
HAL Id: hal-01596954
https://hal.science/hal-01596954v1

Preprint submitted on 28 Sep 2017 (v1), last revised 8 Mar 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Weak Overdamped Limit Theorem for Langevin
Processes

Mathias Rousset, Yushun Xu, Pierre-André Zitt

To cite this version:
Mathias Rousset, Yushun Xu, Pierre-André Zitt. A Weak Overdamped Limit Theorem for Langevin
Processes. 2017. �hal-01596954v1�

https://hal.science/hal-01596954v1
https://hal.archives-ouvertes.fr


A WEAK OVERDAMPED LIMIT THEOREM FOR LANGEVIN

PROCESSES

MATHIAS ROUSSET, YUSHUN XU, AND PIERRE-ANDRÉ ZITT

Abstract. In this paper, we prove convergence in distribution of Langevin processes in
the overdamped asymptotics. The proof relies on the classical perturbed test function
(or corrector) method, which is used both to show tightness in path space, and to identify
the extracted limit with a martingale problem. The result holds assuming the continuity
of the gradient of the potential energy, and a mild control of the initial kinetic energy.

1. Introduction

This paper focuses on the overdamped asymptotics of Langevin dynamics. The Langevin
Stochastic Differential Equation (SDE) describes the dynamics of a classical mechanical
system perturbed by a stochastic thermostat. The system state at time t ≥ 0 is encoded
by its position Qt and its momentum Pt. More formally, the equation reads:

{

dQt = Ptdt,

dPt = −∇V (Qt)dt − Ptdt+
√

2β−1dWt,

where in the above, Qt takes values in the d-dimensional torus Td, Pt takes values in ×R
d,

the function V : Td → R is the particles’ potential energy, β > 0 the inverse temperature,
and t 7→ Wt ∈ R

d is a standard d-dimensional Brownian motion. The term
√

2β−1dWt is
a fluctuation term bringing energy into the system, while this energy is dissipated through
the friction term −Ptdt; the sum of these two terms forming the so-called thermostat part.
The remaining terms are simply Newton’s equation of motion. For more details on this
equation, we refer to [LRS10, Section 2.2].

The case we consider here is the so-called overdamped asymptotics, where the time scale
of the large damping due to friction is much smaller than the time scale of the Hamiltonian
dynamics, so that the momentum becomes a fast variable compared to the slow position
variable. We introduce a parameter ε for the ratio of the time scales, and consider

{

dQε
t = 1

εP
ε
t dt,

dP ε
t = −1

ε ∇Vε(Qε
t )dt− 1

ε2P
ε
t dt+ 1

ε

√

2β−1dWt.
(1.1)

Note that we allow the potential Vε ∈ C1(Td) to depend on ε and will only suppose that
it converges to a limit V ; see below for a precise statement. The Markov generator Lε

associated with (1.1) is given by

Lεf(q, p) :=
1

ε2

(

1

β
∆pf − p · ∇pf

)

+
1

ε
(p · ∇qf − ∇qVε · ∇pf) ,(1.2)
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2 A WEAK OVERDAMPED LIMIT THEOREM FOR LANGEVIN PROCESSES

where f denotes any smooth test function of the variables (q, p) ∈ T
d × R

d.

Overdamped processes are stochastic dynamics on the system position (Qt)t≥0 only.
The overdamped Langevin SDE is given by:

(1.3) dQt = −∇V (Qt)dt +
√

2β−1dBt,

where V : Td → R
d is a potential energy, limit of Vε when ε → 0 in some appropriate sense,

and t 7→ Bt ∈ R
d is a standard d-dimensional Wiener process. The Markov generator L

associated with (1.3) acts on smooth test functions f of the variable q as follows:

Lf(q) := −∇qV · ∇qf +
1

β
∆qf.

Our main result is the proof of the convergence in distribution of the Langevin posi-
tion process (Qε

t)t≥0 towards its overdamped counterpart (Qt)t≥0, assuming the uniform
convergence of the gradient potential as well as a control of moments of the initial kinetic
energy.

Theorem 1.1 (Overdamped limit of the Langevin dynamics). For any ε > 0, suppose
that (Qε

t , P
ε
t )t≥0 ∈ T

d ×R
d is a weak solution to the SDE (1.1). Assume that the following

conditions hold:

(1) Vε is C1(Td), and converges to V in the sense that ‖∇Vε − ∇V ‖∞ −−−→
ε→0

0,

(2) The following moment bound holds true:

lim
ε→0

εE(|P ε
0 |3) = 0

(3) The initial position distribution is converging to some limit: Law (Qε
0) −−−→

ε→0
Law (Q0).

Then, when ε → 0, the process (Qε
t )t≥0 ∈ C(R+ → T

d) converges in distribution to the
unique weak solution of the overdamped SDE (1.3).

Remark 1.2. In Theorem 1.1, the space of trajectories C(R+ 7→ T
d) is endowed with

uniform convergence on compact sets; making it Polish (metrizable for a separable and
complete metric).

The literature on diffusion approximations is very rich; we refer for instance to Stuart-
Pavliotis in [PS08] for a recent pedagogical overview of related issues. Historically, a possi-
ble chain of seminal references is given by Stratonovich in [Str63], Khas’minskii in [Kha66],
Papanicolaou-Varadhan in [PV73], as well as Papanicolaou-Kohler in [PK74]; comple-
mented with the more modern viewpoint of Ethier-Kurtz in [EK86], Chapter 12 ”Random
evolutions”.

In the present case, the momentum variable is averaged out with the diffusion approxi-
mation, so that the problem may be labeled as “diffusion approximation with averaging”.
Broadly speaking, the problem can be approached using strong or weak convergence tech-
niques. For an example of the strong convergence approach, the results in [SSMD82] rely
on estimating the dynamics of Qε

t and its limit using a Gronwall argument; this approach
requires the Lipschitz continuity of ∇Vε uniformly in ε. On the other hand, weak con-
vergence results rely on the so-called ”perturbed” test function or ”corrector” approach,
that have been developed since Panicolaou-Stroock-Varadhan in [PSV77]. The case of the
overdamped limit (1.1) is not directly covered by these results. Indeed, the correctors are
not bounded in the present case, due to the fact that the state space of the momentum
variable is not compact.

In a series of papers [PV01, PV03, PV05], Pardoux-Veretennikov extend the classical
diffusion approximation with averaging to the non-compact state space case. In the latter
setting however, the slow variable has a dynamics independent of the fast one, which is
not the case in the Langevin case (1.1).
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We now give a physically motivated example that satisfies our assumptions but was not
covered by previous works.

Example 1.3. Let

Vε(q) = V (q) + αεχ(kεq),

where χ ∈ C∞(Td), and the scaling coefficients kε ∈ N and αε ∈ R satisfy

kε → ∞, αεkε → 0.

Physically, the potential αεχ(kεq) may model the interaction between a particle with
unit energy and a periodic crystal of small period k−1

ε , and small energy range of order αε.
When kε → +∞ but αεkε = 1 and ε is kept constant, the effective action of the periodic
crystal on the particle can not be neglected, especially for grazing velocities co-linear to
the principal directions of the crystal. Indeed, in the latter case, on times of order 1, the
crystal exerts on the particle a total force also of order 1, making it deviating from its
trajectory.

Our result shows that the physically necessary condition αεkε → 0 is in fact sufficient
for neglecting the crystal effect in the overdamped regime. Note that if αεk

2
ε → +∞, when

ε → 0, then

‖∇Vε − ∇V ‖∞
ε→0
−−−→ 0,

but still

‖∇2Vε‖∞ ∼ αεk
2
ε‖∇2χ‖∞

ε→0
−−−→ +∞,

preventing ∇Vε from being Lipschitz uniformly in ε; and hence forbidding results based on
strong convergence.

In order to prove Theorem 1.1, we will establish a more general weak convergence
result. We consider a sequence (indexed by a small parameter ε > 0) of Markov processes
of the form t 7→ (Qε

t , P
ε
t ) ∈ T

d × R
d taking value in the Skorokhod path space DTd×Rd .

Our general convergence result, namely Theorem 3.5, gives general conditions under which
(Qε

t )t≥0 converges in distribution to the unique solution of a particular martingale problem.
The proof follows the usual pattern: first we prove tightness for the family of distributions
of (Qε

t ), and then characterize the limit through martingale problems. For both steps, we
use the perturbed test function method. The key sufficient criteria yielding the results of
both steps is given in Assumption 3.4, which states that to any smooth f : Td → R, we
can associate a perturbed test function fε : Td × R

d → R such that for all T > 0,

lim
ε→0

E

(

sup
t≤T

|f(Qε
t) − fε(Q

ε
t , P

ε
t )|

)

= 0 and lim
ε→0

E

(

∫ T

0
|Lf(Qε

t) − Lεfε(Q
ε
t , P

ε
t )| dt

)

= 0.

Remark 1.4 (On the choice of the state space). Theorem 3.5 can be useful for càd-làg
processes, which explains the fact that we work in Skorokhod space. We have chosen to
work in T

d × R
d for notational simplicity, but Theorem 3.5 could be extended to more

general product spaces of the type E × F , where E and F are Polish spaces. If E is
compact, the extension is straightforward. If E is locally compact, then one can work
with E ∪ {∞}, the one point compactification of E at infinity (see [EK86, Chapter 4]). If
E is not locally compact, then one needs to use Theorem 9.1 in [EK86, Chapter 3] instead
of Theorem 2.12 below which is a corollary of the former. In the latter case: (i) the a
priori compact containment condition (9.1) of Theorem 9.1 in [EK86, Chapter 3] has to
be proven; and (ii) one has to show the tightness of

(

Law (f(Qε
t))t≥0

)

ε≥0
for all f in a

space of functions dense in Cb(E) for the topology of uniform convergence on compacts.
Such extensions to infinite dimensional spaces are left for future work.

The paper is organized as follows. Section 2 starts with some notation and preliminar-
ies. In Section 3, we state and prove the general convergence result Theorem 3.5. This
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general method is then applied in Section 4 to the overdamped Langevin limit, proving
Theorem 1.1.

2. Notation and Preliminaries

In what follows, we introduce notation and recall some known results.

2.1. General notation. Let (E, d) be a Polish space, that is, a topological space which is
metric, complete and separable. Denote C(E) the Banach space of all continuous functions
and Cb(E) the Banach space of all bounded continuous functions. We denote by P(E)
the space of probability measures on the Borel σ-field B(E). The notation FX

t means the
natural filtration of càd-làg processes (Xt)t≥0, that is FX

t = σ(Xs, 0 ≤ s ≤ t). For any
(s, t) ∈ R × R, we denote by s ∧ t the minimum of s and t.

2.2. The Skorokhod space. A càd-làg function (from the French ”continu à droite,
limité à gauche”, also called RCLL for ”right continuous with left limits”) is a function
defined on R+ that is everywhere right-continuous and has left limits everywhere. The
collection of càd-làg functions on a given domain is known as the Skorokhod space. We
denote DE the space of càd-làg functions with values in a Polish space E. We recall
that this path space DE may be equipped with the Skorokhod topology (see Section 5
of [EK86, Chapter 3]): a family of trajectories (qε

s)s≥0 indexed by ε converges to a limit
trajectory (q0

s)s≥0 if there exists a sequence (λε)ε≥0 in the space of strictly increasing
continuous bijections of [0,∞[, such that for each T > 0: limε→0 supt≤T |λε(t) − t| = 0

and limε→0 supt≤T d
(

qε
t , q

0
λε(t)

)

= 0. The following result will be useful in the proof of

Theorem 3.5.

Lemma 2.1. Integration with respect to time is continuous with respect to the Skorokhod
topology: if (qε

t )t≥0 converges to (q0
t )t≥0 in DE, and ψ : E → R is bounded and continuous,

then for each T > 0,
∫ T

0
ψ(qε

t )dt −−−→
ε→0

∫ T

0
ψ(q0

t )dt.

Proof. Let us denote by JT :=
{

t ∈ [0, T ], q0
t− 6= q0

t

}

the countable set of jump times in

[0, T ] of q0. By definition of convergence in the Skorokhod space,

lim
ε→0

qε
s = q0

s ∀s ∈ [0, T ] \ JT .

Since JT has Lebesgue measure 0 and ψ is continuous and bounded, dominated convergence
yields the result. �

2.3. Martingale problems. Let us first recall some basics on martingales and stochastic
calculus. Let (Ω,F ,P, (Ft)t≥0) a filtered probability space. A càd-làg real-valued process
(Xt)t≥0 is said to be adapted if Xt is Ft-measurable for all t ≥ 0, and is called a (Ft)t≥0-
martingale if E(|Xt| |Fs) < +∞ and E(Xt|Fs) = Xs for any 0 ≤ s ≤ t.

We will often need the technical tool of localization by stopping times, to deal with
the unboundedness of the momentum variable. We follow here the presentation of [EK86,
Chapter 4].

Definition 2.2 (Local martingale). A càd-làg real-valued process (Xt)t≥0 defined on
(Ω,F ,P, (Ft)t≥0) is called a local martingale with respect to (Ft)t≥0 if there exists a non-
decreasing sequence (τn)n∈N of (Ft)t≥0-stopping times such that τn → ∞ P-almost surely,
and for every n ∈ N,

(

Xt∧τn

)

t≥0
is an (Ft)t≥0-martingale.

Let us now state precisely what it means for a process to solve a martingale problem.
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Definition 2.3 (Martingale problem). Let E be a Polish space. Let L be a linear operator
mapping a given space D ⊂ Cb(E) into bounded measurable functions. Let µ be a proba-
bility distribution on E. A càd-làg process (Xt)t≥0 with values in E solves the martingale
problem for the generator L on the space D with initial measure µ — in short, X solves
MP(L,D(L), µ) — if Law (X0) = µ and if, for any ϕ ∈ D,

(2.1) t 7→ Mt(ϕ) := ϕ(Xt) − ϕ(X0) −
∫ t

0
Lϕ(Xs)ds

is a martingale with respect to the natural filtration
(

FX
t = σ (Xs, 0 ≤ s ≤ t)

)

t≥0
.

Moreover, the martingale problem MP(L,D, µ) is said to be well-posed if:

• There exists a probability space and a càd-làg process defined on it that solves the
martingale problem (existence);

• whenever two processes solve MP(L,D, µ), then they have the same distribution
on DE (uniqueness).

2.4. Weak solutions of SDEs. Let b : Rd 7→ R
d and σ : Rd 7→ R

d×n be locally bounded.
Consider a stochastic differential equation in R

d of the form:

(2.2) dXt = b(Xt)dt + σ(Xt)dWt,

with an initial condition Law (X0) = µ0. Let L be the formal generator

L :=
d
∑

i=1

bi∂i +
1

2

d
∑

i,j=1

aij∂i∂j ,(2.3)

where a = σσT .

Definition 2.4 (Weak solution of the SDE). A continuous process (Xt)t≥0 is a weak
solution of (2.2) if there exists a filtered probability space (Ω,F ,P, (Ft)t≥0) such that:

• t 7→ Wt is a (Ft)t≥0-Brownian motion, that is, an (F)t≥0-adapted process such
that Law(Wt+h −Wt|Ft) = N (0, h).

• X is a continuous, (Ft)t≥0-adapted process and satisfies the stochastic integral
equation

Xt = X0 +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dWs a.s.

We now quote two results from [EK86] concerning existence and uniqueness of solutions
to SDEs and martingale problems. The first is an existence result, and can be found in
[EK86, Section 5.3] (Corollary 3.4 and Theorem 3.10).

Theorem 2.5. Assume that b, σ are continuous. If there exists a constant K such that
for any t ≥ 0, x ∈ R

d:

|σ|2 ≤ K(1 + |x|2);(2.4)

x · b(x) ≤ K(1 + |x|2),(2.5)

then there exists a weak solution of the stochastic differential equation (2.2) corresponding
to (σ, b, µ), which is also solution of the martingale problem MP(L,C∞

c (Rd), µ), C∞
c (Rd)

being the set of smooth functions with compact support.

Remark 2.6. For the Langevin equation (1.1)) we first remark that the latter can be set

in R
d × R

d using the Z
d-periodic extension of Vε. Then b(q, p) =

(

1
εp,−

1
ε ∇Vε(q) − 1

ε2p
)

and σ = (0, 1
ε

√

2β−1 IdRd) are continuous since Vε ∈ C1(Rd). Moreover, |σ|2 = σσ⊤ =

(0, 2
βε2 IdRd), and on the other hand

(q, p) · b(q, p) =
1

ε
pq −

1

ε
p∇Vε(q) −

1

ε2
p2 ≤

1

2ε
(1 + ‖∇Vε‖∞)(1 + |p|2 + |q|2),
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which implies the existence of weak solution of (1.1) in R
d. One then obtains existence

of a weak solution in T
d of the original (1.1) using the canonical continuous mapping

R
d → T

d := R
d/Zd.

The next result follows from [EK86] (Theorem 1.7 in Section 8.1) and [SV07] (Theorem
10.2.2 and the discussion following their Corollary 10.1.2) .

Theorem 2.7. Assume that the bounds (2.4) and (2.5) hold. Suppose that a := σσ⊤ is
continuous and uniformly elliptic:

∃Ca > 0,∀ξ ∈ R
d,∀x ∈ R

d, ξ⊤a(x)ξ ≥ Ca|ξ|2.

Then for any initial condition µ, there is a unique weak solution of the stochastic differ-
ential equation (2.2). This solution is also the unique solution of the martingale problem
MP(L,C∞

c (Rd), µ).

Remark 2.8. For the overdamped Langevin equation (1.3), we remark again that the latter
can be set in R

d using the Z
d-periodic extension of Vε. One then obtains well-posedness

of the martingale problem MP(L,C∞
c (Rd), µ) in R

d since ∇V is bounded and continuous
by assumption. This solution obviously solves MP(L,C∞(Td), µ) in T

d. The fact that
uniqueness of MP(L,C∞

c (Rd), µ) implies uniqueness of MP(L,C∞
c (Td), µ) is technically

less obvious. It can be treated using the localization technique of Theorem A.1 stated in
appendix. More precisely, using the notation of Theorem A.1, one can defines the covering
of Rd by the open sets

Uk :=
{

(x1, . . . , xd) ∈ R
d| |xi − ki/8| ≤ 1/4 ∀i = 1 . . . d

}

where k ∈ Z
d and then remark that by partition of unity for smooth functions, any

ϕ ∈ C∞
c (Rd) can be written as a finite sum of smooth functions with compact support in

each given Uk, k ∈ Z
d.

2.5. Convergence in distribution. As we said before, we are interested here in proving
convergence in distribution for processes. Let us briefly recall several key results that will
be used later.

For completeness, we start by recalling the very classical Prohorov theorem, character-
izing relative compactness by tightness (see for example Section 2 in[EK86, Chapter 3]).

Theorem 2.9 (Prohorov theorem). Let (µε)ε be a family of probability measures on a
Polish space E. Then the following are equivalent:

(1) (µε)ε is relatively compact for the topology of convergence in distribution.
(2) (µε)ε is tight, that is to say, for any δ > 0, there is a compact set Kδ such that

inf
ε
µε(Kδ) ≥ 1 − δ.

Over the years several relative compactness criteria in Skorokhod space have been de-
veloped. We will use the following one [EK86, Theorem 8.6, Chapter 4].

Theorem 2.10 (Kurtz-Aldous tightness criterion). Consider a family of stochastic pro-
cesses ((Xε

t )t≥0)ε in DR. Assume that
(

Law(Xε
0)
)

ε
is tight. ∀δ ∈ (0, 1) and T > 0, there

exists a family of nonnegative random variable Γε,δ, such that: ∀ 0 ≤ t ≤ t+h ≤ t+ δ ≤ T

E

(

|Xε
t+h −Xε

t |2|FXε

t

)

≤ E
(

Γε,δ|FXε

t

)

;(2.6)

with

lim
δ→0

sup
ε

E(Γε,δ) = 0.(2.7)

Then the family of distributions (Law ((Xε
t )t≥0))ε is tight.



A WEAK OVERDAMPED LIMIT THEOREM FOR LANGEVIN PROCESSES 7

Remark 2.11 (On using sequences). If ε > 0 is a real number and that instead of (2.7),
one considers the condition limδ→0 lim supε→0+ E(Γε,δ) = 0, then the conclusion becomes
the following: (Law ((Xεn

t )t≥0))εn is tight for any (εn)n≥1-sequence such that εn > 0 and
limn→+∞ εn = 0. This version will be the one used in the present paper.

If the processes, say (Qε
t )t≥0, is defined in a general state space E, it is natural to consider

the image processes (f(Qε
t ))t≥0 for various observables, or test functions, f . The following

result enables us to recover the tightness for the original process from the tightness of the
observed processes (Corollary 9.3 Chapter 3 in [EK86]).

Theorem 2.12 (Tightness from observables). Let E be a compact Polish space and
((Qε

t )t≥0)ε>0 be a family of stochastic processes in DE. Assume that there is an alge-
bra of test functions D ⊂ Cb(E), dense for the uniform convergence, such that for any
f ∈ D, ((f(Qε

t ))t≥0)ε>0 is tight in DR. Then (Law(Qε
t )t≥0)ε>0 is tight in DE.

Remark 2.13. Again, the above theorem will be used for families indexed by sequences
(εn)n≥1 such that εn > 0 and limn→+∞ εn = 0.

Finally, the following two lemmas will be useful when we considering martingale prob-
lems. The first one states that the distribution of jumps of càd-làg processes have atoms
in a countable set (see Lemma 7.7 Chapter 3 in [EK86]).

Lemma 2.14. Let (Xt)t≥0 be a random process in the Skorokhod path space DE. The set
of instants where no jump occurs almost surely:

CLaw(X) := {t ∈ R
+|P(Xt− = Xt) = 1},

has countable complement in R
+. In particular, it is a dense set.

The second one is a very useful way to check whether a process is a martingale or not
(see page 174 in Ethier-Kurtz[EK86]).

Lemma 2.15 (Martingale equivalent condition). Let (Mt)t≥0 and (Xt)t≥0 be two càd-làg
proceses and let C be an arbitrary dense subset of R+. Then (Mt)t≥0 is FX

t -martingale if
and only if

E
[

(Mtk+1
−Mtk

)ϕk(Xtk
)...ϕ1(Xt1

)
]

= 0,

for any time ladder t1 ≤ ... ≤ tk+1 ∈ C ⊂ R+, k ≥ 1, and ϕ1, ..., ϕk ∈ Cb(E).

3. A general perturbed test function method

In this section, we consider a sequence of stochastic processes, indexed by a small
parameter ε > 0, of the form

t 7→ (Qε
t , P

ε
t ) ∈ T

d × R
d,

taking value in the Skorokhod path space DTd×Rd associated with the (Polish) product

state space T
d ×R

d. Our goal is to describe a general framework to prove the convergence
of the (slow) variables Q towards a well-identified dynamics. We use standard tightness
arguments and characterization through martingale problems, emphasizing the technical
role of perturbed test functions.

3.1. Notation and Assumptions. For each ε, we consider a càd-lag process t 7→ (Qε
t , P

ε
t ) ∈

T
d × R

d. The natural filtration of the full process and the process (Qε
t )t≥0 are denoted

respectively by FQε, P ε

t := σ ((Qε
s, P

ε
s ), 0 ≤ s ≤ t), and FQε

t := σ (Qε
s, 0 ≤ s ≤ t). We now

state the key assumptions that will imply convergence in distribution of the process (Qε
t )t≥0

towards the solution of a martingale problem.
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Assumption 3.1 (Generator of the process (Qε
t , P

ε
t ) ). There exists a linear operator Lε

acting on C∞(Td ×R
d) which is the extended Markov generator of (Qε

t , P
ε
t )t≥0 in the sense

that, for all f ∈ C∞(Td × R
d), Lεf is locally bounded and

t 7→ M ε
t (f) := f(Qε

t , P
ε
t ) − f(Qε

0, P
ε
0 ) −

∫ t

0
Lεf(Qε

s, P
ε
s )ds

is a (FQε, P ε

t )t≥0-local martingale.

Assumption 3.2 (The limit process). There exists a linear operator L mapping C∞(Td)
to C(Td) such that the martingale problem MP(L,C∞(Td), µ) is well-posed for any initial
condition µ.

Assumption 3.3 (Initial condition). The initial condition (Law(Qε
0))ε>0 converge to a

limit µ0, when ε → 0.

Assumption 3.4 (Existence of perturbed test functions). For all f ∈ C∞(Td), there
exists a perturbed test function fε ∈ C∞(Td × R

d), such that for all T , the rest terms

Rε
1,t(f) := |f(Qε

t) − fε(Q
ε
t , P

ε
t )| and Rε

2,t(f) := |Lf(Qε
t) − Lεfε(Q

ε
t , P

ε
t )|

satisfy the following bounds:

lim
ε→0

E

(

sup
0≤t≤T

Rε
1,t(f)

)

= 0,(3.1)

lim
ε→0

E

(

∫ T

0
Rε

2,t(f)dt

)

= 0.(3.2)

3.2. The general convergence theorem. We are now in position to state our main
abstract result.

Theorem 3.5. Under the Assumptions 3.1, 3.2, 3.3, and 3.4, the family
(

Law(Qε
t )t≥0

)

ε>0

converges when ε → 0 to the unique solution of martingale problem MP(L,C∞(Td), µ).

The proof follows the classical pattern, in two steps: we first prove that the processes
Qε

t are relatively compact in DTd ; then we show that any possible limit must solve the
martingale problem MP(L,C∞(Td), µ).

3.2.1. Step one: The proof of tightness. We want to prove that for each sequence (εn)n≥1

satisfying limn εn = 0, (Law(Qεn
t ))n≥1 is tight. By Theorem 2.12, it is enough to prove

the tightness of (Law (f(Qεn
t )))n≥1 for all f ∈ C∞(Td). The latter fact will follow from

Theorem 2.10, if we are able to construct, for any function f ∈ C∞(Td) and any ε, δ > 0
and any T > 0, a random variable Γε,δ(f) such that for all 0 ≤ t ≤ t+ h ≤ t+ δ ≤ T , one
has

E

[

(

f(Qε
t+h) − f(Qε

t)
)2
∣

∣

∣FQε

t

]

≤ E

[

Γε,δ(f)
∣

∣

∣FQε

t

]

,(3.3)

where lim
δ→0

lim sup
ε≥0

E [Γε,δ(f)] = 0.(3.4)

We claim that the following variant:

Lemma 3.6. For any g ∈ C∞(Td), and any δ, ε, T > 0, there exists a random variable
Γ′

ε,δ(g) such that for all 0 ≤ t ≤ t+ h ≤ t+ δ ≤ T ,
∣

∣

∣E

[

g(Qε
t+h) − g(Qε

t )
∣

∣

∣FQε

t

]∣

∣

∣ ≤ E

[

Γ′
ε,δ(g)

∣

∣

∣FQε

t

]

,(3.5)

where lim
δ→0

lim sup
ε≥0

E

[

Γ′
ε,δ(g)

]

= 0.(3.6)
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is a sufficient condition. Indeed, the required estimates (3.3), (3.4) will follow easily
from the basic decomposition

(

f(Qε
t) − f(Qε

t+h)
)2

=
(

f(Qε
t+h)

)2
− (f(Qε

t))
2 − 2f(Qε

t )
(

f(Qε
t+h) − f(Qε

t)
)

.

since we get

E

[

(

f(Qε
t+h) − f(Qε

t )
)2
∣

∣

∣FQε

t

]

≤ E

[

Γ′
ε,δ(f2)

∣

∣

∣FQε

t

]

+ 2‖f‖∞E

[

Γ′
ε,δ(f)

∣

∣

∣FQε

t

]

,(3.7)

and it is enough to let Γε,δ(f) = Γ′
ε,δ(f2) + 2‖f‖∞Γ′

ε,δ(f) to conclude.

Let us now prove the Lemma 3.6. Let g be an arbitrary smooth function, and let gε be
the perturbed test function given by Assumption 3.4. An elementary rewriting leads to

g(Qε
t+h) − g(Qε

t ) =
(

g(Qε
t+h) − gε(Qε

t+h, P
ε
t+h)

)

− (g(Qε
t ) − gε(Qε

t , P
ε
t ))

−
∫ t+h

t
(Lg(Qε

s) − Lεgε(Qε
s, P

ε
s )) ds+

∫ t+h

t
Lg(Qε

s)ds

−M ε
t (gε) +M ε

t+h(gε),

(3.8)

where (M ε
t (gε))t≥0 is a local FQε, P ε

-martingale by Assumption 3.1. Let τn be an associated
localizing sequence of stopping times. Applying (3.8) at times t ∧ τn and (t+ h) ∧ τn, we
get

g(Qε
(t+h)∧τn

) − g(Qε
t∧τn

)

= g(Qε
(t+h)∧τn

) − gε

(

Qε
(t+h)∧τn

, P ε
(t+h)∧τn

)

−
(

g(Qε
t∧τn

) − gε(Qε
t∧τn

, P ε
t∧τn

)
)

−
∫ t+h

t
(Lg(Qε

s) − Lεgε(Qε
s, P

ε
s )) 1s≤τnds+

∫ t+h

t
Lg(Qε

s)1s≤τnds

−M ε
t∧τn

(gε) +M ε
(t+h)∧τn

(gε).

Taking the conditional expectation with respect to FQε

t , the martingale terms cancel out,
and we get:

∣

∣

∣E

[

g(Qε
(t+h)∧τn

) − g(Qε
t∧τn

)
∣

∣

∣F
Qε

t

]∣

∣

∣

≤
∣

∣

∣E

[

g(Qε
(t+h)∧τn

) − gε
(

Qε
(t+h)∧τn

, P ε
(t+h)∧τn

)

∣

∣

∣FQε

t

]∣

∣

∣

+
∣

∣

∣E

[

g(Qε
t∧τn

) − gε(Qε
t∧τn

, P ε
t∧τn

)
∣

∣

∣FQε

t

]∣

∣

∣

+

∫ t+h

t

∣

∣

∣E

[

Lg(Qε
s) − Lεgε(Qε

s, P
ε
s )|FQε

t

]∣

∣

∣ ds+ h sup
q∈Td

|Lg(q)|

≤ E

[

Rε
1,(t+h)∧τn

+Rε
1,t∧τn

∣

∣

∣F
Qε

t

]

+

∫ t+h

t
E

[

Rε
2,s|FQε

t

]

ds+ δ sup
q∈Td

|Lg(q)|

≤ 2E

[

sup
s∈[0,T ]

Rε
1,s

∣

∣

∣

∣

∣

FQε

t

]

+

∫ T

0
E

[

Rε
2,s|FQε

t

]

ds+ δ sup
q∈Td

|Lg(q)| .

The right hand side does not depend on n any longer. On the left hand side, we apply
dominated convergence for n → ∞ to get

∣

∣

∣E

[

g(Qε
(t+h)) − g(Qε

t )
∣

∣

∣F
Qε

t

]∣

∣

∣ ≤ E

[

Γ′
ε,δ(g)

∣

∣

∣F
Qε

t

]

for Γ′
ε,δ(g) = 2 sup[0,T ]R

ε
1,t +

∫ T
0 Rε

2,sds+ δ‖Lg‖∞. The controls on the rest terms given by

Assumption 3.4, and the continuity of Lg (Assumption 3.2) ensure that

lim
δ→0

lim sup
ε→0

Γ′
ε,δ(g) = 0,

and the proof of tightness is concluded.
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3.2.2. Step two: identification of the limit. In this step, we suppose that a sequence Qn
t =

Qεn
t converges in distribution to a limit Q0

t , and we prove that necessarily, Q0 solves the
martingale problem for the generator L.

Let f ∈ C∞(Td), we have to check that

Mt(Q
0
t ) := f(Q0

t ) − f(Q0
0) −

∫ t

0
Lf(Q0

s)ds(3.9)

is a martingale with respect to FQ0

t = σ(Q0
s, 0 ≤ s ≤ t). Consider a time sequence 0 ≤

t1 ≤ · · · ≤ tp ≤ tp+1 for p ≥ 1, taken in the continuity set CLaw (Q) given by Lemma 2.14.

Recall that CLaw (Q) is dense in R. Let ϕ1, ..., ϕp ∈ Cb(T
d) be p test functions. By Lemma

2.15, it is enough to prove that

I0 := E

[(

f(Q0
tp+1

) − f(Q0
tp

) −
∫ tp+1

tp

Lf(Q0
s)ds

)

ϕ1(Q0
t1

) · · ·ϕp(Q0
tp

)

]

= 0.

Let Iε be the corresponding quantity for ε > 0, that is,

Iε := E

[(

f(Qε
tp+1

) − f(Qε
tp

) −
∫ tp+1

tp

Lf(Qε
s)ds

)

ϕ1(Qε
t1

) · · ·ϕp(Qε
tp

)

]

.

Let us first show that Iε converges to 0. We first condition on FQε

tp
to get:

|Iε| ≤ E

[

E

[∣

∣

∣

∣

∣

f(Qε
tp+1

) − f(Qε
tp

) −
∫ tp+1

tp

Lf(Qε
s)ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

FQε

tp

]

∣

∣ϕ1(Qε
t1

)
∣

∣ · · ·
∣

∣

∣ϕp(Qε
tp

)
∣

∣

∣

]

≤ E

[

E

[
∣

∣

∣

∣

∣

f(Qε
tp+1

) − f(Qε
tp

) −
∫ tp+1

tp

Lf(Qε
s)ds

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

FQε

tp

]]

‖ϕ1‖∞ · · · ‖ϕp‖∞.

Using again the perturbed test function fε and the decomposition (3.8), we get by the
same localization argument as in Step 1 that

|Iε| ≤ E

[

Rε
1,tp+1

(f) +Rε
1,tp

(f) +

∫ tp+1

tp

Rε
2,s(f)

]

‖ϕ1‖∞...‖ϕp‖∞.

The estimates on the rest term from Assumption 3.4 then imply that Iε → 0.

Let us now prove that Iε converges to I0. Let Φ : DTd → R be the functional

Φ : (qt)t≥0 7→

(

f(qtp+1
) − f(qtp) −

∫ tp+1

tp

Lf(qs)ds

)

ϕ1(qt1
) · · ·ϕp(qtp)

so that Iε = E [Φ((Qε
t )t≥0)] and I0 = E

[

Φ((Q0
t )t≥0)

]

. Let us first check that, if q0 ∈ DTd

satisfies q0
t−

k

= q0
tk

for each 1 ≤ k ≤ p + 1, then the functional Φ is continuous at the

trajectory q0. Indeed, since Lf is continuous and bounded by Assumption 3.2, Lemma 2.1

shows that the map (qt)t≥0 7→
∫ tp+1

tp
Lf(qs)ds is continuous with respect to Skorokhod

topology; moreover, by assumption, q0 is continuous at the time tk for each 1 ≤ k ≤ p+ 1,
so the map (qt)t≥0 7→ ϕk(qtk

) is continuous at q0 ∈ DTd .
Let now (εn)n≥1 be any sequence such that εn → 0 and (Qεn

t )t≥0 converges in dis-
tribution to (Q0

t )t≥0. The Skorokhod representation theorem (Theorem 1.8 in [EK86,
Chapter 3]) ensures that one can construct a probability space where the distribution of
(Qεn

t )t≥0 for each n is unchanged but for which limn→+∞Qεn = Q0 almost surely in DTd .
Since tk ∈ CLaw (Q0) for each k = 1 . . . p+1, Ψ is almost surely continuous at Q0 and we can
apply the dominated convergence theorem to obtain limn→+∞ Iεn = I0. Since the choice
of the vanishing sequence (εn)n≥1 is arbitrary, we conclude that limε→0 Iε = I0. The limit
process thus solves the martingale problem MP(L,C∞(Td), µ).
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3.2.3. Conclusion. For each sequence (εn)n≥1 satisfying limn εn = 0, we have proven that
(Law(Qεn

t ))n≥1 is tight and that any converging subsequence is solution to the mar-

tingale problem MP(L,C∞(Td), µ). By uniqueness of the latter according to Assump-
tion 3.2, this identifies the limit, showing that (Law(Qεn

t ))n≥1 converges to the solution

of MP(L,C∞(Td), µ). Since the sequence (εn)n≥1 is arbitrary and convergence in distri-
bution is metrizable, (Law(Qε

t ))ε>0 also converges to the solution of MP(L,C∞(Td), µ),
proving Theorem 3.5.

4. Overdamped limit of the Langevin dynamics

In the section, we will use the perturbed test function method presented in last section
to prove Theorem 1.1. We will first state the key estimates on (|P ε

t |)t≥0. These estimates
are then used to check the assumptions of our general Theorem 3.5 in the specific case of
Langevin processes. In a last section we will detail the proof of the key estimates.

4.1. Some moments estimates for Langevin processes. We start by giving a few
facts about the solution to the Langevin SDE (1.1). We first check that the operator Lε

acting on C∞(Td,Rd) by

Lεf(q, p) :=
1

ε2

(

1

β
∆pf − p · ∇pf

)

+
1

ε
(p · ∇qf − ∇qVε · ∇pf)

is the generator the process, in the sense that Assumption 3.1 holds.

Proposition 4.1. If (Qε
t , P

ε
t )t≥0 is a weak solution of the Langevin SDE (1.1), then for

any smooth function f : Td × R
d → R

d, the process

t 7→ M ε
t (f) = f(Qε

t , P
ε
t ) − f(Qε

0, P
ε
0 ) −

∫ t

0
Lεf(Qε

s, P
ε
s )ds,

is a (FQε,P ε

t )t≥0-local martingale.

Proof. This is a very classical result. By Itô calculus we write

dfε(Q
ε
t , P

ε
t ) = Lεfε(Qε

t , P
ε
t )dt+

1

ε

√

2β−1∇pfε(Q
ε
t , P

ε
t )dWt.

Defining the sequence of
(

FQε,P ε

t

)

t≥0
-stopping time

τn = inf{t ≥ 0, |P ε
t | ≥ n},(4.1)

which converge almost surely to infinity, we obtain that

M ε,n
t (fε) :=

1

ε

√

2β−1

∫ t

0
∇pfε(Q

ε
s, P

ε
s )1s≤τndWs

is a
(

FQε,P ε

t

)

t≥0
-martingale for any n ≥ 0, which is the definition of a local martingale. �

We now state several bounds on the momentum variable P ε
t , which are the key technical

estimates needed later to control the rest terms appearing in the perturbed test function
method. For any continuous V : Td → R we denote by osc(V ) the oscillation defined by

osc(V ) = max V − min V.

Lemma 4.2 (Propagation of moments). For any γ ≥ 1, any M > 0 and any β > 0, there
is a numerical constant C(γ,M, β) such that for any ε > 0, if osc(Vε) ≤ M , then

(4.2) sup
t≥0

E

[

|P ε
t |2γ

]

≤ C(γ,M, β)
(

E

[

|P ε
0 |2γ

]

+ 1
)

.
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Lemma 4.3 (Moment of suprema). For any M > 0, any β > 0 and any T > 0, there is
a numerical constant C(M,β, T ) such that for any ε ∈ (0, 1), if osc(Vε) ≤ M , then

E

[

sup
0≤t≤T

|P ε
t |2
]

≤ E

[

|P ε
0 |2
]

+
1

ε
C(M,β, T )

(

E

[

|P ε
0 |2
]

+ 1
)1/2

.(4.3)

In particular, if limε→0 ε
2
E
[

|P ε
0 |2
]

= 0, then

lim
ε→0

ε2
E

[

sup
0≤t≤T

|P ε
t |2
]

= 0.

The proofs of these estimates use classical techniques of stochastic calculus and are
postponed to Section 4.3.

4.2. The perturbed test functions in the Langevin case. In this section we apply
the general method described in Section 3 to the specific Langevin case, in order to prove
Theorem 1.1.

We will use the following standard notation for multidimensional derivatives:

∇kf(p1, . . . , pk) :=
d
∑

i1,...,ik=1

∂i1
. . . ∂ik

f × pi1

1 × . . . × pik

k

where in the above p1, . . . , pk ∈ R
d. Note that as usual ∆f = Tr

(

∇2f
)

.

We first construct explicitly, for any f ∈ C∞(Td), a perturbed test function fε ∈
C∞(Td × R

d). Let us look for fε in the following form (see [PSV77])

fε(q, p) = f(q) + εg1(q, p) + ε2g2(q, p).(4.4)

Applying the generator Lε, using the fact that f does not depend on p, and grouping
terms with respect to powers of ε, we get

Lεfε(q, p) =
1

ε
p · ∇q[f(q) + εg1(q, p) + ε2g2(q, p)] −

1

ε
∇qV (q) · ∇p[εg1(q, p) + ε2g2(q, p)]

−
1

ε2
p · ∇p[εg1(q, p) + ε2g2(q, p)] +

1

ε2β
∆p[εg1(q, p) + ε2g2(q, p)]

=
1

ε

(

p · ∇qf − p · ∇pg1 +
1

β
∆pg1

)

+

(

p · ∇qg1 − ∇qVε · ∇pg1 − p · ∇pg2 +
1

β
∆pg2

)

+ ε (p · ∇qg2 − ∇pg2 · ∇qVε) .(4.5)

In order for Lεfε to converge to Lf , the ε−1-order terms should vanish, and the ε0-order
terms should converge at least formally to L(f). As a consequence g1 and g2 should solve
the following equations:

0 = p · ∇qf − p · ∇pg1 +
1

β
∆pg1,(4.6)

Lf(q) = p · ∇qg1 − ∇qV · ∇pg1 − p · ∇pg2 +
1

β
∆pg2..(4.7)

The function g1(q, p) = p · ∇qf(q) clearly solves (4.6). With this choice, (4.7) becomes

Lf(q) = ∇2
qf(p, p) − ∇qV · ∇qf − p · ∇pg2 +

1

β
∆pg2.

Since Lf(q) = 1
β ∆qf − ∇qV · ∇qf , it is easy to check that g2(q, p) = 1

2∇2
qf(p, p) solves the

equation.
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Therefore, in view of Eq. (4.4), we defined the perturbed test function by :

(4.8) fε(q, p) = f(q) + εp · ∇qf +
1

2
ε2∇2

qf(p, p).

With this choice, we get using previous calculations and the last line of (4.5)

Lεfε(q, p) − Lf(q)

= (∇qV − ∇qVε) · ∇qf + ε (p · ∇qg2 − ∇pg2 · ∇qVε)

= (∇qV − ∇qVε) · ∇qf +
1

2
ε
(

∇3
qf(q)(p, p, p) − ∇2

qf (p,∇qVε)
)

.(4.9)

We now need to show that Assumption 3.4 holds for this choice of a perturbed test
function, that is, we want to show that the differences fε − f and Lεfε − Lf are small in
the following appropriate sense. Recalling the notation

Rε
1,t(f) = |f(Qε

t) − fε(Q
ε
t , P

ε
t )| , Rε

2,t(f) = |Lf(Qε
t) − Lεfε(Qε

t , P
ε
t )| ,

we need to prove that

lim
ε→0

E

(

sup
0≤t≤T

Rε
1,t(f)

)

= 0,(4.10)

lim
ε→0

E

(

∫ T

0
Rε

2,t(f)dt
)

= 0.(4.11)

Since f ∈ C∞(Td), there exists a Cf = max
(

‖∇f‖∞ ,
∥

∥∇2f
∥

∥

∞

)

such that for all (q, p)
and all δ ∈ (0, 1/2)

|fε(q, p) − f(q)| = ε |p · ∇qf(q)| +
1

2
ε2
∣

∣

∣∇2
qf(q) · (p, p)

∣

∣

∣

≤ Cf (ε |p| + ε2 |p|2)

≤ δCf +
1

δ
Cfε

2 |p|2 ,

where we have used that for any δ > 0, ε |p| ≤ 1
2δ + 1

2ε
2 |p|2 /δ. Therefore

E

[

sup
t∈[0,T ]

Rε
1,t(f)

]

≤ δCf +
1

δ
Cfε

2
E

[

sup
t∈[0,T ]

|P ε
t |2
]

.

By assumption, limε→0 εE
[

|P ε
0 |3
]

= 0, so ε2
E

[

|P ε
0 |2
]

≤ ε4/3(εE
[

|P ε
0 |3
]

)2/3 also goes to

zero by Jensen’s inequality. By the key Lemma 4.3 this entails that the last term in the
previous display disappears in the limit and we get

lim sup
ε→0

E

[

sup
t∈[0,T ]

Rε
1,t(f)

]

≤ δCf ,

which proves (4.10) since δ is arbitrary.

We now turn to the proof of (4.11), that is, we want to compare Lεfε and Lf . By the
expression (4.9), we have for some constant Cf = max

(

‖∇f‖∞ ,
∥

∥∇2f
∥

∥

∞
,
∥

∥∇3f
∥

∥

∞

)

|Lεfε(q, p) − Lf(q)| ≤ Cf ‖∇qV − ∇qVε‖∞ + Cfε
(

|p|3 + ‖∇qVε‖∞ |p|
)

.

We get rid of the product term with Young’s inequality ab ≤ a3/3 + 2
3b

3/2 ≤ a3 + b3/2

and get

E

[

Rε
2,t

]

≤ Cf ‖∇qV − ∇qVε‖∞ + εCfE

[

2 |P ε
t |3 + ‖∇Vε‖3/2

∞

]

.
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We integrate in t to obtain
∫ T

0
E

[

Rε
2,t

]

dt ≤ Cf ‖∇qV − ∇qVε‖∞T + εCfT

(

sup
t∈[0,T ]

E

[

2 |P ε
t |3
]

+ ‖∇Vε‖3/2
∞

)

.

By assumption, limε→0 εE
[

|P ε
0 |3
]

= 0, and by the uniform convergence of ∇Vε to ∇V we

can find a uniform bound M such that osc(Vε) ≤ M for all ε, so we may apply Lemma 4.2
with γ = 3/2 and get

lim
ε→0

ε sup
t∈[0,T ]

E

[

|P ε
t |3
]

= 0,

for any T ≥ 0. Together with the convergence of ∇Vε to ∇V this yields

lim
ε→0

∫ T

0
E

[

Rε
2,t

]

dt = 0.

from which (4.11) follows.

4.3. Proofs of the moment bounds. We now come back to the proofs of the moment
bounds (Lemmas 4.2 and 4.3). It will prove useful to work with the Hamiltonian of the
system rather than directly with P ε

t . For convenience’s sake we assume without loss of
generality that 0 ≤ Vε(q) ≤ osc(Vε).

Definition 4.4 (Hamiltonian). We denote by Hε the Hamiltonian of the system:

Hε(q, p) =
1

2
|p|2 + Vε(q).

We will also write Hε
t := Hε(Qε

t , P
ε
t ).

By Itô’s formula,

dHε
t = P ε

t dP
ε
t + ∇qVε(Qε

t )dQε
t +

1

2

d
∑

i,j=1

d〈(P ε)i, (P ε)j〉t

=

(

−
1

ε2
|P ε

t |2 +
1

ε2β

)

dt+
1

ε

√

2β−1P ε
t dWt(4.12)

=

(

−
2

ε2
Hε

t +
2

ε2
Vε(Qε

t ) +
1

ε2β

)

dt+

√

2β−1

ε
P ε

t dWt.(4.13)

Again, by Itô’s formula, we thus get for any smooth function (t, h) 7→ φ(t, h)

(4.14) dφ(t,Hε
t ) = ∂tφ(t,Hε

t )dt + ∂hφ(t,Hε
t )dHε

t +
1

ε2β
∂2

hφ(t,Hε
t ) |P ε

t |2 dt.

Proof of Lemma 4.2. Let γ ≥ 1. We apply (4.14) to φ(t, x) = eαt hγ and plug in (4.13) to
get:

d(eαt(Hε
t )γ) = γ(Hε

t )γ−1
(

α

γ
Hε

t −
2

ε2
Hε

t +
2

ε2
Vε(Qε

t ) +
1

ε2β

)

eαtdt

+

√

2β−1

ε
γ(Hε

t )γ−1P ε
t e

αtdWt +
γ(γ − 1)

ε2β
(Hε

t )γ−2 |P ε
t |2 eαtdt.

The choice
α = 2γ/ε2

cancels the higher order term in the first bracket. We integrate in time, multiply by e−αt

and regroup the finite variation terms to get:

(Hε
t )γ = (Hε

0)γ +

∫ t

0

(

γ(Hε
s )γ−1

(

2

ε2
Vε(Qε

s) +
1

ε2β

)

+
γ(γ − 1)

ε2β
(Hε

s )γ−2 |P ε
s |2
)

e−α(t−s)ds

+

√

2β−1

ε

∫ t

0
γ(Hε

s )γ−1P ε
s e

−α(t−s)dWs.
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Since (1/2) |P ε
s |2 ≤ Hε

s ≤ (1/2) |P ε
s |2 + osc(Vε),

(4.15)

(Hε
t )γ ≤ (Hε

0)γ +
2γ

ε2

(

osc(Vε) +
γ

β

)
∫ t

0
(Hε

s )γ−1e−α(t−s)ds

+

√

2β−1

ε

∫ t

0
(Hε

s )γ−1P ε
s e

−α(t−s)dWs.

To deal with the unboundedness of the momentum P , we define the following stopping
times:

(4.16) τn := inf{t : |Pt| = n}.

When s ≤ τn, we have |P ε
s | ≤ n and Hε

s ≤ (osc(Vε) + n2

2 ). This entails that t 7→
∫ t∧τn

0 (Hε
s )γ−1P ε

s dWs is martingale. Writing (4.15) at time t∧ τn and taking expectations,
the martingale part disappears; recalling that α = 2γ/ε2 we get

E
[

(Hε
t∧τn

)γ] ≤ E [(Hε
0)γ ] +

(

osc(Vε) +
γ

β

)

αE

[
∫ t∧τn

0
(Hε

s )γ−1e−α(t−s)ds

]

≤ E [(Hε
0)γ ] +

(

osc(Vε) +
γ

β

)

sup
s≤t

E

[

(Hε
s )γ−1

]

ds.

Sending n to infinity, we apply Fatou’s lemma to get

E [(Hε
t )γ ] ≤ E [(Hε

0)γ ] +

(

osc(Vε) +
γ

β

)

sup
s≤t

E

[

(Hε
s )γ−1

]

,

and thus

(4.17) sup
t≥0

E [(Hε
t )γ ] ≤ E [(Hε

0)γ ] +

(

osc(Vε) +
γ

β

)

sup
t≥0

E

[

(Hε
s )γ−1

]

.

We are now ready to conclude. Say that γ is good if there exists a C(γ,M, β) such that
for all ε,

sup
t

E [(Hε
t )γ ] ≤ C(γ,M, β)(1 + E [(Hε

0)γ ] ,

whenever osc(Vε) ≤ M . The bound (4.17) immediately shows that γ = 1 is good. If γ is
good and γ ≤ γ′ ≤ γ + 1, using the elementary inequality xa ≤ 1 + xb valid for any x > 0
and any 1 ≤ a < b, we get

sup
t≥0

E

[

(Hε
t )γ′

]

≤ E

[

(Hε
0)γ′

]

+

(

osc(Vε) +
γ′

β

)

sup
t≥0

E

[

(Hε
s )γ′−1

]

≤ E

[

(Hε
0)γ′

]

+

(

M +
γ′

β

)

(

1 + sup
t≥0

E [(Hε
s )γ ]

)

≤ E

[

(Hε
0)γ′

]

+

(

M +
γ′

β

)

(1 + C(γ,M, β)E [(Hε
0)γ ])

≤ E

[

(Hε
0)γ′

]

+

(

M +
γ′

β

)

(

1 + C(γ,M, β)
(

1 + E

[

(Hε
0)γ′

]))

showing that γ′ is itself good. Therefore all γ ≥ 1 are good. Using the bounds (1/2)p2 ≤

Hε(q, p) ≤ (1/2)p2 + M it is easy to translate this into bounds on E

[

|P ε
t |2γ

]

, concluding

the proof of Lemma 4.2. �

Proof of Lemma 4.3. Let us fix an arbitrary T > 0, and prove (4.3), that is, prove the
existence of a numerical constant C(β,M, T ) such for any ε ∈ (0, 1),

E

[

sup
0≤t≤T

|P ε
t |2
]

≤ E

[

|P ε
0 |2
]

+
1

ε
C(β,M, T )

(

E

[

|P ε
0 |2
]

+ 1
)1/2

(4.18)
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whenever osc(Vε) ≤ M . As before, since 2Hε
t − 2M ≤ (P ε

t )2 ≤ 2Hε
t , it is enough to prove

the statement with Hε
t instead of |P ε

t |2.
We start by recalling (4.15) for γ = 1 and α = 2/ε2:

Hε
t ≤ Hε

0 +

(

osc(Vε) +
1

β

)

+

√

2β−1

ε

∫ t

0
e−α(t−s)P ε

s dWs.(4.19)

Recall that this led by a localization argument to the following bound (4.17):

(4.20) sup
t≥0

E [Hε
t ] ≤ E [Hε

0 ] +

(

M +
1

β

)

.

In order to control the expectation of the supremum, we must control the stochastic
integral. Define Mt =

∫ t
0 P

ε
s dWs and integrate by parts:

∣

∣

∣

∣

∫ t

0
e−α(t−s)P ε

s dWs

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0
e−α(t−s)dMs

∣

∣

∣

∣

=

∣

∣

∣

∣

Mt − α

∫ t

0
e−α(t−s)Msds

∣

∣

∣

∣

≤ |Mt| + sup
s∈[0,t]

|Ms|

≤ 2 sup
s∈[0,T ]

|Ms| .

Plugging this in (4.19) yields

(4.21) sup
t∈[0,T ]

Ht ≤ Hε
0 +

(

osc(Vε) +
1

β

)

+

√

2β−1

ε
2 sup

t∈[0,T ]
|Mt| .

By Doob’s martingale maximal inequality, Itô’s isometry and the bound (4.20) we get

E

[

sup
0≤t≤T

|M ε
t |2
]

≤ 4E
[

|M ε
T |2
]

= 4E





∣

∣

∣

∣

∣

∫ T

0
P ε

s dWs

∣

∣

∣

∣

∣

2


 = 4E

[

∫ T

0
(P ε

s )2ds

]

≤ 8T

(

osc(Vε) + sup
t∈[0,T ]

E [Hε
t ]

)

≤ 8T

(

2 osc(Vε) + E [Hε
0 ] +

1

β

)

.

Injecting this in (4.21) and applying Cauchy–Schwarz inequality yields

(4.22) E

[

sup
t∈[0,T ]

Ht

]

≤ E [Hε
0 ] +

(

osc(Vε) +
1

β

)

+ 8

√

Tβ−1

ε

(

2 osc(Vε) + E [Hε
0 ] +

1

β

)1/2

,

concluding the proof of (4.18). �

Appendix A. Stopped martingale problem

Let E be a Polish space. Let L be a linear operator mapping a given space D ⊂ Cb(E)
into bounded measurable functions. Let µ be a probability distribution on E. Let U ⊂ E
be an open set. A càd-làg process (Xt)t≥0 with values in E solves the stopped martingale
problem for the generator L on the space D with initial measure µ and domain U — in
short, X solves sMP(L,D(L), µ, U) — if, denoting

τU := inf {t ≥ 0|Xt /∈ U or Xt− /∈ U} ,

(i) Law (X0) = µ; (ii) Xt = Xt∧τU
; and (iii) if for any ϕ ∈ D,

t 7→ Mt(ϕ) := ϕ(Xt) − ϕ(X0) −
∫ t∧τU

0
Lϕ(Xs)ds

is a martingale with respect to the natural filtration
(

FX
t = σ (Xs, 0 ≤ s ≤ t)

)

t≥0
.

Moreover, the stopped martingale problem sMP(L,D, µ, U) is said to be well-posed if:
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• There exists a probability space and a càd-làg process defined on it that solves the
stopped martingale problem (existence);

• whenever two processes solve sMP(L,D, µ, U), then they have the same distribu-
tion on DE (uniqueness).

The following theorem is a synthesis of the localization technique of Theorem 6.1 and 6.2
of [EK86, Chapter 4]. It gives a simple criteria ensuring equivalence of uniqueness between
(i) a global martingale problem, and (ii) local stopped martingale problems.

Theorem A.1. Let (Uk)k∈K be a countable family of open subsets of E such that
⋃

k∈K Uk =
E. Assume that for any initial ν, there exists a solution to MP(L,D, µ). Then uniqueness
of MP(L,D, µ) for all µ is equivalent to uniqueness of sMP(L,D, µ, Uk) for all µ and all
k ∈ K.
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