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Abstract

Given a data set with many features observed in a large number of condi-
tions, it is desirable to fuse and aggregate conditions which are similar to ease
the interpretation and extract the main characteristics of the data. This paper
presents a multidimensional fusion penalty framework to address this question
when the number of conditions is large. If the fusion penalty is encoded by
an `q-norm, we prove for uniform weights that the path of solutions is a tree
which is suitable for interpretability. For the `1 and `∞-norms, the path is
piecewise linear and we derive a homotopy algorithm to recover exactly the
whole tree structure. For weighted `1-fusion penalties, we demonstrate that
distance-decreasing weights lead to balanced tree structures. For a subclass of
these weights that we call “exponentially adaptive”, we derive an O(n log(n))
homotopy algorithm and we prove an asymptotic oracle property. This guaran-
tees that we recover the underlying structure of the data efficiently both from
a statistical and a computational point of view. We provide a fast implementa-
tion of the homotopy algorithm for the single feature case, as well as an efficient
embedded cross-validation procedure that takes advantage of the tree structure
of the path of solutions. Our proposal outperforms its competing procedures
on simulations both in terms of timings and prediction accuracy. As an exam-
ple we consider phenotypic data: given one or several traits, we reconstruct a
balanced tree structure and assess its agreement with the known taxonomy.

1 Introduction

As data floods in, it is now possible to compare many features across a very large
number of conditions in various fields of science. To cite but a few, we encounter
this setting in genomics where high-throughput technologies allow us to monitor the
expression level of many genes (the features) at various stages of a given biological
process (the conditions); this also occurs in phylogenetics where several quantitative
traits (the features) are available for many species (the conditions). Beyond biological
sciences, sets of data gathered in astronomy are now routinely composed of millions
of conditions for hundreds of features. An interesting question is to group together
– or fuse – these conditions across the feature space, arguing that these conditions
should not really be considered as different. In other words, we aim at recovering an
interpretable clustering of those conditions.

There are basically two cases: either a prior group structure between the condi-
tions is known, or it is not. In the first case, one typically applies one-way ANOVA –
or MANOVA for multiple features – to test for any significant difference between all
pairs of groups. The final structure between the conditions then depends on the level
of significance used to test for differences. However, when the number K of groups
is large, which typically occurs for a large number n of conditions, this leads to a
multiple-testing issue and algorithmic problems since the number of pairwise tests
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is in O(K2). Furthermore, each test is performed independently and the resulting
structure is not necessarily simple and easily interpretable.

In the second case, when no prior group structure is available, we basically face
a clustering problem over the multidimensional space of the features. A popular
heuristic to solve this problem is agglomerative clustering, which defines a hierarchical
structure between the conditions. Hierarchies are very appealing for interpretability.
A serious bottleneck of agglomerative clustering when analyzing large data sets is its
complexity in O(n3), which can be reduced to O(n2) using single-linkage clustering.

There are two major issues for large values of n: i) the need for an interpretable
structure between the conditions and ii) the need for a computationally and sta-
tistically efficient estimation procedure. These two goals cannot be reached simul-
taneously, neither by MANOVA nor by agglomerative clustering algorithms, due to
restrictions either on the interpretability of the inferred structure or the computa-
tional burden of the procedure. This paper presents a unifying approach to tackle
these two problems simultaneously by means of a weighted fusion penalty that con-
structs a hierarchical structure on the conditions at a low computational cost and
reaching the two aforementioned goals. Section 2 presents our proposal in detail and
puts it in perspective with existing methods. Then we use the optimality conditions
detailed in Section 3 to characterize the regularization path (Section 4). In Section
5, we propose weights for which the path is provably without splits. For the `1-norm
some of those weights lead to a desirable balanced tree structure. In Section 6 we
present a homotopy algorithm which is in O(K logK) for well chosen weights. We
also provide an efficient embedded cross-validation procedure to tune up the level of
aggregation – or fusion – between groups in the ANOVA settings. Numerical experi-
ments illustrate the extremely competitive performance of our algorithm in terms of
timings. Section 7 presents consistency results that bring statistical guarantees for
our approach. We illustrate our theorem on a simulation study that shows that our
weights are more efficient than those of its competing procedures. Finally, Section
8 is dedicated to a complete example in phylogenetics where our method is applied
to the reconstruction of a balanced tree structure across several phylogenetic fea-
tures between many species. We assess its relevance by comparison with the known
phylogeny.

2 A penalized framework for tree inference

To bring MANOVA and hierarchical clustering together in the same unifying penal-
ized framework, note that the latter can be considered as a particular case of the
former when there is only one condition per group, i.e, when K = n. This can be
thought of as a non-informative prior on the clustering between the conditions.

To be more specific, we set yij the observation of a continuous random variable
that describes the intensity of the jth feature in condition i, with i ∈ {1, . . . , n}
and j ∈ {1, . . . , p}. The p-dimensional vector yi = (yi1, . . . , yip) encompasses the
data related to condition i across the p features. We are given a partition with K
groups as prior knowledge that is depicted by the indexing function κ : {1, . . . , n} →
{1, . . . ,K}. In words, κ indicates the group to which condition i is allocated a priori.
The number of elements in group k is denoted by nk = card {i : κ(i) = k}, such that∑
k nk = n.
One-way MANOVA is a multivariate linear regression problem whose parameters
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are fitted by minimizing the residual sum of squares, i.e.,

minimize
β∈RKp

n∑
i=1

p∑
j=1

(
yij − βκ(i)j

)2
= arg min

β∈RKp

n∑
i=1

∥∥∥yi − βκ(i)

∥∥∥2

2
,

where βkj is the coefficient for the jth feature in the kth group, such that βk =
(βk1, . . . , βkp) ∈ Rp. The final structure between the conditions is obtained by testing

for significant differences between all pairs of estimated means (β̂kj , β̂`j) using Fisher
statistics.

Compared to MANOVA, hierarchical clustering assumes one individual per group,
that is K = n or equivalently κ(i) = i for all i = 1, . . . , n. It performs agglomeration
by recursively joining the closest points. As suggested by Hocking et al. (2011),
hierarchical clustering aims at solving the following optimization problem:

minimize
β∈Rnp

n∑
i=1

‖yi − βi‖
2
2 , s.t.

∑
i>i′

1βi 6=β′i
≤ t. (1)

The complete hierarchy between the conditions is recovered by starting from t =
n(n−1)/2, where no constraint applies, then by decreasing t until all points agglom-
erate. This immediately suggests a corresponding scheme for agglomerating groups
of conditions in MANOVA just by using the prior grouping knowledge encoded by
κ in the square loss. However, Problem (1) and its MANOVA counterpart are dif-
ficult combinatorial problems in general. To overcome this restriction, we consider
the following convexified Lagrangian formulation which includes the whole family of
optimization problems discussed throughout this paper:

minimize
β∈RKp

1

2

n∑
i=1

∥∥∥yi − βκ(i)

∥∥∥2

2
+ λ

∑
k,`:k 6=`

wk` Ω(βk − β`). (2)

In general, Ω is a norm and wk` are positive, symmetric weights over all pairs of
groups in {1, . . . ,K} such that wk` > 0 and wk` = w`k. The penalty term and the
choice of Ω is designed to encourage elements of β to “fuse” by enforcing similarity
between pairs of vectors (βk,β`) as in the fused-Lasso signal approximator (Friedman
et al., 2007), which is an `1-based method designed to aggregate pairs of elements. As
such, we refer to the penalty term in (2) as a“fusion”penalty. In the multidimensional
case though, other choices are possible for Ω that induce a fusion effect. The level of
fusion is tuned by two parameters: the global level of penalty λ and the group specific
weights wk`, the choice of which is of the highest importance. It conditions both i)
the ability of the method to infer an interpretable structure between the conditions,
ii) the existence of fast algorithms to fit the parameters β for various values of λ and
iii) the existence of statistical guarantees for the estimator. The main objective of
this paper is to study classes of weights that reach these three goals simultaneously.

Links to existing works. Problem (2) is a generalization of two interesting exist-
ing procedures related to ours. The first one arose in the clustering framework and
is known as the Clusterpath (Hocking et al., 2011). The Clusterpath covers cases in
(2) where K = n and Ω(·) = ‖ · ‖q with q ∈ {1, 2,∞}. Still, for general weights,
the complexity of the associated algorithms does not improve over the agglomerative
clustering, and the inferred structure is not a tree. However, when q = 1, the path
of solutions is linear with respect to λ and a homotopy algorithm is used by Hock-
ing et al. to recover the solutions over all the values of λ that either correspond to
events of fusion or split between a couple (βk,β`). Moreover, if wk` = 1 and q = 1,
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they showed that no split event can occur and that a homotopy algorithm can be
implemented in O(n log(n)). In other words, the reconstructed structure is a tree
in this case. However the unitary weights typically lead to unbalanced hierarchies
which are not fully satisfactory.

A second close cousin to our approach is the Cas-ANOVA of Bondell and Reich
(2008b). Cas-ANOVA is a `1-penalized version of the ANOVA which corresponds to
(2) in the univariate setting where p = 1 and Ω(·) = ‖ · ‖1. The main contribution
of this proposal is statistical: Bondell and Reich introduce adaptive weights wkl ∝√
nk + n`/(ȳk − ȳ`), where nk is the number of conditions in group k and ȳk =∑
i:κ(i)=k yi/nk is the corresponding empirical mean. Similar weights have been

proposed in Gertheiss and Tutz (2010) to cope with ordered categorical variables.
These weights have an adaptive property such that the corresponding estimator of
β enjoys asymptotic consistency, in the manner of the adaptive Lasso (Zou, 2006).
Still, Cas-ANOVA weights do not lead to a tree when the number of individuals
per condition is unbalanced, i.e., nk 6= n` for any couple (k, `). Moreover, the
optimization procedure is in O(K2) and only provides the solution for a given λ. We
also experienced numerical instability using Cas-ANOVA weights.

Contributions. Compared to these two works, our contributions are the following:

• We prove that no split can occur along the path of solutions in (2) when
wk` = nk · n` and Ω(·) is an `q-norm. As a consequence, this proves that the
Clusterpath does not split for unitary weights, whatever the choice of the norm
(as conjectured by Hocking et al. for the `2-norm).

• When Problem (2) is separable across the features (e.g., when Ω is the `1-
norm), we introduce distance-decreasing weights for which we prove that the
path is a tree. From an interpretation point of view, this family of weights is
particularly interesting as it leads to balanced tree structures.

• For the `1-norm, we introduce exponentially adaptive weights that enter the
family of distance-decreasing weights. They enjoy asymptotic oracle properties
that guarantee selection of the true underlying structure for a large scale of pos-
sible λ. This shows that our estimator shares the same asymptotic properties
as Cas-ANOVA, but for a larger range of λ and at a much lower computational
cost.

• We provide a general homotopy algorithm for (2) when Ω(·) = ‖ · ‖1, whatever
the choice of wk`. On a single feature, the initialization for unspecified weights
is in O(K2) and the homotopy itself is in O(K log(K)). However, we propose
a faster initialization procedure for exponentially adaptive weights such that
the whole complexity for p features is in O(pK log(K)) – or O(pn log(n)) in
the clustering framework.

• When the number K of prior groups is smaller than n (e.g., in the ANOVA
settings, when there are some replicates per condition/group), a natural cross-
validation (CV) error can be defined. In this case, we develop a fast procedure
that takes advantage of the DAG (directed acyclic graph) structure of the path
of solutions along λ. This approach has a lower complexity than a standard
CV procedure.

In short, we propose choices for weights in (2) that induce a balanced tree struc-
ture between the conditions such that the associated estimation procedure enjoys
the good computational properties of the `1-Clusterpath with unitary weights, with
stronger statistical guarantees than Cas-ANOVA.
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Motivating example in phylogeny. As a simple motivating example, we con-
sider a univariate problem in phylogeny. We want to reconstruct a tree between many
species based on some simple features (like the height, or the weight of individuals).
Ideally, this tree should resemble the known phylogeny. We illustrate this task on
the “Animal Ageing Longevity Database”1, which provides various features for many
animal species. Here, we consider classifying bird species based on their birth weight.
The known phylogeny groups these n = 184 individuals into 40 bird families, them-
selves grouped into 15 orders. We reconstruct the tree based on the weights and check
whether it matches the orders and the family classification. Recovered solution paths
of (2) are plotted in Figure 1 for a) the Cas-ANOVA weights (Bondell and Reich,
2008b) ; b) the “default” Clusterpath weights (Hocking et al., 2011); and c) our own
weights that we call “fused-ANOVA” weights. On the left panel, the Cas-ANOVA
path includes many splits which make interpretation rather difficult. On the mid-
dle panel, default Clusterpath weights, as expected, provide a tree structure. Still,
the structure of this tree is unbalanced and thus not fully satisfactory in the sense
that small groups often fuse with very large ones. Specifically, the Clusterpath tree
does not capture the simple fact that there are visibly three groups corresponding to
light, medium or heavy birds. Conversely, the fused-ANOVA tree in the right panel
is more balanced and clearly exhibits these three groups. Furthermore, it is in better
agreement with the known phylogenetic classification, improving the rand index by
5% compared to ClusterPath.
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Figure 1: Reconstructed phylogenetic trees for various weighting schemes. Families
classified in the same order share the same color.

Multidimensional `1 Clusterpath and fused-ANOVA. In the previous ex-
ample, we consider only one feature. In practice, one often has to consider mul-
tiple features at the same time. This is possible with our proposed weighted `1-
penalty. Indeed, as noted by Hocking et al. (2011), Problem (2) is separable on
dimensions when considering the `1-penalty, which is also the case for our weighted
fused-ANOVA scheme. Thus, Clusterpath and fused-ANOVA algorithms solve the
multidimensional problem in two steps:

1. First, they recover p independent trees (one per dimension). This task can be
easily executed in parallel.

2. Second they aggregate those p trees in a consensus tree. This is done by
considering the same penalty value (λ) corresponding to a given height in those

1publicly available at http://genomics.senescence.info/species/
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trees. Two individuals k and ` are in the same multidimensional cluster if they
have been fused on every dimension.

This multidimensional classification is recovered on a grid of λ in the clusterpath
package and in the fusedanova package.

Note however that the classification recovered over all the dimensions is not nec-
essarily better than those recovered on single, well-chosen features. We illustrate this
point at the end in Section 8 on phylogenetic data: in a number of cases, the best
agreement with the known phylogeny is obtained by a single-feature-based tree.

3 Optimality conditions and consequences

We start by characterizing Problem (2), giving elementary facts which are at the basis
of most of our results. Note that the objective function in (2) is a nonsmooth function
which is strictly convex in β and thus admits a unique solution when λ ≥ 0. This
solution can be characterized by the KKT (Karush-Kuhn-Tucker) conditions that
may be derived thanks to subgradient calculus (see, e.g., Boyd and Vandenberghe,
2004). In the case at hand, β is optimal if, for all k ∈ {1, . . . ,K}, βk verifies the
following subgradient equations:

0p = −nk(ȳk − βk) + λ
∑
`:` 6=k
βk=β`

wk`τ k` + λ
∑
`:` 6=k
βk 6=β`

wk`
∂Ω(βk − β`)

∂βk
, (3)

where ȳk =
∑
i:κ(i)=k yi/nk is the vector of empirical means for the kth group across

every feature. The p-dimensional vectors τ k` are such that, for any k, there exists
` 6= k with βk = β` such that τ k` = −τ `k and Ω(τ k`) ≤ 1. We omit the proof as it
is a straightforward adaptation of the fused-Lasso subgradient equations (Hoefling,
2010) to the multidimensional case, with a general norm Ω.

Interesting consequences arise when summing the subgradient equations (3) for
all βk which are “fused” in the same cluster, as stated in the following Lemma.

Lemma 1. Consider a cluster C = {k : βk = βC} formed by some βk, where β is
the solution to (2). Then we have

βC = ȳC −
λ

nC

∑
`/∈C

wC`
∂Ω(βC − β`)

∂βC
, (4)

where nC =
∑
k∈C nk, ȳC =

∑
k∈C ȳk/nC and wC` =

∑
k∈C wk`.

Proof. By summing (3) for all k ∈ C, we have

0p = −nC ȳC + nCβC + λ
∑

k,`∈C:k 6=`

wk`τ k` + λ
∑

k∈C,`/∈C

wk`
∂Ω(βk − β`)

∂βk
.

Then, by the KKT conditions, we must have τ k` = −τ `k for some k, ` ∈ C. Thus
the third term on the left-hand side of the above expression vanishes by symmetry
of the weights wk`. Also notice that ∂Ω(βk −β`)/∂βk = ∂Ω(βk′ −β`)/∂βk′ for any
k, k′ ∈ C, ` /∈ C, and we easily get the desired result.
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4 Regularization path and tree structure

Characterization of the minimization Problem (2) in terms of its optimality condi-
tions is essential in many ways. In particular, Lemma 1 allows us to characterize the
regularization path of solutions {β(λ), λ > 0} depending on the choices of Ω and wk`.
This is important for our problem since the shape of the path is actually the struc-
ture recovered between the conditions. This is also important since it may induce
some computational properties that guarantee a low complexity of the associated
fitting procedure. This section investigates which conditions must be imposed on the
regularization path to ensure a structure that is fully satisfactory both in terms of
algorithmic complexity and interpretability, namely, a balanced tree structure.

The mildest condition which is required is continuity of the regularization path,
that is to say, of the function {β(λ), λ > 0}: without continuity, interpretability of
the recovered structure is obviously out of reach. This property is straightforward
for solutions of problems of form (2) which is strictly convex. However, continuity of
the path is not enough to provide an interpretable structure, and we shall investigate
conditions ensuring that the inferred structure is a tree. In terms of regularization
path, it requires that any couple of parameters which have fused at a certain time
λ0 such that βk(λ0) = β`(λ0) = βC cannot “split” anymore in the future, that is,
for any value λ > λ0 that would correspond to a higher level in the hierarchy of the
tree. Insights on this remark can be found in Figure 2, where various regularization
paths are plotted in the univariate case. Paths on the top and bottom left panels
contain splits, while the remainders do not and lead to trees with different shapes
the properties of which are discussed later in this section.
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Figure 2: Various typologies of the regularization paths in the single feature case
that lead to more or less interpretable structures.

Though highly desirable, guaranteeing a tree is complicated as the absence of
splits in the path of (2) depends jointly on the choice of the weights wk` and on
the fusing norm Ω(·). In the following Theorem, we provide a simple generic choice
for the weights that ensures the absence of splits in the general formulation with
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`q-norms.

Theorem 1. If Ω is an `q-norm with q ∈ {1, . . . ,∞} and wkl = nk · n`, the path of
solutions {β(λ) : λ > 0} of (2) contains no splits.

The proof is postponed to Appendix A.1. Schematically, it investigates the sub-
gradient equations of (2) and shows that given a solution at λ0, we can always
explicitly construct for λ > λ0 a valid subgradient not involving any split. Theorem
1 generalizes the results of Hocking et al. (2011) obtained for Ω(·) = ‖ · ‖1 in the
clustering case when wk` = nk = n` = 1 to any `q-norm Ω.

A consequence of Theorem 1 is that the existing implementation of the `2 Clus-
terpath – or any other `q solver – can be simplified by no longer considering the
eventuality of splits with default weights (see Algorithm 1 in Hocking et al., 2011).

As said before, guaranteeing a tree-structure is the first step towards interpretabil-
ity. As such, Theorem 1 characterizes an interesting family of problems. Still, the
scope of arbitrary norms with uniform weights is not fully satisfactory because, even
when the structure is a tree,

• the path is not a linear function of λ in general, as illustrated on the first row
of Figure 2. In this situation, detecting the events of fusion may be expensive.
It might be impossible to provide an efficient algorithm to infer the structure
at a low computational cost.

• the inferred structure may be highly unbalanced. By unbalanced, we mean a
tree where two parameters initially close to one another at λ = 0 fuse relatively
late in the path of solutions. Such situations are depicted on the second column
of Figure 2. It is obvious that disequilibrium may significantly narrow the
potential for interpretability of the tree.

First, equilibrium of the inferred structure is a property that is mainly controlled
by the wk`. We cannot limit ourselves to wk` = nk · n` and must exhibit weights
sharing both the equilibrium and the non-split property. This will lead us to the
distance-decreasing weights described in the next section.

Second, piecewise-linearity – and thus existence of a fast path-following algorithm
– is a property of the norm Ω. A solution path which is piecewise linear can be
computed efficiently (and exactly) with a homotopy algorithm like the LARS for the
LASSO (Efron et al., 2004). More generally, Rosset and Zhu (2007) give conditions
for the existence of such a property in a broad penalized framework. These results are
easily adapted to the case at hand, where we roughly have to differentiate Expression
(4) over λ to conclude: for Ω(·) = ‖ · ‖q any q-norm with q ≥ 1, then

∂βC
∂λ

=
1

nC

∑
`/∈C

wC` signs(β` − βC) ◦ |β` − βC |
q−1

‖β` − βC‖
q−1
q

, (5)

where | · | and signs(·) apply element-wise and ◦ is the element-wise product. Appli-
cation of Proposition 1 of Rosset and Zhu to these expressions implies that the path
is piecewise linear only for q ∈ {1,∞}. In other words, there must exist a homotopy
algorithm to infer the structure between the conditions for the `1 and `∞-norms.
More generally, we could use any norm Ω that builds on `1 and `∞ such as the OS-
CAR (Bondell and Reich, 2008a). Note, however, that there is no guarantee that the
number of steps will be small in the homotopy algorithm for general weights. In fact,
Mairal and Yu (2012) exhibits pathological cases for the LARS algorithm where the
number of kinks in the piecewise linear path of solutions grows exponentially with
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the number of variables. Such cases can be transposed to the weighted fusion penalty
with Ω(·) = ‖ · ‖1, which corresponds to situations where there is a large number of
splits along the path. To overcome this restriction and guarantee that the number
of iterations required to fit the whole path of solutions will be small, we introduce in
the next section a family of weights that ensures no split along the path of solutions
for the particular case of the `1-norm.

5 Distance-decreasing weights guaranteeing no split

In this section, we focus on the `1-norm and generalize Theorem 1 to a larger class
of weights that we call distance-decreasing weights, defined in Theorem 2. Indeed,
although uniform weights ensure the absence of split, the recovered tree structure is
often unbalanced. Intuitively, distance-decreasing weights should ensure that close
neighbors fuse quickly. Here, we demonstrate that for such weights there is no split.
Thus, the algorithm proposed by Hoefling (2010) for the generalized fused-Lasso
is considerably simplified since there is no need to check for possible split events,
and thus there is no need to solve potentially numerically unstable maximum flow
problems.

Remark 1. Note that the absence of splits does not ensure a fast algorithm. Indeed,
the initialization of the generalized fused-Lasso algorithm is for most weights in K2.
We exhibit in Section 6 a subset of distance-decreasing weights for which initialization
is linear and for which we can guarantee good statistical properties in Section 7.

Another advantage of the `1-norm is that it brings separability across the p fea-
tures in (2), that is to say, that the p-dimensional problem splits into p univariate
problems. To recover a consensus classification, we first infer p independent trees
(one per dimension) and then aggregate those p trees by considering the same penalty
value λ. Thus, without loss of generality, we restrict the discussion to the following
`1 univariate problem which is a weighted generalized fused-Lasso problem:

minimize
β∈RK

1

2

K∑
k=1

nk (ȳk − βk)
2

+ λ
∑

k,`:k 6=`

wk`|βk − β`|. (6)

For this problem, we get the following result:

Theorem 2. The path of solutions does not contain splits when weights are chosen
such that

wk` = nkn` f(|ȳk − ȳ`|),

where f(·) is a decreasing positive function.

Schematically, the proof is based on two ingredients:

1. first, using geometrical arguments, it is possible to show that absence of splits
is equivalent to preservation of the order along the path, that is to say, ȳk ≤
ȳ` ⇔ β̂k(λ) ≤ β̂`(λ);

2. second, by considering a problem that is dual to (6) as in Tibshirani and Taylor
(2011) for the generalized Lasso, we show that distance-decreasing weights
preserve the order.

The proof is detailed in Appendix A.2.

9



6 Fast homotopy algorithm for `1 weighted penal-
ties

In this section, we consider algorithmic issues when Ω is the `1-norm. As in Section 5,
we restrict the discussion to univariate Problem (6) and thus give the numerical
complexity in the case p = 1. For a p-dimensional problem, we aggregate the p
univariate trees by considering the same values of λ for all trees.

An algorithm for general weights and its limitations. Optimization problem
(6) can be solved for general weights wk` by the homotopy algorithm proposed in
Hoefling (2010) for the generalized fused-Lasso. This is also the solution retained in
the clustering framework by Hocking et al. (2011). A schematic view of this algorithm
adapted to (6) is depicted in 1.

Algorithm 1: Homotopy algorithm for the generalized fused-Lasso

Input: data, weights and initial groups {yi, wk`, κ}
Initialization for λ = 0
Initialize βk parameters (equal to the empirical means ȳk)
Initialize the list of possible next events (only fusion at this stage)
while all groups are not fused do

Find the next event (having the smallest λ), it can be a split or a fusion
Update βk parameters accordingly
Update the list of possible next events (fusion and split)

end
Output: Directed acyclic graph (DAG) of fusion and split events and

associated values of the parameters

This procedure for general weights has two major flaws that may have detrimental
effects on its computational performance:

• By piecewise-linearity of the solution path, the total number of iterations (that
is, the total number of events before all the groups have fused) is bounded.
However, by rewriting (6) as a Lasso problem – which only requires straightfor-
ward algebra – we may construct pathological cases where there are (3K +1)/2
linear segments in the path of solutions (see Mairal and Yu, 2012), a complexity
that we cannot afford even for a moderate number of conditions K.

• While detecting fusion events in Algorithm 1 may be cheap since it roughly
only requires calculation of the slopes ∂βk(λ)/∂λ, checking for the possibility
of split events boils down to maximum-flow problems the resolution of which
at large scale may clearly be a bottleneck (see Hoefling, 2010).

To circumvent these limitations, we shall consider weights that prevent split
events. Although the choice wk` = nkn` has been shown to prevent splits in The-
orem 1, it will typically lead to fusion events occurring very late (that is, for large
λ), even between groups having close empirical means. This corresponds to an un-
balanced tree structure between the conditions, which is hardly interpretable. On
the contrary, using the family of distance-decreasing weights, introduced in Section
5, prevents split events and leads to a balanced tree structure. In this case the to-
tal number of events is exactly K − 1, which is the number of iterations required
to fuse K groups into 1, assuming that there cannot be a fusion of more than two
groups at once. As for the maximum-flow problems, they are completely eluded
from the algorithm with these weights. Still, we have to take into account the cost
of detecting successive fusion events and of updating the coefficients βk(λ) along
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the K − 1 steps. In the next paragraph, we propose a solution inducing a global
complexity of O(K log(K)) for a given choice of weights belonging to the family of
distance-decreasing weights.

Weights with an O(K log(K)) implementation. First we need to define the
next time a fusion event is going to happen. We proceed mainly as in Hoefling
(2010) for the one-dimensional fused-Lasso signal approximator, except that the ini-
tial ordering is not defined by the neighborhood between the coefficients, but by the
ordering of the empirical means ȳk. And thanks to the property of the distance-
decreasing weights, this ordering remains the same throughout the algorithm, which
allows us to compute the path in O(K logK) operations. Here are some details.

At the initialization step, one has λ0 = 0, and the next time a fusion occurs is

t(λ) = arg min
tk`(λ)>λ0

tk`, tk`(λ) = λ0−(βk(λ0)−β`(λ0))

(
∂βk
∂λ

(λ0)− ∂β`
∂λ

(λ0)

)−1

. (7)

In words, it is the smallest value of λ among all the values such that two coefficients
fuse. The main cost in (7) is due to the calculation of the slopes ∂βk/∂λ at λ0 = 0.
Note that βk(0) = ȳk, and by Lemma 1 and (5), one has

∂βk
∂λ

(0) = − 1

nk

∑
6̀=k

wk` signs(ȳk − ȳ`). (8)

For general weights wk`, computing these slopes for all k requires O(K2) operations
and is the limiting factor of the algorithm. However, we provide a O(K log(K))
procedure for a special case of our distance-decreasing weights that we call “expo-
nentially adaptive weights” because of their statistical properties (see Section 7).
They are defined by

wk` = nkn` exp{−α
√
n|ȳk − ȳ`|}, α > 0, (9)

for α a positive constant. The key idea to achieve O(K log(K)) complexity with
these weights is that each slope can be computed as the sum of two terms, for which
there exists a simple recurrence formula: first, we order the ȳk in decreasing order,
which can be done in O(K log(K)) operations. Assuming this is done, we obtain

∂βk
∂λ

(0) = −
∑
` 6=k

n` signs(ȳk − ȳ`) exp
{
−α
√
n|ȳk − ȳ`|

}
=
∑
`<k

n` exp
{
−α
√
n(ȳ` − ȳk)

}
−
∑
`>k

n` exp
{
−α
√
n(ȳk − ȳ`)

}
= exp

{
α
√
nȳk
}∑
`<k

n` exp
{
−α
√
nȳ`
}

︸ ︷︷ ︸
Lk

− exp
{
−α
√
nȳk
}∑
`>k

n` exp
{
α
√
nȳ`
}

︸ ︷︷ ︸
Rk

.

The recurrence formulae areRk+1 = Rk+nk exp {−αȳk} and Lk−1 = Lk+nk exp {αȳk}.
By this means, the initial slopes (8) and thus the first fusion time can be computed
in O(K log(K)).

Then, for each of the K − 1 steps of the algorithm, we only need to update the
two slopes and the two coefficients which are currently fusing. This only requires a
constant number of operations. Concerning the next fusion time, however, the new
minimum among the updated tk`(λ

+
0 ) is found in log(K) if stored in an appropriate

structure. This way we can reach O(K log(K)) for the global complexity.
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As a final remark, note that we use the same storage solution – namely a binary
tree – as did Hoefling (2010) for the one-dimensional fused-Lasso. By this means, we
maintain the memory requirement at a low level that only grows linearly in K.

An embedded cross-validation procedure. Providing the whole path of solu-
tions is clearly interesting for interpretability, since we force it to be a tree by means
of an appropriate weighting scheme coupled with the `1-norm for fusion. Still, it is
always necessary to provide a practical way to choose the tuning parameter, which
corresponds in the case at hand to choosing the level at which to cut the tree. This
also gives a fixed classification between the initial conditions.

When the number K of prior groups is smaller than n (e.g., in the ANOVA
settings), a natural cross-validation (CV) error can be defined. Although CV is
often incriminated for being time-consuming, it is possible in this case to rely on
the tree structure of the solution – or DAG in the case where split is allowed in the
algorithm – to enhance the performance. Indeed, we can first build a tree using a
training set (in which all prior groups are present) and then assess its performance
by measuring its ability to predict the remaining individuals of the test set for any
given value of λ. Here, we perform the CV on a predefined grid of L values of λ
because the fusion times will be different for every new training set and it would be
memory intensive to store the CV-error for every of those fusion time.

To be more specific, we consider a split of the data in a train set D and a test set
T such that each prior group is represented in the train set. Using D, we recover a
fused-ANOVA tree and an estimator β̂Dκ(i)(λ). The test error on T is

CVerr(D, T , λ) =
∑
i∈T

(
yi − β̂Dκ(i)(λ)

)2

. (10)

A naive approach to computing (10) is to consider each prior group at a time on
a grid of λ. Computing the prediction based on a given fitted regularization path
requires O(log(K)) operations to search through the tree of solutions. This has to be
done for the K prior groups and for the L values in the grid of λ. Hence, computing
the sum (10) naively has a total complexity of O(LK log(K)) (which dominates the
complexity in O(K log(K)) of the fit itself!).

On the contrary, our embedded cross-validation procedure takes advantage of the
tree structure of the fit in the computations whenever possible. Indeed, along the
branch of a cluster C, the estimator β̂Dκ(i)(λ) is a piecewise linear function of λ and

thus the error (10) is a piecewise quadratic function of λ. The coefficients of this
quadratic function are easily updated when constructing the tree, and the error along
this branch is computed in O(1) for any λ rather than O(|C| log(K)). More precisely
the error in (10) of cluster C decomposes thanks to the Huygens formula as∑

i∈T :κ(i)∈C

(
yi − β̂Dκ(i)(λ)

)2

=
∑

i∈T :κ(i)∈C

(yi − ȳTC )2 + nTC

(
ȳTC − β̂Dκ(i)(λ)

)2

,

where nTC = card({i ∈ T : κ(i) ∈ C}) and ȳTC is the empirical mean of individuals of
cluster C, i.e.,

ȳTC =
1

nTC

∑
i∈T :κ(i)∈C

yi.

It is difficult to assess exactly the gain brought by using the tree structure for
computing the CV error in general. Indeed, it depends on the tree itself, the length of
its branches, its height and so on. Assuming a binary balanced tree of height log(K),
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with branches of equal length and an equally spaced grid of λ, we can show that the
complexity is in O(LK/ log(K)). If some groups fused rapidly (as with the fused-
ANOVA weights), the gain could be even greater. In practice (see Figure 3.c), we
often see a ten-fold difference between our CV procedure and a naive implementation.

Timings. We implemented both the general and the without-split version of Algo-
rithm 1 in C++ embedded in an R-package called fusedanova distributed on R-forge.
It contains a wide family of weights which are not mentioned in this paper due to
space requirements. Figure 3 illustrates the rather good performance of our algorithm
and implementation through three numerical experiments:

a) In the left panel, we illustrate the capability of our method to treat large scale
problems extremely fast: we generate a size-n vector y such that yi ∼ N (0, 1)
and assume n = K, meaning one condition per group2. We vary n from 102 to
108 and record the corresponding timing in seconds. We apply our method with
the exponentially adaptive weights and average over 10 trials. As can be seen, we
can reconstruct a tree on n = 106 observations in about 10 seconds.

b) The middle panel illustrates the gain in runtime due to the fact that we no longer
have to check for splits in the homotopy algorithm using a maximum-flow solver.
We generate data as in the preceding experiment but with K conditions each
containing nk = 20 replicates. When K = 103, the gain in seconds brought by
not checking for the possibility of splits is of almost 2 orders of magnitude.

c) The right panel illustrates the performance of our embedded CV procedure com-
pared to the naive implementation. We used the same settings as in the previous
experiment.
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Figure 3: timing experiments: a) time in seconds as a function of the number of con-
ditions K; b) timing comparison for general/without-split algorithm; and c) timing
comparison for naive/embedded cross-validation.

We tried other implementations to solve (6) such as the Clusterpath package by
Hocking et al. (2011), the flsa package by Hoefling (2010) or the genlasso package
by Tibshirani and Taylor (2011). These implementations do not fully exploit the
structure of the problem and have runtimes considerably longer than ours, even for
moderate K. Thus, we do not report their timings here.

2With this simulation setting, there is no underlying clustering since our point is to compare run
times here.
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7 Statistical guarantees

Asymptotic settings. To discuss the asymptotic properties of our exponentially
adaptive weights (9), we shall consider the following univariate3 ANOVA model

yi = β?κ(i) + εi, s.t. E(εi) = 0, Var(εi) = σ2, i = 1, . . . , n, (11)

where β? = (β?1 , . . . , β
?
K) is the true vector of parameters and εi are iid residuals.

The correct structure between the coefficients – or classification – in β? is denoted
by A? = {(k, l) : β?k = β?` }. A usual technical assumption is to consider designs the
associated gram matrices of which converge to positive definite matrices. In the one-
way ANOVA settings, we just need to assume that when n→∞, then nk/n→ ρk <
∞ for all k = 1, . . . ,K. We denote by D the corresponding asymptotic covariance
matrix which is a K-diagonal matrix with diagonal entries equal to ρ1, . . . , ρK .

In the univariate case like in (11), the estimator associated with Problem (2)
using the `1-norm for fusion is

β̂
(n)

= arg min
β∈RK

1

2

K∑
k=1

nk (ȳk − βk)
2

+ λn
∑
k 6=`

wk`|βk − β`|, (12)

which is just a rewriting of (6) where the dependency on n of the estimator and
the tuning parameter is stated explicitly for the purpose of asymptotic analysis.

Similarly, we denote by Ân =
{

(k, `) : β̂
(n)
k = β̂

(n)
`

}
the estimated group structure.

Exponentially adaptive weights and the fused-ANOVA. In this paragraph,
we study the exponentially adaptive weights, which we recall here:

wFA
k` = nkn` exp{−α

√
n|ȳk − ȳ`|γ}, α, γ > 0.

We show that they enjoy some “oracle properties” in the sense of Fan and Li (2001),
that is, both i) right model identification (recovering the true classification A?) and
ii) optimal estimation rate

√
n. In the context of the penalized ANOVA problem (12),

we denote these weights by wFA
k` and call the associated estimator the fused-ANOVA.

These weights are adaptive as in the adaptive-Lasso of Zou (2006): it is known that
raw `1 methods like the Lasso do not enjoy the aforementioned oracle properties, yet
this can be fixed by choosing judicious weights that depend on an estimator of β?

which is asymptotically
√
n-consistent – like the ordinary least squares, which equals

(ȳ1, . . . , ȳK) in the case at hand. Here we are interested in the differences between

the entries of β̂; thus the quantity
√
n|ȳk − ȳ`| seems quite natural in (9).

While studying the asymptotic of our estimator, we came across the proposal of
Bondell and Reich (2008b) for adaptive weights: they consider Problem (12) with
additional constraints on the βk’s – that must sum to zero – and the following weights,
which we refer to as the Cas-ANOVA weights:

wCA
k` =

√
nk + n`
|ȳk − ȳ`|

. (13)

As we shall see, though quite interesting, Cas-ANOVA weights are adaptive on a
smaller range of λn than are fused-ANOVA weights. Moreover, they lead to splits.
Thus, we believe that fused-ANOVA is computationally and statistically more effi-
cient for solving Problem (12).

We now proceed to the Theorem stating the required conditions on λn for the
fused-ANOVA to enjoy the oracle properties.

3We numerically study the multidimensional case at the end of this section.
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Theorem 3 (Oracle properties). Suppose that λnn
3/2 exp {−α

√
n} → 0 and λnn

3/2 →
∞ when n → ∞. Then the fused-ANOVA enjoys asymptotic normality and consis-
tency for recovering the true classification, i.e.,

√
n
(
β̂

(n)
− β?

)
→d N (0, σ2D−1) and P(Ân = A?)→ 1 when n→∞.

The proof is postponed to Appendix A.3 and roughly follows that of Zou. We
have, however, some comments related to this Theorem.

Remark 2 (On the exponentially adaptive weights). The key idea behind this the-
orem is that when n goes to infinity, then wFA

k` /
√
n goes to infinity if (k, `) ∈ A?

and to zero exponentially fast if (k, `) /∈ A?. This is due to the joint effect of the√
n-consistency of the ȳk and of the exponential. This is to be compared with Cas-

ANOVA weights, where, when n → ∞, wCA
k` /
√
n goes to infinity if (k, `) ∈ A?, but

only to a constant if (k, `) /∈ A?.

Remark 3 (On the range of λn). Theorem 3 is true for a large range of λn val-
ues. In particular it is true for a constant λn. Asymptotically all groups belonging
to the same class fuse almost immediately (i.e., for small values of λ of the order
n3/2 exp {−α

√
n}) and the groups belonging to different classes fuse for very large λ,

i.e., of the order n3/2.

Numerical illustration in the univariate case. We generate data from model
(11) as follows, for K the number of prior groups and n being fixed: the true vector
of parameters β? is composed of K entries picked up randomly among {1, 2, 3}, such
that the correct structure A? is always composed of 3 groups. Then, the initial
group sizes nk are drawn from a multinomial distribution M(n, (p1, . . . , pK)) with
pk = 1/K for all k = 1, . . . ,K, such that the nk are approximately balanced. Finally,
we let εi ∼ N (0, 1) to generate the vector of data y = (y1, . . . , yn).

We compare the capability of three weighting schemes to recover the true grouping
A?, namely the fused-ANOVA weights, the Cas-ANOVA weights, and the so-called
default weights corresponding to wk` = nkn`, which are not adaptive but produce a
path of solutions that contains no split. Such weights correspond to the Clusterpath
weights adapted to the ANOVA setup. We use our own code for each method.
Typically, the computational burden required by Cas-ANOVA is huge, compared to
the other two procedures as the path of solutions may contain splits. Qualitatively,
the difference would be as in Figure 3, middle panel. Thus, we typically force the
algorithm not to split when using the Cas-ANOVA weights.

We generate data as specified below, and for each procedure we check whether
there exists at least one λ for which the correct structure is identified along the path
of solutions. The probability of true support recovery is evaluated by replicating this
experiment a large number of times (8096 times4). To investigate the asymptotic
behavior of each method, we vary n from 50 to 1,000 and consider two scenarios
for the initial number of groups K. First, K is fixed at 10 such that the number
of elements in each group grows with n. In the second scenario, K grows with n
through the relationship K = 2.5 · log(n). The results are reported on Figure 4, with
the first (resp. the second) scenario on the left (resp. the right) panel. The results
confirm Theorem 3. The two adaptive procedures, Cas-ANOVA, and to a greater
extent, fused-ANOVA, dominate the non-adaptive weights. As expected from Section
7, fused-ANOVA always dominate Cas-ANOVA, as experienced in other scenarios
(e.g., K = C ·

√
n) not reported here to save space.

4this number arises from the manifold computer cores available.
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a) K = cst. b) K = C log(n)
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Figure 4: Univariate case: estimated probability of consistency as a function of the
sample size n, for various weights and in two scenarios: the number of initial groups
K is either a) fixed to a constant (10) or b) increases in C log(n) with C = 2.5. The
true number of groups in A? is 3.

Numerical illustration in the bivariate case. Theorem 3 characterizes the
asymptotic of the fused-ANOVA estimators when considering one dimension at a
time. Concerning the multidimensional setting, there are two situations. On the
first hand, there exists a dimension such that all the true groups are different, i.e
β?kj 6= β?`j . In this case, our theorem guarantees that, using this particular dimension,
the recovered classification will converge to the true one. On the second hand, there
exists no dimension such that the true groups are all different. In that case, we have
no theoretical guarantee to support the fused-ANOVA weights. It is nonetheless
possible to aggregate the classification obtained in each dimension to a consensus
classification. For a given λ, two individuals k and ` are in the same multidimensional
cluster if they have been fused on every dimension.

In order to evaluate empirically the performance of the aggregation step, we
consider a two dimensional classification problem with three classes and two scenarii.
Each prior group is drawn from one of three classes. In the first scenario, the three
classes have different means on the first dimension and the same mean on the second
dimension. The mean vectors are (1, 1.5); (2, 1.5); (3, 1.5), as in top left panel of
Figure 5. In the second scenario, both dimensions are informative: the first dimension
separates classes {1, 2} from {3} while the second dimension separates classes {1, 3}
from {2}. The mean vectors are (1, 1); (1, 2); (2, 1), as in top right panel of Figure 5).
We increase the difficulty in each scenario by adding a Gaussian noise with increasing
standard deviation σ. Results in Figure 5 corresponds to the estimated probability
of true classification recovery along the path, averaged over 2,000 runs.

In both scenarii, the fused-ANOVA weights with aggregation outperform the
multidimensional `2-Clusterpath as well as the single linkage hierarchical clustering.
The Ward hierarchical clustering shows better performance but at a much higher
computational cost.

In this simple multidimensional numerical study, we always aggregate the clas-
sification over the dimensions. However, this aggregation is not necessarily better
than performing classification on single, well-chosen feature. We illustrate this point
in the following section on phylogenetic data.
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Figure 5: Bivariate example: estimated probability of consistency as a function of
the noise standard deviation σ, for various clustering methods. The initial number
of groups K fixed to a constant (10). The true number of groups in A? is 3.

8 A complete example in phylogeny

Evolutionary trees – sometimes referred to as “trees of life” – are one of the most
emblematic hierarchical representations in computational biology. They are typi-
cally used in phylogenetics to compare biological species based on their similarities
regarding one or several features. These features could be phenotypic traits or ge-
netic characteristics. In these tree structures, each node corresponds to a taxonomic
unit, the root node being the most recent common ancestor to all leaves on the
tree. All other intermediate nodes between root and leaves represent the taxonomic
knowledge between the species of interest. The study depicted in Vetrovsky and
Baldrian (2013) enters this framework by more specifically considering features as-
sociated with bacterial genomes to determine the phylogenetic relationships between
the taxa. The data set consists of various genetic features associated with n = 1, 690
complete bacterial genomes classified in K = 903 known bacterial species.

We apply our method on this data set to assess its capability of capturing the
true underlying taxonomic structure. To do so, we consider the following genetic
features to construct the hierarchy: the number of known genes, the number of
known proteins and the genome size (measured by the number of bases in millions).
We apply the univariate model (6) on each feature to reconstruct a tree structure.
The indexing function κ is built from the lowest level of classification available that
splits the genomes into K = 903 bacterial species. We use the default weights and the
fused-ANOVA weights (9) with α chosen specifically for each feature (see below). We
also apply hierarchical clustering using Ward’s criterion and starting from the known
classification in bacterial species. Hierarchical clustering is applied individually on
each feature, as well as across the three features using the Euclidean distance to
build the similarity matrix. To assess the relevance of the inferred trees, we compare
them with various levels of the known taxonomic classification above the species
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level, namely genus (470 groups), family (216 groups), order (100 groups), class (46
groups) and phylum (27 groups). To this end, we compute the best adjusted rand-
index between the respective reference classifications and the classifications obtained
by cutting an inferred tree at all the possible levels of the hierarchy. As an example,
we report in Figure 6 a subset of the tree inferred by the fusion penalty with fused-
ANOVA weights and the cutting level that leads to the best performance in terms
of adequacy with the true phylum taxonomy.
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Figure 6: Tree reconstructed with fused-ANOVA from the “Size.Mb” trait (Adjusted
Rand-Index=0.71). Projected colors correspond to the true taxonomy (phylum).

More quantitative results are reported in Figure 7, with the adjusted rand indexes
for the taxonomic classifications in terms of phylum, order and family, using either the
number of genes, the number of proteins or the genome size as the feature variable for
classification. We also represent the consensus/multidimensional classifications either
obtained by aggregating the three univariate fused-ANOVA trees or by considering
the three features together for Ward hierarchical clustering. Note that for the fused-
ANOVA weights, we apply our method on a grid of α and report the results obtained
for the best α in terms of adjusted rand-index.

First, we notice that the fused-ANOVA weights always outperform the default
weights. This is expected since the former weights are a special case of the latter
when α→ 0. Second, we note that the consensus classification – or the one obtained
by multivariate hierarchical clustering – is not always the best choice. This is par-
ticularly obvious for the phylum classification, where the “size” feature leads to very
good results in terms of adjusted rand-index. These results considerably deteriorate
for the consensus classification, due to the relatively poor results obtained from the
“genes” and “proteins” features. Finally, the most striking result in Figure 7 is that
the fusion penalty approaches clearly outperform the Ward hierarchical clustering.
At first glance, one might argue that the weighting scheme used in fused-ANOVA
is responsible for such good performance. However, the fusion penalty with default
weights remains competitive in a few cases. This supports the fact that the regular-
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izing virtue of the fusion penalty is of great help when the problem size is high.
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A Proofs

A.1 Theorem 1 (absence of splits with norms)

For the sake of brevity the proof is detailed only in the clustering framework, i.e.,
when κ(i) = i and nk = 1 for all k = 1, . . . ,K. The generalization to groups with
more than one individual is straightforward and follows the exact same line.

Consider the objective function in (2) and a time λ0 at which we have a valid set
of clusters. It is obvious that clusters containing only one individual cannot split.
We will thus consider clusters grouping together more than one element. We denote
by C = {k : βk(λ0) = βC(λ0)} such a cluster, with βC the current estimated mean.
For unitary weights, Lemma 1 implies that

0p = −ȳC + βC + λ0

∑
i/∈C

∂Ω(βC − βi)

∂βC
(λ0).

Subtracting the above equation from the subgradient equation (3) for i ∈ C, one
has

ȳC − yi + λ0

∑
j∈C

τ ij(λ0) = 0p. (14)

We now consider any time λ ≥ λ0 such that no fusion has occurred. Let us show
that for τ ij(λ) = λ0

λ τ ij(λ0), it is possible to solve the KKT conditions, and thus
show that no split occurs.

First, the proposed τ ij(λ) are valid subgradients as Ω(τ ij(λ)) ≤ 1 since Ω(τ ij(λ0)) ≤
1 and λ > λ0. Second, for this particular choice of subgradient and thanks to (14),
the KKT conditions for all C and all i ∈ C simplify as follows:

βC − yi + λ
∑
j∈C

λ0

λ
τ ij(λ0) + λ

∑
C′ 6=C

|C ′|∂Ω(βC − βC′)

∂βC
(λ)

= βC − ȳC + λ
∑
C′ 6=C

|C ′|∂Ω(βC − βC′)

∂βC
(λ).

It now remains to check that we can find a β which zeroes this subgradient
equation. Note that for all C ′ 6= C, the differential ∂Ω(βC − βC′)/∂βC(λ) is well
defined. Then, by multiplying the above expression by |C|, we obtain the gradient
of the following objective function

1

2

n∑
i=1

‖yi − βi‖
2
2 + λ

∑
C,C′:C 6=C′

|C| · |C ′| Ω(βC − βC′).

This is a strictly convex problem admitting one unique solution which is solved
by zeroing its gradient. Thus we necessarily have

βC − ȳC + λ
∑
C′ 6=C

|C ′|∂Ω(βC − βC′)

∂βC
(λ) = 0p,

which ends the proof.

21



A.2 Theorem 2: absence of splits with distance-decreasing
weights in 1-d

For the sake of brevity the proof is detailed only in the case where κ(i) = i and nk = 1
for all k = 1, . . . ,K. The generalization to groups with more than one individual
is straightforward, seeing that we can replace a group κ(i) by nκ(i) individuals with
value

∑
j yj/nκ(i). Also, when Ω ≡ `1, the proof remains valid but should be done

separately on each dimension.
Throughout the proof, we may thus consider the estimator defined by

β̂(λ) = arg min
β∈Rn

1

2

n∑
i=1

(yi − βi)2
+ λ

∑
i,j:i 6=j

wij |βi − βj |. (15)

The proof proceeds in two steps detailed hereafter:

1. in subsection A.2.1, we show that absence of splits is equivalent to preservation
of the order along the path;

2. in subsection A.2.2, we show that distance decreasing weights preserve the
order, by considering a dual formulation of Problem (15).

For simplicity, we consider that the data vector y is initially ordered such that

y1 ≥ . . . , yi ≥ yi+1 ≥ · · · ≥ yn.

A.2.1 Preserving the order

We say that the loss is order-preserving, if yi ≤ yj implies that β̂i(λ) ≤ β̂j(λ), for all
λ ≥ 0.

Lemma 2. The absence of splits is equivalent to preservation of the order along the
path for Problem (15).

Proof. First of all, in the absence of splits in the path, it is clear that the order is
preserved.

Conversely, assume that there is an event at λ0 that splits a group C into Cdown

and Cup, where β̂down(λ) < β̂up(λ) for all λ ≥ λ0. By means of Equation (4), we
necessarily have ȳdown ≥ ȳup as illustrated on Figure 8. However, if the order is
preserved, for all (i, j) ∈ Cdown ×Cup, we must have yi < yj and ȳdown < ȳup, which
leads to a contradiction.

λ

β̂(λ)

β̂up

β̂down

ȳup

ȳdown

λ00

Figure 8: Equivalence between preserving the order and absence of splits relies on a
simple geometrical argument.
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A.2.2 The dual problem

We follow arguments developed by Tibshirani and Taylor (2011) for the generalized
Lasso. Indeed, Problem (15) can be recast as

β̂(λ) = arg min
β∈Rn

1

2
‖y −Xβ‖22 + λ‖WDβ‖1, (16)

a generalized Lasso problem with X = Inn, W a diagonal matrix the diagonal of
which is the n(n− 1)/2 vector given by

diag(W ) = (w11, . . . , w1n, w23, . . . , w2n, w34, . . . , w(n−1)n)

and D is a n(n− 1)/2× n matrix that performs the pairwise differences such that

D =



couple (i,j)

(1,1) 1 −1
(1,2) 1 −1

...
...

. . .

(1,n) 1 −1
(2,3) 1 −1

...
...

. . .

(2,n) 1 −1
...

(n−1,n) 1 −1


. (17)

In what follows, it will be convenient to index rows of the matrix D in terms of the
couple (i, j), as is done in Expression (17).

We then rely on the Lagrangian dual of the primal problem (16) studied in Tib-
shirani and Taylor (2011), which is

û(λ) = arg min
u∈R(n(n−1)/2)

1

2

∥∥y −DTWu
∥∥2

2
subject to ‖u‖∞ ≤ λ, (18)

and where the correspondence between the primal and dual variables is

β̂ = y −DTW û.

The dual solution must satisfies

ûij ∈


{+λ} if (WDβ̂)ij > 0,

{−λ} if (WDβ̂)ij < 0,

[−λ,+λ] if (WDβ̂)ij = 0,

where we use the indexing in terms of (i, j) for the vector u. We also define B, the
set of (i, j) such that |uij | = λ, that is, the ones reaching the boundary in the dual.

The key point is to note that the order is not preserved if and only if, at some
point of the path, there exists some (i, j) and λ such that ûij(λ) = −λ, meaning
that (WDβ)ij < 0. The rest of the proof will show that this event is not possible for
distance decreasing weights and the matrix D given by (17). To this end, we proceed
by contradiction, by supposing that the order is not preserved along the path. We
thus consider the first split event that will disrupt the order, which occurs at λ0. At
this point, the order is preserved and there is an ε > 0 such that on ]λ0, λ0 + ε], the
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order is not preserved. We note that λ0 > 0 since the order is necessarily preserved
up to the first fusion event that fuses data points with different values. At λ0, we
must have a couple (i0, j0) such that ûi0j0(λ0) = −λ0 that reaches the boundary.
Moreover, the left derivative ∂−ûi0j0(λ) must be less than −1 because the path is
continuous (see Tibshirani and Taylor, 2011) and because we consider the first event
disrupting the order. We provide geometrical insight into this point on Figure 9.

ûij(λ)

λ
λ0

∂ −
u
i 0
j 0(λ

0 ) ≤
−
1

Figure 9: Geometrical insight into a split event in the dual.

We now show that we necessarily have ∂−ûi0j0(λ) > −1, leading to a contradic-
tion. To this end, we consider the set C of indices which are fused with i0 and j0 just

before λ0, that is, C =
{
i : β̂i = β̂i0 = β̂j0

}
. We denote by

Din = {(i, j) ∈ C × C : i < j}

the set of intra C differences and

Dout = {(i, j) ∈ B : i < j, i ∈ C or j ∈ C} ,

the set of differences between C and other groups. Finally we denote by R the set
of all other indices which are not in Dout and Din. Given those sets we reindex the
matrix D and W as follows.

D =


set of index C C̄

Din DDin×C DDin×C̄
Dout DDout×C DDout×C̄
R DR×C DR×C̄



W =


set of index Din Dout R

Din WD2
in

0 0

Dout 0 WD2
out

0

R 0 0 WR2


By definition, for all (i, j) ∈ R, i and j do not belong to C and thus DR×C = 0.

By simple matrix algebra, the restriction of DTW to the rows in C can be written

(DTW )C = (DDin×C)
TWD2

in
+ (DDout×C)

TWD2
out
.
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Just before λ0 and for all (i, j) ∈ Dout, we have ûij(λ) = λ and so sign(ûij) = 1,
because the order is preserved at this point. Then, following Tibshirani and Taylor
(2011), the KKT conditions of (18) restricted to Din imply that

ûDin
(λ) =(

WD2
in
DDin×CD

T
Din×CWD2

in

)+

WD2
in
DDin×C

(
y − λ(WD2

out
DDout×C)

T1Dout

)
, (19)

where A+ denotes the Moore-Penrose pseudo-inverse of A. Note that such a choice
is important since it guarantees that û(λ) is a continuous function of λ.

Expression of (19) greatly simplifies by exploiting an explicit formula for the
pseudo-inverse, which we derive in the next paragraph.

Analytic form of the pseudo-inverse. In this paragraph, we consider only the
DDin×C matrix and theWD2

in
matrix, which correspond to the set of intra C differences

and their weights. For simplicity, we just denote them D and W here and call n′ the
group size. We have

DTD = n′In′n′ − 1n′1
T
n′ , D1n′ = 0n′ ,

and from this we get DDTD = n′D and thus, D+ = DT /n′. Finally

(DDT )+ =
1

n′2
DDT , and (DDT )+D =

D

n′
.

If we now consider the weighted version of Problem (16), one has

(WDDTW )+WD = W−1(DDT )+W−1WD =
W−1D

n′
.

Back to our problem, Expression (19) becomes

ûDin(λ) =
1

nC
W−1
D2

in
DDin×C

y − λ (WD2
out
DDout×C)

T1Dout︸ ︷︷ ︸
V

 . (20)

Let us consider the size-nC vector V , which includes the differences between
elements in C and elements outside C. Note that the ith column of DDout×C is zero
everywhere, except for the elements of Dout containing i. In the last case, it is equal
to 1 if yi ≥ yj and to −1 otherwise. Hence,

Vi =
(

(DDout×C)
TWD2

out
1Dout

)
i

=
∑
j∈C̄

wijsign(yi − yj).

Also recall that the matrixDDin×C encodes the pairwise positive differences. Then
for yi > yi′ , the (i, i′) element of DDin×CV equals

(DDin×CV )ii′ = Vi − Vi′ =
∑
j∈C̄

wijsign(yi − yj)− wi′jsign(yi′ − yj).

There are two possibilities: either yj > yi ≥ yi′ or yi ≥ yi′ > yj . We thus split the
summation in the above equation into two parts:

(DDin×CV )ii′ =
∑
j∈C̄

yj>yi≥yi′

(wi′j − wij) +
∑
j∈C̄

yi≥yi′>yj

(wij − wi′j).
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And from this we see that if the weights are positive and distance decreasing, all the
(DDin×CV )ii′ are negative. To conclude, the slopes in Expression (20), that is,

− λ

nC
W−1
D2

in
DDin×C(WD2

out
DDout×C)

T1Dout

are positive, which is in contradiction with ∂−ûi0j0(λ) ≤ −1.

A.3 Theorem 3: consistency for exponentially adaptive weights

We essentially follow the same line as for the adaptive Lasso in Zou (2006), yet
adapted to the fusion penalty as in Viallon et al. (2014); Bondell and Reich (2008b).
The main difference comes from the use of the exponentially adaptive weights wFA

k` .

We start by asymptotics in the vein of Fu and Knight (2001) for Lasso-type
procedures: Lemma 3 below gives the limiting distribution of the fused-ANOVA
estimator (12) on the range of interest for the penalty λn which essentially proves
the asymptotic normality part of the Theorem.

Lemma 3. Suppose λnn
3/2 exp {−α

√
n} → 0 and λnn

3/2 →∞. Then,

√
n(β̂

(n)
− β?)

d−→ arg min
u

V (u),

where, for W ∼ N (0, σ2D),

V (u) =

{
−2uTW + uTDu if uk = u` for all (k, `) ∈ A?

∞ otherwise.

Proof. Let β̂
(n)

= β? + un√
n

– or equivalently un =
√
n(β̂

(n)
− β?) – where β? is the

true vector of parameters and un = arg minu∈RK Φn(u) with

Φn(u) =
1

2

K∑
k=1

nk

(
yi − (β?k +

uk√
n

)

)2

+ λn
∑
k 6=`

wFA
k`

∣∣∣∣β?k − β?` +
uk − u`√

n

∣∣∣∣ .
Note that un is also the minimizer of Vn(u) = Φn(u)− Φ(0) which is written

Vn(u) =
∑
k

nk
n
u2
k−2

∑
k

nk
n
εk+

λn√
n

∑
k,`

wFA
k`

√
n

(∣∣∣∣β?k − βk` +
uk − u`√

n

∣∣∣∣− |β?k − β?` |)︸ ︷︷ ︸
T

(n)
k`

.

Let us study the limiting behavior of Vn. The basic assumptions for our fused-
ANOVA Problem (12) are having a design such that limn→∞ nk/n = ρk and having
i.i.d residuals with zero mean and common variance σ2. Thus, the first two terms in
Vn respectively converge to a constant uTDu and to a Gaussian W = N (0, σ2D),
where D is a K-diagonal matrix such as Dkk = ρk. For the third term, there are
two possibilities: either β?k = β?` or β?k 6= β?` . In other words, (k, `) belongs to A? or
does not. First note that

T
(n)
k`

n→∞−−−−→

{
|uk − u`| if (k, `) ∈ A?,
(uk − u`)sign(β?k − β?` ) otherwise.

In words, this part of the third term converges to a finite constant in both situations
which is null as soon as uk = u`. Second, consider the remaining part of this third
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term which involves the weights wFA
k` . It suffices to use the

√
n-consistency of the OLS

estimators (ȳ1, . . . , ȳK) coupled with assumptions made on the limiting behavior of
λn to see that

λn√
n
wFA
k` =

λn√
n
nkn` exp

{
−α
√
n|ȳk − ȳ`|

}
→

{
∞ if (k, `) ∈ A?,
0 otherwise.

Application of Slutsky’s Lemma gives the limiting behavior of the third term in Vn
and we finally get Vn(u)→ V (u) with V defined as in Lemma 3.

The final convergence of un →d arg minu V (u) is obtained by applying epi-
convergence results of Geyer (1994).

Turning back to the proof of Theorem 3, just note that the unique minimizer of
the convex function V (u) in Lemma 3 is u? = D−1W ∼ N (0, σ2D−1) such that
u?k = u?` for all (k, `) ∈ A? and the asymptotic normality part is proved.

We now proceed to the consistency in terms of support recovery. First, concerning
the elements of β̂ that should not fuse according to the true A?, Lemma 3 indicates
that

P
(

(k, `) /∈ Ân|(k, `) /∈ A?
)

= 1− P
(
β̂

(n)
k = β̂

(n)
` |β

?
k 6= β?`

)
→ 1.

Second, regarding elements of β̂ that must fuse, we need to prove that

P
(

(k, `) ∈ Ân|(k, `) ∈ A?
)

= P
(
β̂

(n)
k = β̂

(n)
` |β

?
k = β?`

)
→ 1.

To this end, we proceed as in Viallon et al. (2014) to get a contradiction by considering

the largest β̂k′ such that β̂k 6= β̂` even though β?k = β?` . This can be done by
inspecting the KKT conditions asymptotically. In the univariate case and for Ω the
`1-norm, an optimal β̂ verifies the following subgradient equation for all k = 1, . . . ,K.
This is written

nk√
n

(β̂k − ȳk) =
λn√
n

∑
`:` 6=k

(k,`)∈A?

wFA
k` τk` +

λn√
n

∑
`:` 6=k

(k,`)/∈A?

wFA
k` sign

(
β̂k − β̂`

)
. (21)

Now, in the first term of the right-hand side, suppose that there exists at least
one ` such that (k, `) ∈ A? and β̂k 6= β̂` simultaneously; consider β̂k′ with k′ =

arg max`:(k,`)∈A?{β̂`}, the largest coefficients verifying these conditions: we must

have τk′` = 1 for all ` such that β̂` 6= β̂k′ and β?` = β?k′ . Now if we sum equation (21)
for all ` that are fused with k′ we obtain:∑

`|β̂`=β̂k′

n`√
n

(β̂k′ − ȳ`) =
λn√
n

∑
`|β̂`=β̂k′

∑
k|(k,`)∈A?

∩ β̂k 6=β̂k′

wFA
k`

+
λn√
n

∑
`|β̂`=β̂k′

∑
`:` 6=k

(k,`)/∈A?

wFA
k` sign

(
β̂k − β̂`

)
. (22)

By Lemma 3 and asymptotic normality, the left-hand side in (22) converges to a
OP (1). Then, the second term on the right-hand side (that is, elements that should
not fuse) tends to 0 since λnw

FA
k` /
√
n → 0 when (k, `) /∈ A?, as seen previously.

Finally we have :
λn√
n

∑
`|β̂`=β̂k′

∑
k|(k,`)∈A?

∩ β̂k 6=β̂k′

wFA
k`

n→∞−−−−→∞
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which is in contradiction with the rest of the subgradient equation of βk′ since we

recall that the left-hand side is OP (1). Therefore we must have P
(

(k, `) ∈ Ân
)
→ 1

for all (k, `) ∈ A?, which completes the proof of the consistency part in Theorem 3.
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