is the
minimum support constraint sup(¢, D) > 6, which is satisfied by all patterns ¢ whose
support in the database D exceeds a given minimal threshold . Combined with £, this
gives rise to the frequent itemset mining problem. An exact condensed representation of
the frequent itemsets consists of the closed patterns [17]. A closed pattern is one whose
specializations have a smaller cover than the pattern itself: closed(¢) < Vi, ¢ < ¢ :

cov()) C cov().

2.2 Pattern set mining

Pattern sets are simply sets of patterns. The task of pattern set mining entails discovering
a set of patterns that satisfies a set of constraints involving not only individual patterns,
as in the local pattern mining setting, but the whole set of patterns. Hereafter, we will
denote by L the set of all the possible pattern sets that can be enumerated given a
language L, i.e., L = 2%. The individual/local patterns occurring in a pattern set will
be denoted using lower case characters such as ¢, ..., v and for patterns sets, we will
employ upper case characters such as @,...,V.

More formally, the problem of pattern set mining can be formulated as the problem
of computing the theory Th(L,D,p) = {® € L | p(®, D) is true}, where p(®, D) a
selection predicate that states the constraints under which the pattern set @ is a solution
w.r.t. the database D. In addition, as the number of pattern sets can become very large,
we will study how to find the best pattern set with respect to an optimisation criterion
f(®), i.e. argmaxgemnr,p,p)f(P). In classical pattern set mining, this is achieved by
dynamically increasing the threshold of the constraint involving f. When using the ILP
framework (see Section 3), this can be achieved by using f as an objective function to
guide the search.

2.3 Categories of Constraints

This section discusses several categories of constraints that can be specified at the level
of the pattern set as a whole.

Coverage Constraints deal with defining and measuring how well a pattern set covers
the data. Let ¢ € L be a pattern set and D a database,

- Pattern set cover. The cover of @, denoted as cov(®, D), is the set of transactions in
D that & covers: cov(®, D) = (J g cov(¢, D). With this definition, @ is interpreted as
the disjunction of the individual patterns ¢ it contains.

- Support of pattern set. The support of @, denoted as sup(®, D), is calculated in the
same way as for individual patterns: sup(®, D) = |cov(P, D).

- Size of pattern set. The size of @, denoted as size(P), is the number of patterns that ¢
contains: size(®) = |P|.

- Area of pattern set. The area of a pattern set was studied in the context of large tile
mining [6]. The area of &, denoted as area(P, D), is defined as the area of all the tiles
of the individual patterns ¢ it contains: area(®, D) = |U,cq tile(d, D).

- Generality of pattern set. A pattern set @ is more general than a pattern set ¥, denoted
as @ X W, iff for all pattern ¢ € ¥, there exists a pattern ¢ € @ s.t. ¢ < .

Discriminative Constraints. Given a database D organized into possibly overlapping
subsets D1, ..., D,, C D, the discriminative constraints can be used to measure and op-
timize how well a pattern set discriminates between examples of subsets D;. Discrim-
inative measures are typically defined by comparing the number of examples covered
by the pattern set for a subset D;, to the total number of examples covered in D.

— Representativeness of a pattern set. Representativeness indicates how characteris-
tic the examples covered by the pattern set are for a subset D;. rep(®,D;, D) =
sup(®, D;)/sup(P, D).

— Accuracy of a pattern set. Let a dataset D partitioned into subsets Dy, ..., D,,, where
each subset D; contains transactions from class i. The accuracy of a pattern ¢ is de-

. ,D; . .
fined as acc(¢) = maxp, e supl®.Di) he accuracy of an entire pattern set is harder to

sup(¢,D)
. . . 2 pea acc(p) X sup(4,D)
quantify. We can however approximate it as acc(®) = ¢Ez"i¢€¢ S (3.D)

Redundancy Constraints can be used to constrain or minimize the redundancy be-
tween different patterns. One way to measure this redundancy is to count the number of
transactions covered by multiple patterns in the pattern set @:

red(®,D) = |{t € D | (o, ¢) € D,t € ovlp(d, 1, D)}|, where ovip(d, ¢, D) =
cov(é, D) N cov(1), D) denotes the overlap between the two patterns ¢, ¢ [18].

3 Mining pattern sets using ILP

Throughout the remainder of this paper we employ the Integer Linear Programming
(ILP) framework for representing and solving pattern set mining problems. ILP [15] is
one of the most widely used methods for handling optimization problems, due to its
rigorousness, flexibility and extensive modeling capability. This framework has been
shown 1) to allow for the use of a wide range of constraints, 2) to offer a higher level
of problem formalization and modeling, and 3) to work for conceptual clustering [16].
Moreover, modern ILP solvers are very efficient with improved search heuristics.

3.1 Resolution approach

Finding a good pattern set is often a hard task; many pattern set mining tasks and their
optimization versions, such as the k-tiling [6] or the concept learning [11], are NP-hard.
Hence, there are no straightforward algorithms for solving such tasks in general, giving
rise to a wide ranges of approaches (Two-step vs one-step) and search strategies (Exact
vs heuristic). In this paper, we adopt a two-step approach:

(1) A local mining step mines the set of local patterns Th(L, D, q) that satisfy a set of
constraints.

(ii) An ILP mining step post-processes these patterns with the ILP exact solving tech-
nique to obtain the best pattern set in Th(L, D, p) under the given constraints.

Our motivation for adopting a two-step approach is two-fold: First, there exist ef-
ficient miners [22] to find local patterns. Second, in the second step, the formulated
ILP model (see Section 3.2) is very close to the well known partitioning (and cover-
ing) problems which are extensively studied within the integer programming commu-
nity [10]. Modern ILP solvers, such as Cplex [8], are efficient on such problems. Our
ILP model is detailed in the next section.

Constraint name Notation ILP formulation
(C%2) size(®) < 0 d o s 0
PEP
c5) 2=
cov sup(dZ D) § 0 teD
(Cay) g < Z atp - xp < |P|-ye,Vt €D
PEP
(ng) Z qis 0
area (l”‘ea(ds, D) § 0 i€L,teD
(Coq) Qi <Y ol wy < |Pl.gui,Vt€D, Vi€ T
peP
(C2,) &< &, > zp 21, Vo Po
oo — {p: VpeP | p=¢}
(C%) o< b > w2 Y T
{p: VpeP | Ip€dy, ¢=<p} peEP
(Cu.g) Zm st
redd red(®,D) < 0 tep
(Cau) 2u; < Z atpty <y + |P|.w,Vt € D
peP
7
etz HEE L
rer rep(®,D;,D) < 6 !
(Cayr) Y <Y - mp <[Py, VEED;
peP
(C%3) avg(sup(®, D)) < 0 Z Joran—0 Z p S0
- peP peP
(Cfﬁn) sum(sup(®,D)) < 6 Zfl’ Tp S0
pEP

Table 1. ILP formulations of constraints discussed in Section 2.3.

3.2 1ILP models

This section presents the ILP model of a pattern set, and the ILP formulations for con-
straints presented in Section 2.3.

Modeling a pattern set. Let P be the set of ¢ patterns. Hence, the pattern set mining
problem can be modeled as an ILP using ¢ boolean variables x,(p € P), where (z, =
1) iff the pattern p belongs to the unknown pattern set ¢ that we are looking for.

Coverage Constraints. Let D be a database with m transactions. We introduce m
boolean variables y;, (¢ € D) such that (y; = 1) iff there exists at least one pattern

¢ € @ such that pattern ¢ matches ¢. So, we have sup(®, D) = >, y:. With some

. . <. . .
given threshold 6, the coverage constraint (C’f[,i) is defined on such boolean variables.

Table 1 shows the formulation of the coverage constraints. Constraints C, ,, establish
the relationship between variables x and y, and state that each transaction ¢ must belong
to at most |P| patterns. Note that (y; = 0) iff there exists no pattern ¢ € & such that
the pattern ¢ matches ¢.

Let (a;p) be an m x ¢ binary matrix where (a;, = 1) iff match(p,t) = true,
i.e., the pattern p matches the transaction ¢. For the area constraint, we need to compute
the number of ones in the binary matrix that are covered by the set of patterns. We
can model this by introducing a temporary variable g; ; for every tuple (¢, i), such that
(gr,; = 1) iff there exists at least one tile (pattern) ¢ € ¢ such that ¢ € cover(¢, D)
and i € ¢. Let cqy ; be a binary matrix associated to each pattern p where (cqy; = 1)
iff p covers both transaction ¢ and item 4. Constraints (C,, ,) establish the relationship
between variables g and x.

(a) (b) (©)

Fig. 1. Three patterns overlapping

Let &(a given pattern set. We model the generality constraint (Cgsef’n) as follows:
(@ = Py) iff for any pattern ¢ € Py, there exists (at least) one pattern p € P s.t. p < ¢,
i.e. 7, = 1. For the specialisation constraint (C2%,), (®¢ < &) iff for any pattern p € @,
there exists (at least) one pattern ¢ € @g s.t. ¢ = p. ”For any pattern p € ¢” is modeled
by stating that the number of patterns p € @ verifying the property must be greater or
equal to size(®) =3 p Tp.
Handling aggregates. Table 1 shows how constraints involving aggregates (e.g. sum,
avg, min, maz) can be modeled using ILP. For example, the constraint (C’fﬁ%) ex-
presses that the sum of the supports over all patterns in ¢ should be < than 6. It can

be modeled using a linear constraint, where f), is the support value of a local pattern p.
- . . <
Similarly, we can constraint the average taken over all patterns in ¢ (Cg;,? .

Redundancy constraints. To deal with redundancy, we need to know transactions that
are multiply covered. Thus, we introduce boolean variables (u;), (t € D) s.t. (uz = 1)
iff transaction ¢ is matched by at least 2 patterns. The total number of such transactions

is) ,cp u¢. Table 1 gives the modelisation of the redundancy constraint (Cf ﬁd), while
constraints (C} ,,) establish the relationship between intermediate variables (u and y)
and decision variables x.

Our definition of redundancy is similar to that proposed in [19] yet different from
the (pairwise) redundancy proposed in [18]. The latter was adopted mainly due to its
effectiveness for pruning in a level-wise mining algorithm. The differences between the
two formalizations of redundancy are briefly sketched here.

Consider the three cases of overlapping patterns shown in Figure 1. The numbers
in overlapping areas denote the number of transactions in the overlap. All three cases
would be considered the same by a constraint measuring the maximal pairwise over-
lap between patterns, such as used in [18]. The global redundancy measure we employ
evaluates to 6 for case (a), 9 for case (b), and 11 for case (c), capturing the actual situa-
tion much better. Notably, summing pairwise redundancies, another option proposed in
that paper, will lead to a result of 15 for (c), overstating the redundancy. For this reason,
we claim that our modelisation is more appropriate than the one chosen in [18].

Representativeness constraints. Let D; C D be a partial data set. We introduce |D;|
extra boolean variables y;, (t € D;) such that (y; = 1) iff there exists at least one
pattern ¢ € @ such that pattern ¢ matches ¢. The modelisation of the representativeness
constraint (Cfé%’Di) is shown in Table 1. Constraints (C;) establish the relationship

between variables (y;) and ().

4 Queries and how to model them

This section provides three examples of complex queries and shows how to model them
as a combination of constraints presented in Section 2.3.

As a first query (Q)1), we show the quintessential pattern set mining task: given the
result of a local pattern mining operation, we aim to find a (relatively) small subset of
patterns that is representative of the entire result. To this end, we want to select patterns
that have very little overlap and together cover as much of the data as possible. There
are two ways of modeling this query as an ILP problem :

Maximize 3, Yt Minimize 3, p ut

(Crida) (043

(Cxy,u) @® (Cxy,u) @
zp, € {0,1},Vp e P zp, € {0,1},Vp e P

yt € {0,1},us € {0,1},Vt € D y: € {0,1},us € {0,1},Vt € D

(1) maximize support (z =, .1 y¢) subject to maximum redundancy constraints;

(2) minimize redundancy (z =, p, us) subject to minimum support constraints. Con-
straints (C,,) and (Cy,,,) governing the new variables v and y can be merged and will
be denoted as the following linear constraints (Cy p)t Y + up < ZpeP A pTp <
ye + [Pl ue, ye > ug, ¥t €D

Our second query (()2) is a refinement of the first one, by imposing a generality
constraint. For instance, we aim to summarize a set of subgraphs mined from molecular
data, so that a non-data miner, e.g. a chemist, has only a small set of fragments to
evaluate. In that case, the practitioner might already have an idea what fragments she
would like to see, and wants to see the rest fleshed out. This can be achieved by requiring
that a pattern set include a particular pattern (or syntactically related patterns), i.e. that
is more general than another one. In the ILP case as well, this just requires a generality
constraint to be added.

Our last query (@3) concerns the k-tiling. The task consists of finding k tiles max-
imizing the area (z = Ztep’iez qt,i)- Equation (3) depicts our first ILP model M1.
The number of tiles k£ can also be defined as a variable whose value will be determined
by the ILP solver. This can be done by specifying a lower bound k,,;, and/or an up-
per bound k.., on the value of k. Note that tiles can be overlapping, but every tuple
(t,7) covered is only counted once. This encoding requires (n X m + 2) constraints and
((n x m) + ¢ + 1) variables. This constitutes a major limitation when it comes to han-
dling very large databases. Thus, we propose a second ILP model M2 that approximates
the k-tiling by summing the areas v, (p € P) of the individual tiles it contains. In this
case, each tuple (¢, ¢) covered may be counted more than once.

Maximize EpeP Vp . Tp
. My <X pepatp-Tp <do.yr, VEED
Maximize 3, p ;7 qt,i (2) Xiepyr 204
(Cz.,q) 3) z; < ZpeP Wip - Tp < Yo.2i, Vi€ETL
k=23 pep o (4) Xog 2 > 0;
kmin <k < kmax k_z:le o
k€N, (©) ts i
€ kmin <k < kmax
zp € {0, 1}, keN,
.piﬁ?o 1} ICE{O,I}, ceP
ql%teIA)te’D v €{0,1}, t€D
z € {0,1}, i€T

“)

Equation (4) depicts our second ILP model M2. It consists of finding a set of tiles
covering both the set of transactions and the set of items, with small overlaps on trans-
actions and on items. In this way, we allow to control the redundancy on tuples (¢, 7)
that are multiply counted in the tiling. Constraint (2) states that at least 6, transactions
must be covered, while Constraint (1) states that each transaction ¢ cannot occur in more
than d, closed patterns. Let w; , be an n x ¢ binary matrix where (w; , = 1) iff the
item ¢ belongs to the tile or pattern p. Constraint (4) states that at least §; items must be
covered, while Constraint (3) states that each item ¢ cannot occur in more than 7, tiles.
In the experimental section, due to the space limitation, we focus on questions related
to the k-tiling problem.

5 Related work

Pattern set mining is an important part of a number of data mining tasks such as classi-
fication [14], clustering [1,5], pattern summarization [21], or database tiling [6]. Due to
the highly combinatorial nature of the problem, most methods proceed in two phases.
First, an exhaustive algorithm generates the whole collection of local patterns satisfy-
ing given constraints and the second phase produces pattern sets by selecting smaller
subsets of relevant patterns from the whole collection of local patterns, often by using
heuristics to manage computational complexity. Unlike these works, our method does
not use heuristics to provide a pattern set but relies on a solid formalization in the ILP
paradigm, while the search is guided by the optimization of an objective function.

There are very few attempts on searching pattern sets according to complete ap-
proaches. The original idea of pattern set mining was proposed in [18]. The authors
formally introduce a variety of constraints at the level of the pattern sets. Unfortunately,
the pruning techniques are weak and the algorithm remains limited to small collections
of patterns. Specific settings have been proposed by [13] (fixing the size of pattern sets
and relying on the anti-monotonicity of a particular quality function) or [3] (using a
dedicated global constraint on the attributes). The approach in [6] is heuristic but does
not use post-processing, instead iteratively mining tiles, taking already found ones into
account.

The constraint programming framework was investigated to accomplish the pattern
set mining task by modeling pattern sets with constraints [7,12]. However, these meth-
ods require to fix the number of local patterns included in a pattern set, a strong limi-
tation in practice, and tend to have scaling problems. Recent contributions also employ
more specialized systems such as satisfiability solvers [9] and integer linear program-
ming techniques [1,16]. These methods address particular problem settings whereas we
propose a declarative and exhaustive method based on ILP returning the best solution
according to an optimization criterion, and which is able to handle a wide variety of
constraints and therefore various different pattern set mining tasks.

6 Experiments

For a better understanding of the suitability of the ILP approach, we focus our experi-
ments on one prototypical task for pattern set mining: the k-tiling problem (NP-Hard).

The experimental evaluation is designed to address the following questions:

1. How do the running times of our approach (ILP) compare to the only existing CP
approach, proposed by Guns et al. (KPatternSet), for the k-tiling problem?

2. Given the space requirements of the ILP model M1, how do the obtained k-tilings
compare qualitatively with those resulting from the (approximating) ILP model M2?

3. In light of the exact nature of our approach, how do the resulting k-tilings compare
qualitatively with those resulting from (k-LTM) [6].3

4. How do the k-tilings with overlapping tiles compare qualitatively with those having
non-overlapping tiles ?

Experimental protocol. Experiments were carried out on the same datasets which were
used in [7] and available from the UCI repository. Table 2 shows the characteristics of
these datasets. All experiments were conducted on AMD Opteron 6174 with 2.60 GHz
of CPU and 256 GB of RAM.* We used closed patterns to represent tiles since they
cover a larger area than their non-closed counterparts. We used LCM to extract the set of
all closed patterns and CPLEX v.12.4 to solve the different ILP models. For all meth-
ods, a time limit of 24 hours has been used. As M2 requires setting the parameters for
the coverage and non-overlap relations, we propose the following three settings :
- M2a with settings allowing similar amounts of coverage and overlap as k—LTM;
- M2b with settings allowing the coverage of all transactions (§; = m) with the max-
imum overlap (6o = |P]) and the coverage of at least one item (f; = 1) without any
overlap for items (vg = 1);
- M2c with settings allowing the coverage of all transactions (§; = m) without any
overlap (09 = 1) and the coverage of at least one item (; = 1) with the maximum
overlap for items (o = |P|).

To assess the quality of a k-tiling @, we define the recall of @, measured by the

fraction of all ones in the binary matrix D belonging to area(®, D), which should be
>t 22 Dti :

(a) Comparing ILP-M1 with KPatternSet. Tab. 2 compares the performance com-
pares of ILP-M1 and KPatternSet(in terms of CPU-times) for various values of
k on different datasets. We also report the corresponding value of recall. The CPU-
times of ILP-M1 include those for the preprocessing step. ILP—-M1 clearly outper-
forms KPatternSet on all datasets: KPatternSetgoes over the timeout for k > 4.
For the value of £ for which an optimal k-tiling can be found, TLP-M1 is up to several
orders of magnitude faster than KPatternSet.

as large as possible: recall(®, D) =

(b) Comparing M1 with M2a and M2b. ILP-M1 finds the optimal solution on most of
the datasets, but ILP-M2a remains relatively close in terms of recall, particularly for
(k < 5). In addition, ILP-M2a is much faster, particularly on Lymph and Vote (speed-
up of up to 660). The main limitation of M1 remains its space requirement. For the
three most difficult datasets — Mushroom, Hepatitis and Anneal — ITLP-M1 fails to find
a solution. Comparing ILP-M2a with ITLP-M2Db, the latter shows clearly higher recall

3 We use the implementation available at https: //people .mmci.uni-saarland.de/
~jilles/prj/tiling/.

* The k-LTM implementation is Windows-only, and run times therefore only roughly indicate
its behavior.

D|Items|Trans. |k Recall Time (s) D|Items |Trans. |k Recall Time (s)
M A B &[G D @ B @& 6 M| @] B)@| S M @ [©1[C1IE®)]
3 1/0.48]0.38]|0.38]0.48|0.46(| 8.99| 587 1.57| 2,418 3 1{0.15/0.15]0.11|T0[0.15]| 24.49| 8.93 5.98|T0
4 1|0.57|0.47|0.48| TO|0.56|| 14.38| 4.53| 3.67 TO o 4 1/0.20{0.20|0.16|T0|0.20|| 23.67| 6.11 5.05|10
- 5 |(0.63|0.54|0.52| TO[0.62|| 25.11| 4.49| 299| TO & 5 1|0.25/0.25/0.21|{T0|0.25|| 25.81| 5.43 5.82|T0
§ 34 |101 |6 ||0.68/0.55|0.55| T0|0.67|| 34.96| 10.82| 2.98 TO E 24 1958 |6 ||0.29]0.29|0.27|T0|0.29|| 24.45| 5.92 491|10
7 1|0.73|0.57|0.58| TO|0.71|| 22.85| 5.81| 3.49| TO £ 7 1|0.33|0.33/0.33|T0|0.33|| 43.17| 5.53 2.70|T0
8 |(0.78]0.68|0.61| TO|0.75|| 25.56| 6.96| 3.16| TO 8 1|0.38]0.38/0.38|T0|0.38|| 44.76| 5.44 3.82|TO
9 1|0.82]0.69|0.64| TO|0.79|| 35.07| 8.04| 3.59 TO 9 1|0.42(0.42]0.42|T0|0.42|| 42.76| 4.87 3.50|T0
10]]0.85/0.69|0.66| T0|0.82|| 26.21| 6.91| 3.23 TO| 0.99 10]/0.46|0.46|0.46|T0|0.46|| 41.98 5.16 3.35|T0] 0.1
3 ||0.43(0.42]0.35| TO|0.42|[299.91| 50.92|152.54 TO 3 1|0.32{0.30]0.06|T0|0.31{| 3,020 81.75| 34.36|TO
4 1/0.48]0.38]|0.39| T0|0.47(|954.74|143.84|152.13 TO 4 1|0.37]0.35|0.19|T0|0.36|| 1,947| 84.99| 46.09|TO
5 5 |(0.52]|0.44|0.42| TO|0.51|| 1,629| 97.88|152.72| TO . 5 1(0.42]|0.38/0.33|T0|0.40|| 4,269|732.10| 49.42|TO
E|66 |148 |6 ||/0.55(0.37|0.45| TO|0.54|| 4,261|175.01|152.52 TO $145 |435 |6 ||0.46/0.39]0.40|T0|0.44|| 3,651| 83.48| 43.23|TO
= 7 1|0.58(0.40|0.46| TO|0.57|| 6,027|155.19|153.15 TO 7 1|0.50(0.38/0.45|T0(0.47|[13,831|282.56| 39.13|TO
8 ||0.61(0.40]0.48| TO|0.59|| 5,197| 47.68|146.13 TO 8 1|0.53(0.37]0.49|T0|0.51|| 8,671(819.33| 33.03|TO
9 1|0.63|0.40|0.49| TO|0.61|| 7,313| 45.51|148.06| TO 9 1(0.56]|0.42|10.53|T0|0.54/|15,152|881.76| 36.10|TO
10]]0.65/0.44|0.50| T0|0.63||28,779| 43.56|148.51 TO|1321 10]]0.60/0.43|0.57|T0|0.57|[13,974|701.37| 30.53|T0| 3.3
3 ||0.46(0.40]0.36|0.46|0.46||405.91| 33.25| 82.26|41,496 3 TO[0.34] -|T0|0.34 TO|(431.82 -|TO
H] 4 1(0.54(0.48/0.47| TO|0.53|/680.64| 74.99| 88.60| TO 4 || T0[0.40| ~-|T0|0.40 TO|667.61 -|TO
5 5 1|0.59|0.47|0.55| TO|0.57|| 3,807| 43.93| 68.65 TO g 5 TO[0.46] —-|T0|0.46 TO|780.05 -|To
é' 29 (336 |6 [|0.64]0.44|0.60| TO|0.61|| 3,863| 92.28| 58.76 TO E 112 |8124 |6 T0|0.48| -|T0|0.50 TO|572.54 -|TO
£ 7 1|0.68|0.46|0.64| TO|0.65|| 6,407|154.82| 61.58 TO g 7 || TO|0.49| ~-|T0|0.53 TO|502.91 -|TO
~ 8 ||0.71(0.50]0.67| TO|0.68|86,429| 41.75| 53.93 TO 8 TO[0.44] -|T0|0.56 TO| 1,302 -|TO
9 1|0.74(0.54|0.70| TO|0.71||86,425| 65.50| 65.13 TO 9 || TO|0.48| ~-|T0|0.58 TO|763.20 -|TO
10{]0.77]0.52]0.73| T0|0.73||86,423| 43.70| 58.23 TO| 4.9 10|| TO|0.51| -|T0|0.60 TO|[479.45 —|T0|666.4
3 {|0.44/0.42]0.33|0.44|0.43||127.94| 15.31| 8.35|32,485 3 T0(0.27|0.25|T0|0.28 TO| 1,261 604.16|TO
4 1(0.50(0.47|0.37| TO|0.49|[147.11| 24.38| 6.96] TO 4 || T0(0.33]0.33|T0(0.34 TO0|910.38/1,007.34|TO
g 5 1|0.55]0.49|0.41| TO|0.53||141.70| 22.10| 6.43 TO El 5 T0(0.37]0.38|T0|0.39 TO| 1,310 725.38|TO
é 47 1630 |6 ||0.59]0.47|0.43| TO|0.58([144.27| 19.25| 6.08 TO g_ 66 |137 |6 || TO|0.42(0.42|T0|0.44 TO|887.81| 781.88|TO
g 7 1|0.62|0.47]|0.45| TO|0.60(|157.41| 14.11| 5.90 TO = 7 T0|0.43|0.46|T0|0.48 TO| 1,327 616.90|TO
8 ||0.65(0.45]0.47| TO|0.62||358.05| 16.30| 9.65 TO 8 T0[0.45]0.49|T0|0.52 TO| 2,372| 736.19|TO
9 1|0.67(0.46|0.48| TO|0.64|(342.79| 14.65| 8.83 TO 9 || T0|0.45|0.52|T0|0.55 TO| 3,046| 625.16|TO
10(/0.69]0.48|0.49| T0|0.66||734.20| 9.42| 6.28 TO 7 10|| T0|0.45]0.54|T0|0.57 TO[16,295| 656.40|T0| 6103

Table 2. Comparing the different approaches. (TO: TimeOut; - : no solution ; (1): ILP-M1; (2):
ILP-M2a; (3): ILP-M2b; (4): KPatternSet; (5): k—-LTM).

for Hepatitis, Primary Tumor and Vote. This is because ILP-M2b allows overlapping
tiles with high redundancy (see Tab. 3). In addition ILP-M2b is faster than ILP-M2a
on 51 instances (out of 64) with a speed-up between 1 and 4 for 27, and between 7 to
25 for 9 instances. Note that on Mushroom dataset, no k-tiling exists with M2b. These
results show that ILP-M2a and ILP-M2b achieve good recall compared to TLP-M1
with less space requirement, hence the interestingness of using ILP-M2b as a faster
alternative for approximating the optimal k-tiling.

(¢) Comparing ILP with k—-LTM. k—LTM differs from our approach in three points:
1) using a heuristic is faster but may lead to suboptimal solutions, 2) mining iteratively,
k—LTM can take information about already found tiles into account, and 3) a k—LTM
k + 1-tiling will always be a superset of a k-tiling — ILP can find different solutions.
As Tab. 2 shows, ILP-M1 always achieves better recall than k-LTM, yet requires more
time to find the optimum, (k—LTM running times are shown in the last column). For
the most difficult dataset Anneal, neither method find a solution. Comparing ILP-M2Db
with k—LTM, k—-LTM has a slight advantage (three data sets). While complete search
beats iterative mining, it does help gaining an advantage over heuristic post-processing.

(d) Comparing M2c with M2b and k—LTM. In our last experiment, we mine k tiles
without any overlap (i.e. M2c) and compare them to those resulting from M2b and
k—LTM. Tab. 3 shows four distinct cases of recall and redundancy for the three ap-

proaches. Col. 4 reports the redundancy of the k-tiling measured by red(®, D) /sup(P, D).

Col. 5 (resp 6) denotes the percentage of redundant (resp. covered) items. Generally,

Dk || Recall ||[Redundant Trans. Redundant Items|Coverage Items| |D|k || Recall |[Redundant Trans. R dant Items |Coverage Items
3B B3 G BB G| BB 6 3B B3 G BG) O] BB)

3 -10.23 -10.00 0.55 -10.50] 0.31 -10.08| 0.16 3 {/0.36{0.15]/0.87/0.00] 0.60{/0.00]0.33| 0.25|[0.23|0.19| 0.41

4 -10.31 -10.00 0.64 -10.32| 0.28 -|0.16| 0.18] |5 |4 ||0.47/0.22((0.90(0.00/ 0.71/{0.00{0.38| 0.38]|0.35|0.26| 0.44

g 5 -10.36 -10.00 0.81 -10.42| 029 -10.22| 0.24 § 5 {/0.55]0.28/|0.94/0.00| 0.82{/0.00/0.33| 0.42(|0.42|0.39| 0.48
216 -10.42 -10.00 0.91 -10.44| 041 -|0.21| 0.25 E 6 1/0.60]0.33]/0.96/0.00| 0.84(|0.00|0.50| 0.53||0.48/0.39| 0.51
27 -10.46 -10.00 0.92 -10.59| 0.55 -[0.24] 0.25| |£]7 ||0.64/0.38](0.98/0.00| 0.89]/0.00|0.44| 0.62|/0.52/0.52 0.55
8 -10.51 -10.00 0.93 -10.66| 0.53 -[0.24] 0.26] |* 8 ||0.67]0.42((1.00{0.00| 0.91{|0.00/0.42| 0.75[/0.52{0.61| 0.55

9 -10.54 -10.00 0.93 -10.69| 0.51 -10.24| 0.27 9 |/0.70|0.45|{1.00]0.00| 0.92(|0.00/0.45| 0.87||0.52(0.65| 0.55
10 -10.56 -10.00 0.93 -10.53] 0.50 -10.32| 0.28 10]0.73]0.48||1.00/0.00| 0.95]|0.00/0.45| 0.77||0.58|0.71| 0.62

3 1/0.33]0.28/|0.85|0.00 0.59{|0.00]0.30| 0.41{(0.16(0.20| 0.25 3 -10.36 -10.00 TO -10.47 TO -10.34| TO

4 /0.37]0.34/|0.90/0.00 0.64(|0.00{0.54| 0.37{(0.20(0.26| 0.34 4 -10.46 -10.00 TO -10.64 TO -10.35| TO
£|5 1|0.41|0.401/0.93]0.00 0.74{|0.00{0.56| 0.47||0.22|10.36| 0.36| |z |5 -10.52 -10.00 TO -10.74 TO -10.37| TO
::; 6 |/0.43]0.44/|0.96|0.00 0.85(/0.00[0.57| 0.44/[0.24|0.46| 0.38 |Z|6 -10.57 -10.00 TO -10.67 TO -10.46| TO
@17 1(0.45]0.48/(0.98|0.00 0.85(/0.00[0.52| 0.52/[0.26|0.42| 0.40| | |7 -10.59 -10.00 TO -10.84 TO -10.47| TO
8 1/0.47/0.52{|1.00|0.00 0.90(|0.00{0.50| 0.57{(0.26|0.52| 0.40 8 -10.62 -10.00 TO -10.71 TO -10.56| TO

9 1]0.48]0.54||1.00{0.00 0.93]]0.00{0.62| 0.55|(0.28(0.52| 0.42 9 -10.64 -10.00 TO -10.78 TO -|0.59| TO
10|(0.49]0.66/(1.00|0.00 0.95//0.00]0.69| 0.52/(0.28(0.52| 0.44 10 -10.65 -10.00 TO -10.82 TO -10.59| 1O

Table 3. Qualitative comparison. ((3): ILP-M2b; (3’): ILP-M2c; (5): k—LTM).

ILP-M2b and k-LTM achieve higher recall than ILP-M2c. This is not surprising as
the tilings found by ILP-M2b consist of large, transaction-overlapping tiles, contrary
to those of ILP-M2c (see Col. 4). ILP-M2c makes up for this by covering more items
than the other approaches, and mining item-overlapping tiles. This tuning of output
characteristics is a strength of the declarative approach.

7 Conclusion

Pattern set mining has become an indispensable data mining task to control the overly
large result sets of local pattern mining operations. In this work, we have for the first
time presented a practically useful approach that retains the richness of the constraint
language of the original pattern set mining approach [18]. Our method is declarative,
based on the techniques developed in ILP, allowing to choose particular (combinations
of) pattern set measures as objective functions to be optimized. This permits the user
to prioritize particular aspects of a pattern set, while constraining others. Existing ILP
solver guarantee to return the best pattern set, according to the given optimization cri-
terion, that satisfies a user-defined set of constraints. Experiments have illustrated and
shown the efficiency of our approach through the example of the tiling problem but our
approach is broad enough to cover and leverage many pattern mining problems such
as clustering, classification, or pattern summarization. The flexibility of our approach
is clearly a major step towards developing the interactive data mining systems that are
requested in data science. Having defined this framework, further work will consist of
properly specifying the models corresponding to different data mining tasks. It will be
necessary to formulate new constraints and models, and fine-tune them to achieve best
results. We also plan to exploit column generation techniques to enhance the scalability
of our solving step.

References

1. B. Babaki, T. Guns, and S. Nijssen. Constrained clustering using column generation. In
CPAIOR 2014, Cork, Ireland, May 19-23, 2014., pages 438—454, 2014.

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

B. Bringmann and A. Zimmermann. One in a million: picking the right patterns. Knowledge
and Information Systems, 18(1):61-81, 2009.

. L. Cagliero, S. Chiusano, P. Garza, and G. Bruno. Pattern set mining with schema-based

constraint. Knowl.-Based Syst., 84:224-238, 2015.

. H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative frequent pattern analysis for

effective classification. In ICDE 2007, Istanbul, Turkey, April 15, pages 716-725, 2007.

. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering

clusters in large spatial databases with noise. In KDD’96, Portland, pages 226-231, 1996.

. F. Geerts, B. Goethals, and T. Mielikdinen. Tiling databases. In DS’04, Padova, Italy, Octo-

ber 2-5, 2004, Proceedings, pages 278-289, 2004.

. T. Guns, S. Nijssen, and L. De Raedt. k-pattern set mining under constraints. IEEE Trans.

Knowl. Data Eng., 25(2):402-418, 2013.

. IBM/ILOG, Inc. ILOG CPLEX: High-performance software for mathematical programming

and optimization, 2016.

. S. Jabbour, L. Sais, and Y. Salhi. The top-k frequent closed itemset mining using top-k SAT

problem. In ECML PKDD’13, Prague, Czech Republic, pages 403—418, 2013.

M. Jinger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt,
G. Rinaldi, and L. A. Wolsey, editors. 50 Years of Integer Programming 1958-2008 - From
the Early Years to the State-of-the-Art. Springer, 2010.

M.J. Kearns and U.V Vazirani. An introduction to computational learning theory, 1994.

M. Khiari, P. Boizumault, and B. Crémilleux. Constraint programming for mining n-ary
patterns. In CP’10, St. Andrews, Scotland, UK, pages 552-567, 2010.

A. J. Knobbe and E. K. Y. Ho. Maximally informative k-itemsets and their efficient discov-
ery. In ACM SIGKDD’06, Philadelphia, PA, USA, pages 237-244, 2006.

B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rules mining. In
proceedings of Fourth International Conference on Knowledge Discovery & Data Mining
(KDD’98), pages 80—-86, New York, 1998. AAAI Press.

Andrzej J. O. Integer and combinatorial optimization. International Journal of Adaptive
Control and Signal Processing, 4(4):333-334, 1990.

. A. Quali, S. Loudni, Y. Lebbah, P. Boizumault, A. Zimmermann, and L. Loukil. Efficiently

finding conceptual clustering models with integer linear programming. In IJCAI’16, New
York, NY, USA, 9-15 July 2016, pages 647-654, 2016.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for
association rules. In ICDT’99, Jerusalem, Israel, pages 398-416, 1999.

L. De Raedt and A. Zimmermann. Constraint-based pattern set mining. In SIAM’07, April
26-28, 2007, Minneapolis, Minnesota, USA, pages 237-248, 2007.

Y. Shima, K. Hirata, and M. Harao. Extraction of frequent few-overlapped monotone DNF
formulas with depth-first pruning. In PAKDD’05, Hanoi, Vietnam, pages 50-60, 2005.

J. Vreeken, M. v. Leeuwen, and A. Siebes. Krimp: mining itemsets that compress. Data
Min. Knowl. Discov., 23(1):169-214, 2011.

D. Xin, H. Cheng, X. Yan, and J. Han. Extracting redundancy-aware top-k patterns. In ACM
SIGKDD' 06, Philadelphia, PA, USA, August 20-23, 2006, pages 444—453, 2006.

W. Xindong and K. Vipin. The Top Ten Algorithms in Data Mining. Chapman & Hall/CRC,
Ist edition, 2009.

