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a b s t r a c t

Forest shelter buffers microclimate, decreasing daily ranges of solar radiation and temperature, yielding
higher minimum and lower maximum temperatures than those of open field. The most common way to
analyse sets of these data is to compare mean, maximum and minimum values of climate parameters
of open field and understorey conditions at daily, monthly or seasonal scales; however, this approach
loses information about temporal dynamics. This study developed a statistical method to analyse hourly
dynamics of temperature (T) and radiation (Rad) together and quantify effects of canopy openness and
seasonality on these dynamics. Eight experimental sites were chosen in small gaps located in a temperate
oak-pine forest (France), and five plots were established in each along a light gradient (i.e. a total of 40
plots), which delimited a transect along which T and Rad were measured hourly at a height of 200 cm from
May 2009 to March 2010. T and Rad were also measured in open field. A specific Principal Component
Analysis (PCA) with an innovative graphical representation was performed on this dataset. This statistical
method allowed hourly temporal dynamics of all data recorded to be analysed and included a chart to
interpret the distribution of the data in the principal plane defined by the PCA. Except in winter, results
demonstrate the well-documented buffering effect of the tree canopy on T, with higher minimum and
lower maximum values in the forest understorey. This effect was especially pronounced for minimum T

and increased as canopy grew denser. In summer, T remained higher than expected in the understorey and
was lower than expected in the open field, indicating thermal inertia in the understorey and an a priori
cooling effect linked to wind or radiative losses during the night in the open field. The newly developed
statistical method offers an innovative approach to better understand the tree canopy’s buffering effect
on temporal dynamics.
. Introduction

In the current context of climate change, many concerns about

he sustainability of ecosystems and crop production exist (Lobell
nd Gourdji, 2012), especially because temperatures are predicted
o steadily increase in the near future and have a strong impact

∗ Corresponding author.
E-mail addresses: Noemie.Gaudio@inra.fr (N. Gaudio),

avier.gendre@math.univ-toulouse.fr (X. Gendre), Marc.Saudreau@inra.fr
M. Saudreau), vincent.seigner@irstea.fr (V. Seigner), philippe.balandier@irstea.fr
P. Balandier).
on many plant processes (Atkin et al., 2015; Blessing et al., 2015;
Duursma et al., 2014; Kolari et al., 2014; Sendall et al., 2015). In
forest ecosystems, understorey microclimate is controlled by char-
acteristics (age, species, etc.) and the spatial structure of overstorey
trees (Aussenac, 2000; Malcolm et al., 2001). Most microclimate
variables are buffered by the shelter which trees provide (e.g. Karki
and Goodman, 2015; Siegert and Levia, 2011; von Arx et al., 2012).
Consequently, forest shelter creates cooler and wetter conditions
for plant species sensitive to high temperatures or drought and thus

thermophilisation of plant communities via macroclimate warm-
ing – i.e. favouring species adapted to warm conditions – could
be limited (De Frenne et al., 2013). Therefore, both the macro-
and microclimate should be considered to adequately predict the
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Fig. 1. Diagram of an experimental site (located in Orleans forest, France). Each
experimental site consisted of one transect made up of five 1 m2 plots organised to
uture of ecosystems. Many researchers have demonstrated that
ean climate change, especially average temperature, is proba-

ly not the best way to predict adverse consequences of climate
hange on ecosystems (Thornton et al., 2014) and Henttonen et al.
2014) emphasised the need to use high-resolution climate data
hen analysing tree growth.

Forest temperatures are often estimated from open field
eather stations, sometimes located far from study sites, even

hough tree canopies modulate their own microclimate, and sys-
ematic differences between temperatures measured in forests and
t open field weather stations have been identified (Kollas et al.,
014). As Körner (2016) emphasised, plants experience temper-
tures that are rarely reflected by average data and “to advance
egetation ecologists need to collect bioclimatic data, rather than
ely on weather station data”. Most ecological or physiological stud-
es have used climate data at a resolution of several kilometres or

ore, whereas organisms experience microclimate at a finer scale,
rom millimetres to metres (Suggitt et al., 2011). While the general
uffering effect of the tree canopy is known, i.e. a decrease in max-

mum temperatures and an increase in minimum temperatures,
urther investigation is needed into daily variations in temperature,
nd their relations to solar radiation below the canopy.

The buffered thermal range is influenced partly by reduced radi-
tion in the understorey, as radiation and temperature are highly
orrelated (Bristow and Campbell, 1984; Jegede, 1997). Daily tem-
erature and radiation dynamics are rarely considered together in
tudies linking understorey plant behaviour to microclimate char-
cteristics, even though temperature alone is often not enough to
xplain plant processes. For example, phenology of leaf senescence
s mainly under thermal control at low and middle latitudes, while
hotoperiod becomes the primary factor at high latitudes (Gill et al.,
015). Many studies address only radiation or temperature (often
dded to moisture). They mainly focus on i) impacts of these cli-
ate parameters on understorey plant behaviour (see e.g. Ammer

2003), Balandier et al. (2007) and Gaudio et al. (2011a,b) for light,
nd Butt et al. (2014) and De Frenne et al. (2013) for temperature)
r ii) the microclimate itself, as modified by forest shelter (see e.g.
alandier et al. (2006b) for light and Morecroft et al. (1998) for
emperature).

This study’s aim was to accurately characterise microclimate in
he forest understorey by considering both temperature and radia-
ion, as they strongly influence plant processes. The dual challenge
as to consider i) temperature and radiation together because the

elation between the two could differ in the forest compared to the
pen field and ii) hourly dynamics of these two variables, to extend
nalysis beyond daily mean, minimum and maximum values. To
his end, we used an exploratory method based on Principal Com-
onent Analysis (PCA) with an innovative graphical representation.
his article focuses on describing the statistical method and its
bility to describe forest microclimate defined by hourly dynamic
ehaviour of two or more climate parameters. In particular, it
escribes the buffering effect associated with forest shelter: con-
itions under which buffering occurs (i.e. the influence of canopy
ensity or cover) and how seasonality influences it.

. Materials and methods

.1. Study site and experimental design

The study was conducted from May 2009 to March 2010 in the
rleans plain forest in France (47◦51′–47◦77′N, 2◦25′–2◦36′E, mean

levation: 140 m). This region has a semi-oceanic climate, with
ean annual precipitation of 740 mm evenly distributed through-

ut the year and mean annual temperature of 11.3 ◦C (data from
981 to 2010). In winter 2008, a network of eight experimental
catch the light gradient at the stand – gap interface, i.e. the first plot was inside the
forest stand (the darkest plot) and the fifth plot was in the middle of the gap (the
lightest plot).

sites was established in mixed oak (Quercus petraea Lieblein) – Scots
pine (Pinus sylvestris L.) stands (Table 1). Mean, minimum and max-
imum distances between the experimental sites were respectively
5.2, 1.2 and 11.2 km; therefore, they were considered independent.
An open field site was also identified near the selected experimen-
tal sites to provide a reference measurement of the microclimate
for all measurements described hereafter.

At each experimental site, we took advantage of small gaps
(779 m2 ± 352 m2) within the stand to increase the number of
radiation situations explored. Each experimental site contained a
transect with five 1 m2 plots organised to capture the natural light
gradient which occurs between a darker plot in the stand and a
lighter plot in the middle of the gap (Fig. 1). As plot location was
adapted to each stand’s gap characteristics to capture the light gra-
dient, the total length of transects ranged from 19 to 39 m, and
the distance between two plots within a transect ranged from 3
to 25 m. The category “understorey conditions” grouped plots that
were influenced by all degrees of tree canopy openness. All plots
were kept free of understorey vegetation during the entire exper-
iment. The experimental sites were fenced to protect them from
wildlife.

2.2. Measurements

2.2.1. Temperature
In early spring 2009, experimental sites were equipped with

temperature sensors, i.e. thermocouples (T type class 1, CETIB
Dexis, Clermont-Ferrand, France), which measured temperature T
with 0.01 ◦C precision. To measure air T instead of sensor T, each
thermocouple was protected in a well-ventilated white shelter of
950 cm3 to allow airflow. Data were recorded every minute, aver-
aged at an hourly time step, and stored using a datalogger (CR800,
Campbell Scientific Ltd, Loughborough, UK) powered by a 12 V bat-
tery. One thermocouple was placed at a height of 200 cm in each
of the 40 plots (i.e. 8 sites × 5 plots). Another thermocouple was
placed at a height of 200 cm in the open field to provide the refer-
ence T. Data were collected for eleven months, from May 2009 to
March 2010.

2.2.2. Radiation

Incident quantum of Photosynthetic Active Radiation (PAR,

400–700 nm, �mol m−2 s−1) was measured throughout the experi-
ment (from May 2009 to March 2010) with a light sensor (DLT/BF3,
Delta-T, Cambridge, UK) placed at a height of 200 cm in the open



Table 1
Forest stand characteristics for the eight experimental sites (S1,. . .,S8) sampled in mixed oak-Scots pine stands in the Orleans forest (France) within small gaps. Tree basal
area (m2 ha−1), number of stems (per ha), and mean height (m) were measured within a 20 m-radius of the darkest plot of the transect (Fig. 1), considering both dominant
(overstorey) and dominated (understorey) tree strata. For the understorey, only trees higher than 2 m were considered.

S1 S2 S3 S4 S5 S6 S7 S8

Overstorey
Basal area 15.5 20.3 23.9 18.9 21.5 24.7 18.9 23.2
Number of stems 212 205 428 175 600 220 517 422
Height 23.0 21.1 22.8 19.9 16.3 25.2 20.0 18.4

Understorey
0.7 0.6 0.2 0.9 0.8
53 117 21 62 74
7.7 7.4 9.5 7.5 8.6
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Fig. 2. Distribution of canopy openness (%) in mixed temperate oak-pine forest
stand understorey (France). Canopy openness was considered in winter (December,
Basal area 0.9 0.9 2.7
Number of stems 97 89 423
Height 12.3 8.4 8.9

eld. Data were recorded every minute, averaged at an hourly time
tep, and stored using a datalogger (CR800, Campbell Scientific Ltd,
oughborough, UK) powered by a 12 V battery. PAR was also mea-
ured in all understorey plots, once in July 2009 (summer) with
ensors and once in December 2009 (winter) with hemispherical
hotographs.

In July 2009, after light sensor calibration, PAR was measured at a
eight of 200 cm on each understorey plot using a light sensor (SKP
15, Skye Instruments, Llandrindod Wells, UK, �mol m−2 s−1) con-
ected to a datalogger (DataHog2, Skye Instruments, Llandrindod
ells, UK). Data were recorded every minute, averaged at an hourly

ime step, over a 24-h period. Transmitted PAR (PARt) in the under-
torey was then calculated as PAR measured in the forest divided
y incident PAR (expressed as a percentage), thus eliminating the

nfluence of differences in weather conditions on measurement
ays (Balandier et al., 2006a; Lieffers et al., 1999). PARt was consid-
red a proxy of canopy openness.

In December 2009, canopy openness was estimated using one
emispherical photograph taken at a height of 200 cm in each plot,
t sunrise or sunset. The equipment included a digital single lens
eflex camera body (EOS-5D, Canon, Tokyo, Japan) with a circular
sh-eye lens (8 mm F3.5 EX DG, Sigma, Kawasaki, Japan) with a 180◦

ngle view. Then, photographs were thresholded in black and white
sing PiafPhotem software (Adam et al., 2006) to render pixels as
egetation (black) or sky (white). Finally, canopy openness (%) was
alculated with Gap Light Analyzer software (http://ecostudies.org/
la/). Hemispherical photographs were also taken in July 2009 at
height of 200 cm to compare canopy openness estimated from

emispherical photographs to that measured by sensors; they were
trongly correlated (p < 0.0001, R2 = 0.89) (Gaudio, 2010).

Canopy openness calculations represented two contrasting for-
st canopy states: i) winter canopy openness, when oaks had no
eaves, and ii) summer canopy openness, when oak foliage was fully
eveloped. The short states of oak budding and leaf senescence are
ynamic and intermediate between these two states, correspond-

ng respectively to the first 15 days of May and November in French
emperate forests (Balandier, 2014). For these two short sates, the
wo canopy openness values measured in summer and winter were
veraged.

Radiation (Rad) in the understorey (Radunderstorey, J m−2 s−1)
as calculated at an hourly time step for each plot throughout

he experiment based on the Rad measured in the open field
RadOpenfield) and canopy openness (Eq. (1)):

Radunderstorey(J m−2 s−1)

= RadOpenfield(�mol m−2 s−1) × 0.48 × canopyopenness (1)
here 0.48 is the conversion coefficient from �mol s−1 m−2 to
s−1 m−2 provided by the light-sensor supplier.
January, February), intermediate months (May, September, October, November,
March) and summer (June, July, August).

2.2.3. Microclimate during the experiment
Based on T measured in the open field, the experiment was

divided into four periods (Table 2): winter (December, January,
February), summer (June, July, August), intermediate warm (May,
September) and intermediate cold (March, October, November).
For most statistical analyses, the two intermediate periods were
grouped into a single intermediate period.

Because understorey conditions consisted of multiple degrees
of canopy openness, they can be considered as a single group or
separated into different groups to capture the light gradient from
the dense forest shelter to the forest gap. As the experiment was
conducted in mixed oak-pine stands and oaks lost their leaves in
winter, canopy openness in the open field and the understorey dif-
fered less in winter than in summer. For instance, canopy openness
of the 25% most shaded plots in the understorey ranged from 17 to
25% in winter, 1–12% during the intermediate period and 1–6% in
summer (Fig. 2).

2.3. Data analysis

Data were analysed using R software (http://www.r-project.
org).

First, analyses of variance (ANOVAs) were performed to esti-
mate T differences between the understorey (for all understorey
plots) and the open field, considering daily mean (Tmean), maximum
(Tmax) and minimum (Tmin) values for the entire experiment and
the four seasonal periods. For these analyses, the canopy openness

gradient in the understorey was ignored, as all understorey plots
were grouped into a single “understorey” category. Regardless of
the period considered, homogeneity of variance was systematically
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Fig. 6. Level sets in the principal plane containing 75% of the 24-h (tempera-
ture, radiation) curves in summer according to canopy openness. The grey dashed
line represents open field. Solid lines represent understorey, which was classified
according to four canopy openness quantiles ranging from 0 (black) to 1 (light grey)
with a 0.25 step, i.e. Canopy openness (%) = [1–6],]6–12],]12–26], >26. Dotted lines
represent the quantiles defined in Fig. 5.
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adiation) curves in open field (dashed lines) and understorey conditions (solid
ines) according to season (black = winter, dark grey = intermediate period, light
rey = summer). Dotted lines represent the quantiles defined in Fig. 5.

Each subset had a different location in the principal plane, but it
s not possible to interpret these differences without component-

ise interpretation. Common approach to do so is based mainly
n correlations between initial variables and principal components
sing the correlation circle method, in which arrow lengths and
irections provide information about each variable (see e.g. Gomes
t al. (2016)). Due to the large number of variables (i.e. 48) used
o build the principal plane, this classic graphical representation of
CA was illegible, making it difficult to understand the principal
lane. Therefore, a new graphical method using innovative read-
ut tools was developed to understand PCA axes and locations of
bservations in the principal plane.

.3.3. Method for constructing a chart to interpret PCA axes
Each component of interest (C1 and C2) was a continuous vari-

ble that was discretely summarised by five quantiles (0.10, 0.25,
.50, 0.75 and 0.90) to ensure sufficient representativeness of the
ample along the component (Fig. 5). The two first components
ere then summarised by focusing on intersections of these quan-

iles. A second step provided representative 24-h (T, Rad) curves for

ach quantile intersection, following two precautionary measures:

to smooth atypical 24-h (T, Rad) values (e.g. weather changes,
short cloudy periods), the ten closest 24-h (T, Rad) curves of each
quantile intersection were averaged instead of considering only
the closest one,

- to avoid isolated quantile intersections (i.e. not representative of
the dataset), the moment of inertia I of the ten closest 24-h (T, Rad)
curves was calculated with respect to each quantile intersection.
If I was higher than 10% of the inertia explained by the principal
plane, the quantile intersection was considered isolated and was
excluded from subsequent analyses (Fig. 5).

In this study’s dataset, 22 quantile intersections were retained,
each represented by the average of the ten closest 24-h (T, Rad)
curves. These 22 averaged curves were kept to summarise distri-
bution of observations in the principal plane, providing a chart
to interpret the principal axes (Fig. 8). Each of the 22 cells in the
chart illustrated the combined behaviour of the average T and Rad
measurements representative of the 22 quantile intersections. One
main advantage of the chart is a synthetic view of the dataset’s
spatial distribution in the principal plane, thus enabling easier
interpretation.

3.4. PCA interpretation

Looking at the chart (Fig. 8) from left to right, component C1
showed a positive association between T and Rad, i.e. the higher the
daily Rad range, the higher the daily T range, regardless of vertical
location in the principal plane. Ranges of T and Rad were simul-
taneously lower on the left of the principal plane and higher on
the right. Looking at the chart from bottom to top, component C2
showed opposite behaviour of T and Rad ranges. In a given col-
umn (i.e. horizontal location in the principal plane), high daily Rad
ranges were associated with low daily T ranges at the bottom, and
low daily Rad ranges were associated with high daily T ranges at
the top. Information from the chart helps to interpret the locations
of the observations in the principal plane.

In summer, when microclimate differences between open field
and understorey were greatest (Table 3), the more the canopy was
open, the more the associated subsets related to canopy open-
ness moved from left to right along C1 (Fig. 6). Specifically, in
the darkest understorey conditions, both Rad and T ranges were
low, whereas as the forest canopy opened, Rad naturally increased,
which increased the T range. Canopy openness subsets also showed
a vertical gradient along C2 from the top for darkest conditions to
the bottom for the lightest. These variations illustrate that T ranges
in the understorey were higher than expected given the low Rad
ranges. This was more evident as the canopy grew denser. Con-
versely, T ranges in sparse understorey and open field were smaller
than expected given the high Rad ranges. This non-horizontal phe-
nomenon was also observed when considering whether seasonality
has the same impact on the relation between T and Rad in open
field and in understorey (Fig. 7). In both open field and understorey
conditions (all plots combined) the data subsets spread horizon-
tally from winter to summer along C1, i.e. when the weather was
warmer, Rad and T ranges increased regardless of the presence
of a forest shelter. Along the vertical axis C2, the seasonal move-
ment spread to the bottom for the open field and to the top for the
understorey.

4. Discussion

As expected, regardless of season Tmean was statistically the
same in the forest and open field. Körner (2016) demonstrated that

Tmean eliminates the signal range that is integrated into the integra-
tive variables Tmax and Tmin. This highlights the well-documented
buffering effect of the forest canopy on daily T, with higher Tmin
and lower Tmax in forest understorey than in open field (Ferrez et al.,
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011; Karki and Goodman, 2015; Morecroft et al., 1998). This effect
ccurred only during summer and the intermediate warm period.
his is explained by the absence of oak foliage in winter, when open
eld and forest understorey have more similar conditions because

ess Rad is intercepted by the forest canopy. The buffering effect
f forest canopy depends greatly on tree leaf area index (LAI). von
rx et al. (2013) identified an LAI threshold of 4 (sparse canopies),
elow which the buffering effect of temperate forest stands tend to
isappear. The higher the T (i.e. in summer), the greater the effect of

orest shelter (Renaud and Rebetez, 2009). This buffering effect was
specially pronounced for Tmin in our study. Renaud and Rebetez
2009) illustrated that, depending on the main tree species in the
orest, the buffering effect can be higher for Tmin (oak and pine) or
max (beech, beech-silver fir, and oak-silver fir), due to differences

n canopy closure.
Even though T and Rad are linked by definition, the relation

etween them was weakened under forest shelter, with Spearman
orrelations substantially lower in the understorey than in open
eld. Specifically, T can become high despite low Rad in understorey
onditions, which suggests thermal inertia in the understorey
Jegede, 1997). For instance, daily Tmean can reach 25 ◦C at a daily
admean of approximately 10 J m−2 s−1 in summer (Fig. 3). This
ighlights the need to include all climate parameters when study-

ng microclimate. For instance, the presence of a forest shelter also
ecreases wind speed and buffers relative air humidity (Balandier
nd Prevosto, 2016; Renaud et al., 2011), which can influence T.

The previous results were obtained from classic statistical anal-
sis (ANOVA) considering microclimate at the seasonal scale, i.e.
re-defined time divisions. Approaches using pre-defined time
ivisions, which cause a loss of information, have been applied at

he seasonal scale (Renaud and Rebetez, 2009) and the daily scale
e.g. morning, afternoon) (Karki and Goodman, 2015). Although
hey provide information about microclimate behaviour, they
epend greatly on weather conditions and seasonality and exclude
gful unit) corresponding to the quantile intersections described in Fig. 5. Dotted

information. Conversely, the method developed in this study makes
no assumptions about time divisions, focusing instead on varia-
tions in hourly time-scale curves around their daily means, which
thus includes all recorded data. The PCA procedure and the chart
focused on 24-h (T, Rad) curves. The first component of the prin-
cipal plane, C1, illustrated the well-documented buffering effect
of tree canopy, with lower T and Rad ranges in dense understorey
than in open field. The differences were greatest in summer and
decreased when the canopy opened (Fig. 6). This confirmed the
importance of considering microclimate variations in the under-
storey, with a buffering effect based on tree canopy structure and
density. The value of our results is linked mainly to interpretation
of the second component, C2. In forest understorey, when seasons
became warmer, T was higher than expected assuming a linear
relation between T and Rad. In understorey conditions, thermal
inertia seemed to overcome the Rad effect, i.e. air T in forest stands
decreased much more slowly in the afternoon on summer days
than would be expected given the Rad alone. This is important to
consider, especially for understorey vegetation and trees, which
would experience greater thermal stress, and for a longer period,
than assumed, even in shaded environments. However, extreme T
was buffered in the understorey compared to the open field, par-
ticularly in summer. Based on these two points, a trade-off exists
in the degree of canopy openness that ensures sufficient Rad for
understorey vegetation and trees growth while also providing suffi-
cient shelter to ensure the thermal buffering effect that may protect
some species from climate change. Results demonstrated that even
in shaded environments, T can remain high without high Rad, thus
creating higher than expected thermal stress for understorey vege-
tation and trees. Conversely, T was lower than expected in the open

field when seasons became warmer, suggesting that other parame-
ters could have an influence. For example, during warm and sunny
days, it is assumed that wind would buffer T. Tmin can also decrease
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elative to the heat lost from reflected longwave infrared energy
uring the night.

The R code developed for the PCA was written to consider 1 to n
limate parameters together, e.g. air humidity and wind speed can
e used to characterise forest microclimate if measurements are
vailable. The method was designed for application to microclimate
arameters measured at any time step (e.g. 1 min, 3 h).

. Conclusion

The statistical method developed in this study adds substantive
alue to traditional analysis of a microclimate, especially because
t can process all the data, whereas classic analyses usually begin
y reducing the dataset (e.g. to mean, minimum and maximum
alues), which conceals several important features of microcli-
ate dynamics. Thus, beyond than the demonstrated buffering

ffect of the canopy, the relation between temperature and radia-
ion differed between forest understorey and open field conditions.
hermal inertia led to relatively high temperatures in more shaded
onditions where canopy was dense and the opposite in more
pen conditions. Effects of other factors such as wind and noctur-
al radiation losses decreased temperatures despite high radiation.
etter understanding of forest microclimate behaviour could help

mprove predictions of future forest microclimates under climate
hange (Renaud et al., 2011). The method described in this article
an help do this and would become more powerful if other climate
arameters are included.
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