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Overstability for simultaneous surface-tension- and buoyancy-driven instability in a horizontal 
infinite liquid layer is theoretically investigated by means of a small disturbance analysis. 
Formulation and results are given in dimensionless forms. Critical wavenumbers, time 
constants, and Marangoni numbers are computed. Besides the influence of Prandtl, Bond, and 
crispation numbers, the modifications induced by interfacial viscosities, heat transfer at the 
free surface, buoyancy with respect to a pure Marangoni mechanism, and different thermal 
conditions at the rigid wall, are included in the analysis. The case of exchange of stability is 
considered as a special case of overstability. This work provides a generalization of 
Takashima's work [J. Phys. Soc. Jpn. 50, 2745, 2751 ( 1981)] concerning a pure Marangoni 
mechanism (with less general conditions). 

I. INTRODUCTION 

The present work follows a long line of studies concern­
ing RBM (Rayleigh-Benard-Marangoni) computations, 
anchored through a direct filiation in a line of works that 
goes back to the original theoretical master analysis of Ray­
leigh. 1 Landmark papers are by Pearson, 2 who showed that 
Benard's cells3.4 were not buoyancy driven but actually ten­
sion driven, Scriven and Sternling, 5 who addressed the ques­
tion of what the roles of flexibility and resistance to deforma­
tion of the free surface would be, and Nield/ who has the 
distinction of combining buoyancy and surface tension 
mechanisms. However, Nield assumed the same restricted 
free surface conditions as Pearson (nondeformable surface) 
and did not consider the case of overstability. The pioneering 
works mentioned above have been expanded by several au­
thors. The most general work, akin to the present one, is that 
of Takashima, 7 who extensively computed overstability and 
exchange of stability characteristics for surface-tension­
driven instability in a horizontal liquid layer with a deforma­
ble free surface, including the existence of gravity waves. A 
minor lack of generality included the facts that only the so­
called conductor case (solid wall thermal condition) was 
considered, and that both the Biot number (characterizing 
the thermal condition at the free surface) and the viscosity 
number (characterizing the interfacial viscosities) were 
zero. However, a major lack of generality arose from the fact 
that bulk buoyancy-driven instabilities were neglected. 

More precisely, gravitational acceleration is included in 
Takashima's analysis but only for gravity wave effects 
(Bond number), not for bulk effects (Rayleigh number). 
Here we are primarily interested in knowing how overstabi­
lity characteristics would be modified if both Marangoni and 
Rayleigh numbers were simultaneously included in the anal­
ysis. Consequently, the present work can be considered as a 
significant generalization of Takashima's analysis. It may be 
also considered as a generalization of Nield's work, which 
also considers simultaneous surface tension and buoyancy 

agencies, but for the simpler case of exchange of stability, 
while here primary emphasis is put on the case of overstabi­
lity. 

The analysis is presented under dimensionless form. 
The mathematical formulation is given in a concise way but 
all difficulties have been indicated so that the reader wanting 
to check and use our derivations would be left with only 
straightforward algebra. Although the primary interest was 
in the coupling between Marangoni and Rayleigh numbers 
for overstability, the opportunity has been taken to include 
other ingredients in the analysis (Prandtl, Bond, and crispa­
tion numbers, modifications induced by interfacial viscos­
ities and heat transfer at the free surface, and different ther­
mal conditions at the rigid wall). This results in a large 
dimension of the parameter space, but only a selected and 
exemplifying set of results will be displayed. 

As a by-product, this paper also considers the case of 
exchange of stability. The formulation to compute critical 
quantities for the exchange of stability is obtained as a special 
case of the overstability formulation. The interest is (i) to 
supply us with additional checking of our work by recover­
ing known formulas and published numerical results; (ii) 
provide the reader with new expressions completing, in par­
ticular, Takashima's work7 for exchange of stability; and 
(iii) provide new numerical results of interest such as the 
fact that interfacial viscosities may be destabilizing in some 
cases. 

Apart from the interest of this work in fundamental un­
derstanding, we may mention an example of application, 
namely, the problem of growing large semiconductor single 
crystals. As exchange of stability is triggered by buoyancy, 
experiments have been carried out in space laboratories to 
obtain crystals of higher quality. Unfortunately, we show in 
this paper that overstability is inhibited by buoyancy. In oth­
er words, microgravity experiments permit the inhibition of 
exchange of stability but might promote the onset of oversta­
bility leading to oscillatory motion. Admittedly, crystal 
growth typically involves nonmotionless basic states (for ex-
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ample, in floating zones) but the fact that overstability is 
promoted by microgravity remains an interesting feature in 
the crystal growth context. 

II. THE OVERSTABILITY FORMULATION 

A. Geometrical setup and free surface equations 

The liquid layer of infinite extent is limited by a solid 
wall and a free surface (Fig. 1 ) . A Cartesian coordinate sys­
tem (X, Y,Z) is used, where the lengths are made dimension­
less by using the distance d between the solid wall and the 
undeformed free surface as a unit of length. The axis Z is 
directed toward the free surface. The location Zrs of the free 
surface is given by 

Zrs (X,Y,t) = 1 + 8Zr. (X,Y,t), (1) 

where 8Zr. is the perturbation of the location of the free 
surface. The perturbation 8Zrs may be expressed in terms of 
normal modes: 

(2) 
in which/is the planform function (see Sec. II B) and satis­
fies a kinematic condition 

a8Zrs 
n.u, . = u, 3 = -- , • ••·• ••· at 

(3) 

where Urs.i is the dimensionless velocity perturbation at the 
free surface and n; is the normal unit vector to the free sur­
face, with the unit of time t being d 2 I a where a is the ther­
mal ditfusivity of the liquid. 

Assuming that the deformation of the free surface is 
infinitesimal, that this free surface is a two-dimensional (2-
D) Newtonian fluid with negligible mass, neglecting the vis­
cous force exerted by the gaseous medium, and following 
Aris, 8 Scriven and Sternling, 5 and Scriven,9 we obtain a 
dynamical equation for the free surface. That equation can 
be split into a normal force balance and a tangential force 
balance. 

The normal force balance reads 

Cr(u) aU3 
2H = Bo(u)8Zr. - ----p;- (pi -P2 ) + 2 Cr(u) az · 

The tangential force balance reads 

a 2 U3 ( 1 ) . a u3 a11 U3 - --= an --- - V1 a11 -- . 
az2 Cr(u) az 

(4) 

(5) 

The dimensionless mean curvature of the surface, H, at 
a point (X, Y,Zrs ) , is given by 

z 
ni 

0 
y 

X 

medium 2 
(gas) 

medium1 
(liquid) 

free surface 

solid wall 

FIG. I. Geometry of the problem. 
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(6) 

where a11 is the dimensionless surface Laplacian a 2 I ax�, 
with X1 = X, X2 = Y, the Einstein rule of summation is 
used, and a Greek subscript ranging from 1 to 2. Here, Pr, 
Bo(u), Cr(u), and Vi are the Prandtl, Bond, crispation, and 
viscosity numbers, respectively, which are given by 

Pr = J..LI Po a, 

Bo(u) = p0gd 2lu, 

Cr(u) = J..Lalud, 

Vi= (K + c)IJ..Ld, 

(7) 

(8) 

(9) 

( 10) 

where f.L is the dynamic viscosity of the fluid, p0 is the specific 
mass (at a reference temperature equal to the non perturbed 
steady-state free surface temperature), u is the surface ten­
sion, and ( K + c) is the sum of the surface dilatational coeffi­
cient and of the surface shear viscosity coefficient (interfa­
cial viscosities). Here, P

1 
and P2 are dimensionless pressures 

in media 1 and 2, respectively (Fig. 1 ) , with p0 a2 I d 2 as the 
pressure unit, and the dimensionless vertical component of 
the velocity of the liquid U3 at the free surface is actually a 
perturbation velocity because the free surface is motionless 
in the base state. In relation ( 4), the term involving the Bond 
number is the gravity wave term. A positive g means that the 
upper side of the layer is a free surface. 

B. Bulk equations 

We assume that the liquid complies with the Oberbeck­
Boussinesq approximation.1

0
•11 The base state is motionless 

with a dimensionless temperature gradient 
aT laXj = (0,0,- kT) in which dimensionless tempera­
tures are produced by using the reference temperature. 
Then, we follow the standard procedure for linear analy­
sis, 5-7 set that space and time are separable in the perturba­
tions (p for pressure, u3 for the Z component of velocity, r 

for temperature), and decompose spatial dependence in 
terms of normal modes: 

[p,u 3 ,r] = e'i'l'(X, Y) [ v(Z),t(Z),O(Z) ], (11) 

where the planform functionf(X, Y) satisfies the Helmholtz 
equation 

auf + aY= o, 02> 
with /3 and a being the dimensionless time constant and di­
mensionless wavenumber of the normal mode, respectively, 
and obtain the velocity, temperature, and pressure equations 
given below: 

(fiJ2- a2r2)(fiJ2- a2)t = ( l!Pr)aTga20, (13) 

(fiJ2- a2q2) (fiJ2- a2r 2) (fiJ2- a2)0 = - a2 Ra 0, 
(14) 

(15) 

Using a momentum equation, the pressure equation can 
be modified to 

(16) 

and the temperature and velocity Z perturbations are related 
by 
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( 17) 

where the dimensionless acceleration vector gi has been tak­
en equal to (0,0,-g) and the operator � is d /dZ. The 
expansion factor aT, the Rayleigh number Ra, r2, and rf,  are 
given by 

aT= -
;O iriP=Po' 

Ra = ( 1/Pr)aTkTg, 

r2= 1 + f3/a2Pr , 

rf = 1 + {3 /a2. 

C. The three-constant solution for 9 

( 18) 

(19) 

(20) 

(21) 

The (} solution of Eq. ( 14) has been researched under 
the form 

(22) 

subject to a double kinematic condition at the solid surface 
( � = � � = 0, Z = 0) and to a thermal condition, either 
(} = 0, Z = 0 (conductor case) or � (} = 0, Z = 0 ( insulat­
ing case). Formulas are given in the present paper only for 
the conductor case (expressions are quite similar for the al­
ternative thermal condition). 

We then find that (} is the sum of an odd and an even 
series, with three arbitrary constants chosen to be � 1 , C(f 4 ,  
C(f s. The results can be expressed as follows: 

� 2k 
= [- 4!1(2k) !]e�kC(J 4 ,  k>O, (23) 

� 2k+ I = [-5!/(2k + 1 ) !]e;k+ I� S 

-[ 1!/(2k + 1) !]e�k+IC(J1 , k>0, (24) 

with 

and 

e� = e� = e� = e; = ei = 0, 

e! = e: = e� = -1, 
3 2,.2 e1 = - a '1., 

(25) 

(26) 

(27) 

(e�k+6,e7k+7) = -a4 (e�k+4,e7k+s) -a2 (e�k+2,e7k+3) 

-a0(e�k,e7k+1) ,  i=(1,5), k>O, 
(28) 

where 

a4 = - a2( 1 + r2 + q2) ,  (29) 

rj r4 rs 

a2 = a4(r2 + r2q2 + q2), 

a0 = a2(Ra- a4q2r2). 

D. Free surface boundary conditions 

(30) 

(31) 

The location of the free surface is not determined for the 
perturbed state. Consequently, we have four coefficients to 
determine: the above three for (}plus a fourth one for the free 
surface location. This requires four boundary conditions at 
the free surface. These conditions can be obtained by com­
bining Refs. 5 and 7. The first condition expresses the kine­
matic condition ( 3) . The second and third conditions ex­
press the normal force balance ( 4) and the tangential force 
balance ( 5), respectively. The fourth condition is derived 
from the Newton heat transfer law. We obtain 

(�2-a2q2)() = - kT8.{3, (32) 

Cr[�2-a2(r2 + 2)] (�2-a2q2)�(} 

+ a2kT8.(a2 + Bo) = 0, (33) 

(�2 + a2) (�2 _ a2q2)() + a2 Vi(�2 _ a2rf)�(} 

-a2 Ma (} + a2kT Ma 8. = 0, (34) 

�(} + Bi{}-Bi kT8s =0, (35) 

where Cr and Bo are taken as constants by writing u = u. 
(neglecting higher-order terms), Bi is the Biot number for 
heat transfer at the free surface (sometimes called the Nus­
selt number by some authors), and Ma is the Marangoni 
number that may be expressed as 

Ma = -rkr. (36) 

r=� -1- 1 (37) aT Cr(u) T= T, ' 
where T. is the dimensionless free surface temperature in the 
basic state. In conditions ( 32 ) - (  35) , it is now advantageous 
to replace kT8s by a single unknown 8. 

E. The characteristic equations and the problem 
solution for overstability 

We introduce the free surface boundary conditions into 
the three- constant solution for (}. In the case of nontrivial 
solutions, the characteristic determinant of the resulting ho­
mogeneous linear set of equations must be zero, leading to 

Ma=N/D, (38) 

where 

{3/a2 

s j s4 Ss - (Bo + a2)/Cr 
(39) N= 

(t j + uj Vi) (t4 + U4 Vi) Us + U s Vi) 0 

(x j + yj Bi) (x4 + Y4 Bi) (Xs + Ys Bi) Bi!a2 

rj r4 rs -{3/a2 

D= 
s j s4 Ss (Bo + a2)/Cr 

(40) 
v j v4 Vs 1 

(x j + yj Bi) (x4 + y4 Bi) (Xs + Ys Bi) - Bi!a2 

in which 
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j = 1 for the conductor case, 

( 41) 
j = 0 for the insulating case. 

Expressions for r0,. • • ,y5 are not given in this paper. We 
only mention that they appear similar to series whose con­
vergence is ensured by factorial terms in denominators. For 
the onset of overstability, {J is iw (marginal oscillatory insta­
bility). For arbitrary input values, the Marangoni number 
Ma computed from relation (38) is not a real number. We 
shall call it a pseudo-Marangoni number. For a given wave­
number a, the critical Marangoni number Mac is obtained 
from the following equations: 

Im[Ma({J,a)] = 0, (42) 

(43) 

Relation ( 42), where Ma designates the pseudo-Maran­
goni number, determines a spectrum/3; of time constants for 
which the pseudo-Marangoni numbers are real. The critical 
time constant f3c is the value among the /3-spectrum values 
for which !Mal is the smallest. The critical Marangoni num­
ber Mac is then given by relation ( 43). Scanning over a, we 
search for the critical wavenumber a* for which !Mac (a) I is 
a minimum. The final critical time constant /3 * and Maran­
goni number Ma* are f3c (a* ) and Mac (a* ), respectively. 

Ill. THE EXCHANGE OF STABILITY FORMULATION 

A. General formulation 

This formulation is derived as a special case of the over­
stability formulation given in Sec. II. Time constant {3 is now 
set to zero, leading to r 2 = q2 = 1 [relations ( 20) and ( 21 ) ) . 
Relations (39)-( 40) simplify. There is now a zero in the last 
columns of N and D, and expressions for r0, • • • ,y5 must be 
rewritten by specifying the new relation r 2 = q2 = 1. The 
relations defining the coefficients E!; (25)-( 31) also simplify. 
Finally, ( 42) becomes an identity because the pseudo-Mar­
angoni number is now a real number. For a given wavenum­
ber a, we obtain the critical Marangoni number 
Mac = Ma(a), from which we determine a* and 
Ma* = Mac (a* ) by scanning over a. 

B. Pure Marangoni effect (Ra=O) 

In this case, the formulation simplifies dramatically. We 
find that coefficients E!; can be obtained in plain explicit 
forms, without any recurrence, 

efk+ 1 = [!k(k- 1)- 1 } a2\ k>O, (44) 
e�k = e;k+1 = - !k (k - 1 ) a2ck - 2> , k>O. (45) 

Injecting these expressions into the expressions for 
r0, • • • ,y5, we observe that the involved series can be reduced 
to plain mathematical functions. For instance, r0 becomes 
[a3 sinh(a) ]/2. 

For the conductor case, ( 38 )-( 40) then lead to 

(46) 

where S = sinh(a) and C = cosh(a). With condition Vi= 0, used by Takashima, ( 46) becomes identical to relation (3.1) of 
Takashima7 (p. 2745) as it should. 

Similarly, for the insulating case (not considered by Takashima), we obtain 

8a [ (CS- a) +!a Vi(S2- a2) ) (aS+ Bi C)(Bo + a2) 
Mac= Ma(a) = . (47) 

8 Cr a5S + (Bo + a2) (CS2- 2aS + a2C- a3S) 

IV. OVERSTABILITY: NUMERICAL RESULTS 

A. Generalities 

To solve the set ( 42) and ( 43) for overstability, we re­
lied on computer programming. Thermophysical inputs of 
the program are Pr, Bo, Cr, Vi, Bi, and Ra. Other inputs are 
driving parameters used to monitor the resolution algo­
rithm. Outputs are critical quantities a* , w* (i.e.,/3 * /i) and 
Ma* by scanning over a. Typically, the CPU time needed to 
obtain a set (a* , w* , Ma* ) is 10 min on a IBM 3090 main­
frame and the number of terms in series r0, ••• ,y5 is less than 
about 150 for an accuracy of about 0.05% on Ma* although 
these figures obviously depend on thermophysical values. 

As this paper is focused on physics, not on numerics, 
details of the algorithm are not provided because they would 
shift the purpose of our discussion. But we mention that a 
check of the quality of the computer program has been car-
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ried out by comparing our results with overstability results 
provided by Takashima/ leading to a perfect agreement. 
However, this test is clearly not fully complete since Taka­
shima considered the simpler case Vi = Bi = Ra = 0. 

In the case of a hot rigid wall [Figs. 2 (c) and 2 (d) ] , we 
never observed the possibility of overstability, even when the 
Rayleigh (buoyancy) mechanism was introduced. How­
ever, this is not enough to dismiss the possibility of overstabi­
lity for a hot rigid wall and coupled Marangoni-Rayleigh 
effects, because it is impossible to scan all the ranges of ther­
mophysical inputs and program driving parameters numeri­
cally. We might simply have been unlucky. Evidence for 
overstability impossibility could only be obtained from a for­
mal proof. Nevertheless, we strongly believe in it. Because, if 
we accept Takashima's conclusion in the case of a pure ten­
sion mechanism, the occurrence of overstability, when the 
buoyancy mechanism is also introduced, is even more diffi-
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sky 

(a) liquid layer -pended from 
a cold ceiling, Bo<o, Ma<o 

zr 
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�T1 

f}}}}II J 
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(b) liquid layer above a cold floor, 

Bo>o,Ma<o 

z
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�T1 
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sky 
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from a hot ceiling 
Bo<o,Ma>o 

ground 
(d) liquid layer above a hot 

floor, Bo >o,Ma >O 

FIG. 2. Situations for possible investigation ( r assumed negative). For the 
sign of Rayleigh number, aT is assumed positive. For a liquid having a nega­
tive coefficient of volume expansion, Ra signs must be inversed. 

cult because buoyancy appears to be stabilizing for oversta­
bility (see Sec. IV B) even when it is destabilizing for the 
exchange of stability. 

When overstability does occur [cold rigid wall, Figs. 
2(a) and 2(b) ], we shall limit ourselves to present quantita­
tive results for the case of the influence of the Rayleigh num­
ber with a cold floor [Fig. 2(b)]. Computations are usually 
carried out by using a continuation method, i.e., knowing the 
critical w and a for a value X0 of a parameter to investi-* * 
gate (for instance, viscosity number). Critical values for an-
other value X1 = X0 + t5X, with an increment t5X not too 
large, are computed by investigating a range [ a1 ,a2 ] con­
taining a* and a range [ w1 ,w2 ] containing w* . The use of 
such an "adiabatic" modification of parameter X from an 
initial value X0 to a final value X1 to track the critical values 
is not fully secure because the modification of a thermophy­
sical input can produce internal structural modifications of 
the involved functions that the continuation method is un­
able to detect (see the example in Sec. IV B). Consequently, 
several checks must be carried out by arbitrarily modifying 
the driving parameters after the determination of a first set of 

log a• 
0 

·1 

.. 

Ra.o 

R•=·106 -- ----------�------------- ------------

2l_ ___________ "-'!:---.r--:--=:-'10"2 ·5 ·4 ·3 ·2 logCr ·7 ·6 
FIG. 3. Overstability. Influence of the Rayleigh number on the critical 
wavenumber a •. 
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Pr.1, Bo.0.01, VI. Bi.O, conctuctorcaee 

Ra':.":�?�- �----------- 1 �=.:J!!::-.;: "'1n3 _L-Ra •• 1o2 
R•=- :--" Ra;;t'\ 

- ':: Ra.-103 
·�lU- -� , ,. �l Ra•-3.102 

Ra:O 

10 

�1 L7---.-6--�-S--- .�4--�.3c---.2r-���1 

FIG. 4. Overstability. Influence of the Rayleigh number on the critical time 
constant w •. 

critical quantities. For the influence of the viscosity number 
(ranging from 0 to 50) and of the Biot number (ranging 
from 0 to 3 ), the continuation method has been found to 
apply (quantitative results not given). Qualitatively, the ef­
fect of increasing Vi is to decrease the wavenumber, i.e., to 
increase the oscillation wavelengths. This effect can be an­
ticipated on physical grounds because the interface viscos­
ities smooth gradients on the surface. Also, an increase of Vi 
produces an increase of critical I Ma* 1. i.e., interfacial vis­
cosities inhibit overstability as physically expected. Similar­
ly, we found that an increase of Biot number also inhibits 
overstability, as again physically expected, since it smooths 
thermal stresses in the surface. The influence of modification 
of the thermal condition at the rigid wall will be briefly dis­
cussed at the end of the next section (for convenience). We 
now tum to the influence of the Rayleigh number for which 
the continuation method has been found to fail in some 
cases. 

B. Influence of the Rayleigh number 

Results are shown in Figs. 3-5, for the Fig. 2(b) case, 
conductor wall, Vi= Bi = 0, Pr = 1, Bo = 0.01, and Cr 
ranging from 10- 7 to 10 - 1• 

Pr.1, Bo.0.01, VI. Bla:O,conductorcaae 

--- - - -----�--- - __ R_•:-_�s ___________ _ 

�L7 ----6�-- .�s---_,4----,_3r---_�2-�log�Cr 
FIG. 5. Overstability. Influence of the Rayleigh number on the critical Mar­
angoni number Ma*. 
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For Ra = 0, they perfectly reproduce results given by 
Takashima.7 The observed discontinuities in Figs. 3 and 4 
originate from the following feature. For a crispation value 
to the left of discontinuity, we observe two minima in curves 
I Mac (a) I for a= a1 and a= a2• The true critical quantities 
correspond, for instance, to a* = a1 , for which 
I Mac (a 1 ) I < I Mac ( a2 ) I· When the crispation number in­
creases, I Mac (a1 ) I increases while I Mac (a2) I decreases. At 
the point of discontinuity, we have 
I Mac (a1 ) I = I Mac (a2) I· On the right of discontinuity, the 
situation is the opposite with I Mac (a 1 ) I > I Mac ( a2 ) I· Dis­
continuity corresponds to a jump of the critical wavenumber 
from a* = a1 to a* = a2 (Fig. 3 ), accompanied by a jump 
of the time constants fromw* =w1 tow* =w2 (Fig. 4). 
Clearly, such a process does not produce any discontinuity 
in the Ma* results (Fig. 5). 

For Ra = - 102, discontinuity existing at Ra = 0 has 
drifted to the right, for both the wavenumbers (Fig. 3) and 
the time constants (Fig. 4 ). For the critical Marangoni 
numbers (Fig. 5), the difference with the Ra = 0 case is only 
marked on the right of discontinuity for log Cr larger than 
= - 2.5. For Ra = - 3 X 102, discontinuity has again drift­
ed to the right, but its importance is smaller. Smoothing of 
this discontinuity is carried out at Ra = - 103, but memory 
of it is kept through a fairly steep curvature of the profiles for 
both the wavenumbers and the time constants. This memory 
is completely lost at Ra = - 104• Nothing special occurs 
between Ra = - 10- 4 and Ra = - 105, except a decrease 
in the critical wavenumbers, an increase in the critical time 
constants, and an increase in the critical I Ma* I· At 
Ra = - 106, the broken lines in Figs. 3-5 correspond to the 
critical values we obtain by using the continuation method 
(Sec. IV A). However, these values are not truly the critical 
ones because of a structural modification of the stability dia­
grams, occurring between Ra = - 105 and - 106• This 
modification is shown in Fig. 6 for Cr = 10- 5• We give 
Mac (a) for various values of the Rayleigh number ranging 
from - 105 to - 106• At Ra = - 105, the curve !Mac (a) I 

6 

4 

0 0.1 0.5 

G)Ra =-1 05 
®Ra a-2.105 

@Ra=-5.1 05 

@Ra =-1 06 

1 .5 a 

FIG. 6. Overstability. Modifications of the curve Mac (a) vs Ra for 
Cr=JO-'. 
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presents one minimum corresponding to the points labeled 1 
in Figs. 3-5. For Ra = - 2 X lOS, this minimum has drifted 
to smaller a values and to larger I Mac I values (Fig. 6). A 
second minimum is detected at very large values of a 
(a > 1. 5), drifting from the right as indicated by the arrow 
on the profile labeled 2. When Ra ranges from - 105 to 
- 106, the first minimum evolves along the broken line indi-
cated in Fig. 6. Somewhere between Ra = - 2 X 105 and 
Ra = - 5 X 105 the critical values jump from the first mini­
mum to the second minimum. According to the continu­
ation method, the critical values at Ra = - 106 would be 
found to correspond to the first minimum in Fig. 6 (the 
curve labeled 4), leading to the points labeled 2 in Figs. 3-5. 
But the true critical values actually correspond to the second 
minimum. These values are given for a* and Ma* in Figs. 3 
and 5 (full lines). The second minimum in Fig. 6 (the curve 
labeled 4) , corresponds to the points labeled 3. The corre­
sponding w* values are too high to be indicated in Fig. 4. For 
instance, for Cr = 10- S, Ra = - 106, we have w * = 140. In 
Fig. 3, we observe a discontinuity for log Cr between - 5.8 
and- 5.9. The a* andw* values to the left of this discontin­
uity are also too high to be indicated in the figures. For in­
stance, for log Cr = - 6.6, Ra = - 106, we have a* = 2.7 
and w* = 700. 

Figure 5 shows that the Rayleigh number generally acts 
as an efficient inhibitor of overstability. In the situation un­
der study [Fig. 2(b) ], buoyancy is also stabilizing for the 
exchange of stability. However, we observed in other com­
putations that buoyancy is stabilizing even if it is destabiliz­
ing for exchange of stability. These observations are prob­
ably connected to the fact that there is no overstability for a 
pure Rayleigh mechanism. 1

2 
They may also be connected 

with the fact that, according to Davis and Homsy, 1 3 surface 
deflections for predominantly buoyancy-driven convection 
are stabilizing. We suggest that the mechanism of inhibition 
of overstability by buoyancy might be physically understood 
by remembering that, for tension-driven convection, the free 
surface is depressed above a hot stream while it is elevated 
for buoyancy-driven convection.5•1 4 Although this last 
statement concerns the case of exchange of stability, it indi­
cates a conflict in the direction of deformation of the free 
surface between the buoyancy case and the surface tension 
case which might be the cause of the overstability inhibition 
by buoyancy. 

However, examination of Fig. 5 reveals a small region, 
on the curve Ra = - 103, for log Cr between = ( - 3) and 
= ( - 2. 7), where buoyancy lowers the critical I Ma* I· This 
region corresponds to the disappearance of discontinuity ob­
served in Figs. 3 and 4 when Ra decreases from 0 to - 103• 

Finally, the influence of a modification of the thermal 
condition on the critical Marangoni numbers is not very sig­
nificant for Pr = 1, Bo = 0.01, Vi= Bi = Ra = 0, Cr rang­
ing between 10- 7 and 10- 1• The only noticeable effect for 
the insulating case is the disappearance of discontinuities 
shown in Figs. 3 and 4 (detailed results not provided). 

V. EXCHANGE OF STABILITY: NUMERICAL RESULTS 

The computer program for exchange of stability is de­
rived from the one for overstability by internal modifica-
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tions. Validation of the program is carried out by comparing 
its results with all results given by Nield6 and Takashima, 7 

leading to a perfect agreement. 
We shall mention here an interesting observation. For 

overstability, we numerically observed instability when the 
rigid wall is cold, in agreement with Takashima's results for 
a pure Marangoni mechanism. Comparing with exchange of 
stability results, we notice that instability could set in as 
overstability only when the layer is stable for exchange of 
stability via a pure Marangoni mechanism under Nield's 
specifications, i.e., the conductor case at the rigid wall, with 
Bo = Cr = Vi = 0. In these cases, we may state that loss of 
stability by exchange of stability via a pure Marangoni mech­
anism is forbidden under Nield's specifications since the sys­
tem is stable, or at least is difficult insofar as loss of stability 
may arise if the specifications are relaxed. Then, the layer 
chooses another, easier way to lose stability, namely, over­
stability. 

For a pure Marangoni effect (Ra = 0), the formulation 
reduces to very simple expressions [ ( 46) and ( 4 7) ] from 
which numerical results can easily be obtained and discussed 
[see Ref. 7, p. 2745, for relation (46) with Vi= 0]. Conse­
quently, results will only be presented for (i) the influence of 
the Rayleigh number (Ra:;60) and (ii) the influence of the 
viscosity number, which was not considered in Ref. 7. The 
presentation of numerical results is also limited by consider­
ing neither the insulating case nor positive Bond numbers. 

For the conductor condition at the rigid wall, Taka­
shima computed the critical Marangoni number Mac (a) for 
Vi = Bi = Ra = 0, Bo = - 0.1, and various values of the 
crispation number. Under the same specifications, we show 
our results in Fig. 7 and also in Fig. 8, where they are repeat­
ed. The points below each curve represent stable states. The 
agreement with Takashima's results is perfect (see Fig. 4 in 
Ref. 7). These results have been obtained from the full com­
puter program but could also be obtained from ( 46) as done 
by Takashima. By examining this relation, Takashima ob­
served that all of the neutral stability curves intersect the a 
axis when a= (- Bo) 112 (here a=0.316). When 
a> ( - Bo) 112

, all of the curves lie in the positive region of 
Mac. Conversely, for 0 <a< ( - Bo) 112

, they lie in the nega­
tive region of Mac as shown in Figs. 7 and 8 ( 0 <a< 0.3). 
The region below each curve represents stable states; the 
critical Marangoni number Mac is always negative when 
Bo < 0. We note also that the negative half-plane displayed in 
Figs. 7 and 8 corresponds to a liquid layer suspended from a 
cold ceiling [Fig. 2 (a) ] , a case which is stable under Nield's 
specifications. The loss of stability now observed is attribut­
ed to the introduction of gravity waves, although the free 
surface deformation (crispation number) also plays an es­
sential role. Takashima also observed that when 
Cr > 0.000 085, the critical a* is zero. Otherwise, critical a* 
becomes nonzero and Mac decreases rapidly as Cr decreases 
(see Figs. 7 and 8). These numerical observations are con­
firmed by Takashima's examination of relation (46). For 
the present case of a layer suspended from a cold ceiling 
(negative Marangoni numbers), stability is observed for 
Ma < Mac and Takashima states that cellular convection is 
also, in principle, possible when Ma =Mac. Conversely, for 
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FIG. 7. Neutral stability curves for the conductor case, Bo = - 0.1, 
Bi = Ra = 0, and various values of the crispation number: Cr = l 0- 3 ( Ia­
bel l ), 3 X 10-4 (label2), w-• (label 3), 5 X w- 5 (label4), 3 X 10-5 (la­
bel 5), 2. 3 X lO- 5 (label 6), 2.1 X lO-5 (label 7). Influence of the viscosity 
number: heavy lines: Vi= 0; thin lines: Vi#O. With Vi= lO (label a), 25 
(label b), and 50 (label c). Example: The curve 7c is for Cr = 2.1 X lO-5, 
Vi=50. 

FIG. 8. Neutral stability curves for the conductor case, Bo = - 0.1; 
Vi= Bi = 0; and various values of the crispation number: Cr = lO-3 (label 
1), 3X w-• (iabel 2), w-• (label 3), SX 10-5 (labe14), 3X w-' (label 
5), 2.3 X w-' (label 6), and 2.1 X w-' (label7). Influence of the Rayleigh 
number: heavy lines: Ra = 0; thin lines: Ra#O with Ra = 500 (label a), 
800 (label b), 2500 (label c), and 4000 (label d). 
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positive Marangoni numbers (layer suspended from a hot 
ceiling), motionless state and cellular convections cannot be 
observed and the liquid will, in practice, evolve to pendant 
drops or fall from the wall. 

The influence of the viscosity number is shown in Fig. 7. 
At high crispation numbers (label 3, for example), interfa­
cial viscosities can provoke a modification of the critical 
wavenumber a* from zero to a finite value (label 3c for 
instance). At small crispation numbers (labels 5-7) the 
modification of the finite critical wavenumber a* is real but 
less and less significant when Cr decreases. The points below 
each curve represent stable states, and we are led to the con­
clusion that the interfacial viscosities have (in this case) a 
destabilizing character, an unexpected result at first sight. 
The explanation is (for instance) as follows. 

If the value of the absolute temperature gradient (or of 
jMac j) is not large enough, the configuration point of the 
system lies above its neutral curve and the layer is unstable 
since points below curves represent stable states. Stability is 
obtained for a high value of the absolute temperature gradi­
ent. Now, the effect of interfacial viscosities is to smooth out 
the dynamical effects of the temperature gradients in the 
surface. Consequently, the absolute temperature gradient to 
obtain stability must be larger in the presence of interfacial 
viscosities in order to compensate for their damping effect. 
Then the domain of the unstable states is expanded as ob­
served in Fig. 7. 

The influence of the Rayleigh number is shown in Fig. 8. 
A positive Rayleigh number has a destabilizing character as 
made obvious by Fig. 2(a). At high crispation numbers, we 
must increase Ra up to about 500 to observe a modification 
in the figure, which would, however, remain small. When 

(-Ma.) log(-Ma.) 

FIG. 9. The critical Marangoni number Ma. versus the crispation number 
for the conductor case, Bo = - 0.1, Bi = Ra = 0. Influence of the viscosity 
number. 
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FIG. 10. The critical Marangoni number Ma. versus the crispation number 
for the conductor case, Bo = - 0.1, Vi = Bi = 0. Influence of the Rayleigh 
number. 

the crispation number decreases, the effect of buoyancy be­
comes more important. For curves labeled 6 and 7, the in­
duced modifications are very important even at Ra = 500. 
This can be physically understood if we interpret the de­
crease of the crispation number as an increase of layer height 
d and if we remember that we do expect buoyancy to become 
dominant when d increases. 

For the conductor case, Bo = - 0.1, Vi-
= Bi = Ra = 0, the critical Marangoni numbers Ma* are 

shown in Fig. 9, and repeated in Fig. 10. Letter P indicates 
that the Marangoni number Mac changes its sign (becoming 
positive) in the a range under study. The critical wavenum­
bers a* are shown in Fig. 11 and are repeated in Fig. 12. 
These results agree perfectly well with those given by Taka­
shima. Again, the region below each curve represents stable 
states. The influence of the viscosity number is displayed in 
Figs. 9 and 11 and the influence of the Rayleigh number in 
Figs. 10 and 12. Comments are not given because these re­
sults merely reflect the data in Figs. 7 and 8. 

FIG. 11. The critical wavenumber a. versus the crispation number for the 
conductor case, Bo = - 0.1, Bi = Ra = 0. Influence of the viscosity num­
ber. 
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FIG. 12. The critical wavenumber a. versus the crispation number for the 
conductor case, Bo = - 0.1, Vi= Bi = 0. Influence of the Rayleigh num­
ber. 

VI. CONCLUSION 

Overstability and exchange of stability for simultaneous 
surface-tension and buoyancy-driven instability in a hori­
zontal infinite layer have been theoretically investigated by 
means of a small disturbance analysis. Formulations and ex­
pressions are given in dimensionless forms. Numerical re­
sults are obtained relying on computer programming vali­
dated by comparisons with the results of Takashima7 and 
Nield.6 

For overstability numerical results, emphasis is put on 
the influence of the Rayleigh number, corresponding to our 
primary motivation. Buoyancy has a stabilizing effect, ex­
cept for a very restricted range of input values, even when it 
is destabilizing for exchange of stability. 

For exchange of stability, the formulation is presented 
as a special case of the overstability formulation. This formu­
lation can be simplified dramatically in the case of a pure 
Marangoni effect. For a conductor condition at the rigid 
wall, and neglecting the interfacial viscosities, our formal 
result is the same as the one given by Takashima for this case. 
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Sample cases are then given and discussed. We present 
the critical Marangoni numbers Ma* and critical wavenum­
bers a* versus the crispation number, for a given Bond num­
ber, with a discussion of the influence of interfacial viscos­
ities and of the buoyancy instability mechanism. To mention 
only one point in this conclusion, we observed that the inter­
facial viscosities may have a destabilizing effect, which, at 
first sight, is an unexpected result. 

We finally state that more details for the formulation 
and the computing algorithms, listings, and additional re­
sults are available on request. 
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