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Abstract— Localization is an important issue for autonomous
vehicle navigation. In this paper, we present a one-dimensional
cooperative localization problem by using curvilinear abscissa
with respect to a reference map. This is made possible by using
a high-definition map containing accurate information, such as
lane markings which can be used to reduce significantly the
cross-track and heading errors. In the context of cooperative
localization, a vehicle can use its perception capabilities along
with V2V communication to retrieve the relative pose of another
vehicle in order to improve the accuracy of its own pose esti-
mate. Experimental results with non independent data coming
from communication devices show the necessity to use a more
consistent algorithm for data fusion than the classical Kalman
filter, such as covariance intersection. The results presented
in this paper also show that the one-dimensional cooperative
localization algorithm is particularly useful on curved roads
since the accuracy increases when cooperative vehicles drive in
such conditions.

I. INTRODUCTION

Localization of vehicles is an important problem for au-
tonomous vehicles navigation, despite numerous works [10],
poses estimation, i.e., positions and orientations, with lane-
level accuracy remains an important issue for autonomous
vehicles driving. These pose estimates must be accurate and
consistent in order to be used safely for navigation.

Exteroceptive sensors such as LiDAR or camera are be-
coming more accurate, these sensors give important per-
ception information about obstacles and other vehicles and
can also be used to detect landmarks such as lane mark-
ings. These lane markings information coupled with high-
definition maps [1], [3] that include the true positions of these
lane markings give the possibility to correct the localization
significantly [9]. The cross-track and heading errors are the
principal parts of this localization accuracy increase. Indeed,
on straight roads, lane markings are invariant along the road.

In this paper, we propose a new approach, introduced in
[5], to reduce the along-track errors. We suppose that the
cross-track and heading errors are well known and use the
curvilinear abscissa [4], [8] to represent the state of the
vehicle.

This one-dimensional approach uses different methods for
data fusion like the classical Kalman filter to compute the
curvilinear abscissa of the vehicle. Beside the use of dead-
reckoning sensors to know the speed of the vehicle and low
cost mono-frequency sensors such as Ublox 8T receiver, the
data fusion can use V2V communications to receive the

pose estimate of another vehicle and a perception sensor
to compute the pose of this second vehicle in the host
vehicle frame. The communication can be used to propagate
the positioning accuracy of one car to another. It gives the
possibility to receive data from the sensors of other cars to
improve the estimation of the host vehicle state [7], [12],
[15].

The use of data fusion on communicating cars can lead
to data incest if one vehicle uses the pose estimate of
another vehicle which is itself computed with its own pose.
In practice, GNSS errors of two cars driving together are
not independent. In these cases, to ensure a consistent
localization a covariance intersection filter [6], [11], [15]can
be used.

This paper presents also experimental results computed
from data recorded with two autonomous Renault Zoé cars
equipped with dead-reckoning and exteroceptive sensors for
autonomous navigation. These two cars drove together on
an experimental road for which a high-definition map was
available.

Sec. II introduces the problem of cooperative localiza-
tion with the experimental platform used to record all the
necessary data. In Sec. III, we present the used discretized
map. In Sec. IV, we introduce the curvilinear coordinates
with continuous and discretized maps. Sec. V, presents
the different steps used for the data fusion, the prediction
and the updates with the Kalman filter and the covariance
intersection filter. Finally, in Sec. VI, experimental results
are provided and discussed.

II. PROBLEM STATEMENT

Let consider two cars on a road. For the experimental re-
sults, we recorded the data of two Renault Zoé cars equipped
to do autonomous driving (Fig. 1). For our localization prob-
lem, we used a Novatel’s Span CPT, an RTK GNSS receiver
with an inertial measurement unit, to provide the ground
truth of the cars. We used the low cost mono-frequency
GNSS receiver Ublox 8T for the localization of the cars.
We also used the dead-reckoning sensors already present in
the commercialized Renault Zoé. With these sensors, we had
access to the wheels speeds directly from the CAN bus of
the vehicles. Perception sensors gave us the possibility to
localize other vehicles in the local frame of the vehicle using
it. To obtain a perfect relative localization, the ground truth



Fig. 1: Experimental Renault Zoé cars.

Fig. 2: Experimental road Séville (Google Map).

was used to simulate the perception between both cars. In
practice, this local localization could also be done with a
LiDAR or a camera. For a one-dimensional problem, we
supposed that we had an accurate lateral localization and
an accurate heading estimation. In practice, these accurate
estimates could be computed using camera and LiDAR along
with high-definition maps.

During the reported experiment, the two cars were fol-
lowing each other in the experimental road Seville (Fig.2).
The gray car was the leading vehicle and the white car
was the following vehicle. This experimentation used the
localization of both vehicles (with the same GNSS receivers
and dead reckoning sensors) and the detection of the leader
by the follower to do cooperative driving. The localization
problemis fully distributed, to achieve this, the localization
of the other vehicle is suppose to be transmitted via V2V
communication. We supposed for simplification here that the
communication is done without any delay and we used time
stamped localization estimates of the two cars in a post-
processing way. In reality, the communication could be done
with 802.11p systems, like the Cohda, using CAM standard
messages.

During the experiments, we supposed that every data was
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Fig. 3: Curvilinear coordinates.

synchronized and available at the same time. To solve sensor
data asynchrony, we have done a linear interpolation of the
data of the different sensors that were synchronized using
GPS time.

III. MAP

For autonomous driving, accurate georeferenced maps can
give important information. Many works on this new maps
are done to add new information, e.g. lane markings, road
signs or environment around the road. These maps need to
be very accurate to be used for autonomous driving. Indeed,
vehicles use the center and the width of the road to stay in
it.

The localization presented in this paper is intended for
autonomous vehicles and use the center of the road as the
reference.

The map used here has a few centimeter-accuracy and
gives the center of the road with a set of points like
open street map does. Originally, the map was build from
clothoids. The set of points do not give all the pieces
of information of the clothoids. For instance, curvature is
missing.

IV. CURVILINEAR COORDINATES

A. Continuous map

To be closer to the reality, we chose to do the localization
not in a classical Cartesian global frame where the pose is
writen as qc =

[
x y θ

]
T but with curvilinear abscissa,

curvilinear ordinate and curvilinear orientation leading to
a curvilinear pose qs =

[
s n ψ

]T
. This allows to

know directly the pose of the vehicle relative to the road.
These coordinates can be used directly for the control of an
autonomous vehicle. The curvilinear abscissa can also give
the along-track error which is computed with the arc-length
from the start of the road and along the center of the road.
The curvilinear ordinate can be used as the cross-track error
from the center of the road. It is the orthogonal distance from
the center of the road with a positive sign if the vehicle is
on the left of the center of the oriented road and negative
otherwise. The orientation of the vehicle relative to the road
gives the angular error.

The first step, needed to convert a global pose into a
curvilinear pose, is to do the map matching by finding the



closest point of the map from the position of the vehicle
(point M in Fig. 3). This can be done by searching point H
of the map that gives the orthogonal projection.

We can, after finding H , compute the arc length of the
curve from the beginning of the road to point H . This arc
length corresponds to the curvilinear abscissa. The distance
MH gives the curvilinear ordinate. If point M is on the
right of the tangent at point H , a negative sign must be add
to this curvilinear ordinate. The orientation of the vehicle
in the curvilinear coordinates is the relative orientation from
the global pose to the tangent at point H .

B. Discretized map

The road is given by a map composed of points that
represent the center of the road. A simple solution to obtain
an easy-to-use continuous model of the center of the road is
to use these points to build a polyline.

With a polyline, map-matching is done by searching the
distance from point M to each segment. This distance can
be the distance from the orthogonal projection as illustrated
in Fig. 4 case 1. It happens in most cases, when point M is
between the two orthogonal dashed lines of the start point
pi and the end point pi+1 of the segment. When point M
is between the two orthogonal dashed lines of the second
case, map matching is done with point H = pi. When every
distance from point M to each segment is computed, the
smallest distance gives the map-matched segment.

Once the map-matching is done, the curvilinear coordi-
nates are computed for both cases. For case 1, the curvilinear
abscissa corresponds to the sum of the length of every seg-
ments before the map-matched segment added with distance
piH . The curvilinear ordinate corresponds to distance MH
with a negative sign if point M is on the right of the segment
[pi pi+1] w.r.t. the orientation of this segment. The orientation
is the relative orientation from the orientation of the segment
[pi pi+1].

In case 2, the curvilinear abscissa is just the sum of the
length of every segments before the map-matched segment.
The curvilinear ordinate becomes the distance Mpi with the
negative sign if point M is on the right of the segment
[pi pi+1] w.r.t. the orientation of this segment like in case
1. The orientation is the same as in case 1; it is the relative
orientation from the orientation of segment [pi pi+1]. The
curvilinear coordinates of point M in case 2 are the same
as the curvilinear coordinates of point M ′ which can be
computed in case 1.

In case 2, we use the segment [pi pi+1] to do the pro-
jection. This is only one possible choice among an infinity
of possibilities. A discontinuity of the tangent at point pi
appears in this case. This discontinuity creates a stationary
value of the curvilinear abscissa and a jump of the relative
orientation. Indeed, point M and every point of the dashed
curve in Fig. 4-b have the same curvilinear coordinates.
When the vehicle is between two segments as in Fig. 4-
c, if point M is bellow point pi, the map-matching jumps
from one segment to the next. Fig. 5 shows the stationary
value of the curvilinear abscissa and the jump of this value.
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Fig. 5: Discontinuity issue of a discretized map.

The dashed blue line represents the path of the vehicle and
the black polyline represents a discretized map with large
discontinuity issues. One can see the curvilinear abscissa s
(the blue curve) is constant between x = 0.8m and x = 1.2m
and jumps when x = 2m.

In practice, when the angle between two following seg-
ments is very small, when the vehicle drives near the
center of the road and when its position is sampled, the
discontinuity does not appear. Point M does not stay in case
2 long enough if it goes in it, when the position is sampled.

To avoid this discontinuity, one can use the Lanelet trans-
formation [1] or use a continuous and differentiable curve
like a Hermite spline or a B-spline [13], [17].

V. ONE-DIMENSIONAL COOPERATIVE DATA FUSION

To be able to use their localization estimates to drive on
roads, autonomous vehicles must have accurate values. The
use of multiple sources of information gives the possibility
to compute a more accurate localization but also to provide
a better integrity.

In this work, the data fusion is done to provide an estimate
of the curvilinear abscissa s. The curvilinear ordinate n and
the curvilinear orientation ψ are supposed to be known.

A. Prediction

The first piece of information is the speed given by the
wheel speed dead-reckoning sensors. This information is
present in all cars and accessible through the CAN bus.

To obtain the curvilinear vehicle speed along the road in
the polyline curvilinear coordinates, we project the speed of
the vehicle into the closest segment. We use this speed to
compute the prediction of the Kalman filter as follows:
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Fig. 4: Discretized map.

ŝk|k−1 = ŝk−1|k−1 + Teuk cos (ψk−1) , (1)

σ̂2
s,k|k−1 = σ̂2

s,k−1|k−1 +Qk−1. (2)

where σ represents the standard deviation of the curvilin-
ear abscissa s, Te is the sample time, Qk is the variance of
the prediction model and uk is the longitudinal speed of the
vehicle.

B. Kalman filter update

The second piece of information is the GNSS position
given by the low cost mono-frequency GNSS receiver Ublox.
This data is taken into account with a Kalman filter update.
We note zs the observation of the curvilinear abscissa with
its standard deviation σzS . The Kalman filter update follows
the equations:

Kk = σ̂2
s,k|k−1/

(
σ̂2
s,k|k−1 + σ2

zs,k

)
, (3)

ŝk|k = ŝk|k−1 +Kk

(
zs,k − ŝk|k−1

)
, (4)

σ̂2
s,k|k = σ̂2

s,k|k−1 (1−Kk)
2

+ σ2
zs,kKk. (5)

Where Kk is the Kalman gain.

C. Covariance intersection filter update

The Kalman filter must be used with independent white
errors. In the case where the errors fused are not independent,
a phenomenon called data incest occurs and the result
becomes overconfident.

To avoid this problem, a covariance intersection filter
update can be used instead of the Kalman filter one. This
filter is more pessimistic but remains consistent, i.e., the
estimated variance is larger or equal to the true variance.

In one dimension, the covariance intersection filter can be
written as follows:

σ̂2
s,k|k = (ω/σ̂2

s,k|k−1 + (1− ω)/σ2
zs,k)−1, (6)

ŝk|k = σ̂2
s,k|k(ω · ŝk|k−1/σ̂2

s,k|k−1

+(1− ω) · zs,k/σ2
zs,k). (7)

where ω ∈ [0, 1] is chosen so that σ̂2
s,k|k is minimum.

Minimizing σ̂2
s,k|k is equivalent to maximizing
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Fig. 6: Relative localization..

ω
(

1/σ̂2
s,k|k−1 − 1/σ2

zs,k

)
+ 1/σ2

zs,k. (8)

This is the equation of a line. So the maximum depends
of the sign of 1/σ̂2

s,k|k−1 − 1/σ2
zs,k

.
If σ̂2

s,k|k−1 < σ2
zs,k

, the maximum is reached for ω = 1
and

ŝk|k = ŝk|k−1, (9)

σ̂2
s,k|k = σ̂2

s,k|k−1. (10)

Otherwise, if σ̂2
s,k|k−1 > σ2

zs,k
, the maximum is reached

for ω = 0 and

ŝk|k = zs,k, (11)

σ̂2
s,k|k = σ2

zs,k. (12)

One can see that this one-dimensional covariance intersec-
tion is equivalent to keep only the estimator with the smallest
variance.

D. Cooperative data fusion

The localization of the car is done thanks to a prediction
using the speed of the car, then a Kalman filter update using
the GNSS position. But it is possible to add an other Kalman
update or a covariance intersection update when using V2V
communication to receive the pose of an other vehicle. To
be able to use this new information, the host vehicle must be



able to localize this other vehicle in its local frame. With this
relative localization and the localization of the other vehicle,
the pose of the host vehicle can be deduced.

Fig. 6 shows the relative pose M∆TN = [∆x∆y∆θ] that
is needed in order to use the pose estimate of the other
vehicle N to compute the pose of the host vehicle M :

qMc = qNc −

cos(θM ) −sin(θM ) 0
sin(θM ) cos(θM ) 0

0 0 1

M∆TN (13)

=

xN −∆x · cos(θM ) + ∆y · sin(θM )
yN −∆x · sin(θM )−∆y · cos(θM )

θN −∆θ

 .
If we suppose that the curvilinear ordinate and the curvi-

linear orientation of the host and the other vehicle are known:

ΣM
s =

σM2
s 0 0
0 0 0
0 0 0

 , (14)

ΣN
s =

σN2
s 0 0
0 0 0
0 0 0

 . (15)

We can use the rotation matrix:

MRN =

cos∆α −sin∆α 0
sin∆α cos∆α 0

0 0 0

 , (16)

where ∆α is the angle between the segment matched
by the host vehicle and the segment matched by the other
vehicle.

We can determinate the covariance matrix of the other
vehicle ΣN

s from the covariance matrix of the host vehicle
ΣM

s .

ΣM
s = MRN · ΣN

s ·MR−1N , (17)

= σN2
s

 cos2 ∆α cos ∆α · sin ∆α 0
cos ∆α · sin ∆α sin2 ∆α 0

0 0 0

 .
By identification, we obtain:

σM2
s = σN2

s cos2(∆α). (18)

This new information with the relative localization and the
global localization of the other car can be used to localize the
host vehicle with a Kalman filter or a covariance intersection
filter.

VI. RESULTS

Fig. 7 and 8 present the error (blue curve) with the 5%
confidence interval (red dashed curve) of the following and
the leading vehicles using different sources of information
fused with different methods (Kalman filter or covariance
intersection filter). Graph A represents the error and the
confidence interval of the curvilinear abscissa from the
GNSS receiver used alone without any filter. Graph B shows
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Fig. 7: Along-track errors (m) with 95% confidence intervals
of the following vehicle.
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Following vehicle Leading vehicle
τ (%) ē (m) τ (%) ē (m)

KF without communication (Fig. 7 and 8 B) 5.17 0.55 5.90 0.96
KF with communication from 47.60 0.64 (+0.09) 5.90 0.96 (=)the leader to the follower (Fig. 7 C)
CI with communication from 5.17 0.55 (=) 5.90 0.96 (=)the leader to the follower (Fig. 7 D)
KF with communication from 5.17 0.55 (=) 52.76 0.50 (-0.46)the follower to the leader (Fig. 8 C)
CI with communication from 5.17 0.55 (=) 6.64 0.51(-0.45)the follower to the leader (Fig. 8 D)

KF with bidirectional 61.62 0.44 (-0.11) 69.00 0.43 (-0.53)communication (Fig. 7 and 8 E)
CI with bidirectional 4.80 0.46 (-0.09) 4.43 0.45 (-0.51)communication (Fig. 7 and 8 F)

TABLE I: Experimental mean square errors and out-of-bound estimates.

the results obtained with a Kalman filter using the speed of
the vehicle and the GNSS data. Graph C represents the case
when the communication from the other vehicle (from the
leader to the follower for the follower or from the follower to
the leader for the leader) was added. Graph D corresponds to
the same scenario as previously but by replacing the Kalman
filter by the covariance intersection filter. Graph E shows the
results when the communication was done in both direction
while using a Kalman filter. Finally, Graph F is similar to
the previous case but using the covariance intersection filter
instead.

Tab. I shows the square root of the mean square error
ē and the rate of exceeding the 5% confidence interval
τ for different sources of information fused with different
methods.

The results in Tab. I show that when bidirectional commu-
nications are used with a Kalman filter, an over-convergence
appears: the rate of exceeding the 5% confidence interval
increased significantly. In contrast, when bidirectional com-
munications are used with the covariance intersection filter,
this rate decreases.

In these experiments, every time the communication is
used with a Kalman filter, an over-convergence appears.
Indeed, the errors of the GNSS receivers of the two cars
were not independent because of the common mode errors
(e.g. ionosphere delay or ephemeris errors). Another con-
sequence resulting from this dependence is when a vehicle
communicates a less accurate state estimate, the state of the
second vehicle also becomes less accurate. This phenomenon
can be seen in Tab. I. The following vehicle, which was
more accurate than the leader, had its error increased when
it used the communication with a Kalman filter. On the
contrary, when the leader, which was less accurate, used the
communication with a Kalman filter, its error decreased.

When communication is used, the covariance intersection
filter must always be used to ensure the integrity of the error.

One can see that when one vehicle with an accurate
GNSS receiver drives in a platoon of vehicles with less
accurate GNSS receivers in the other cars, it can propagate
its accuracy to the other vehicles.

According to Eq. 18 the accuracy increases when the
difference of angle between the two map-matched segments

(by the host vehicle and by the other vehicle) increases.
This phenomenon can be seen in Fig. 7 and 8 around time
40s, 60s and time 115s, 130s when the vehicles were in the
roundabout and when the bidirectional communication was
used with a Kalman filter or a covariance intersection filter.

VII. CONCLUSION

This paper has presented a one-dimensional cooperative
localization system using curvilinear abscissa along a ref-
erence map. We have focused on the along-track problem
by supposing that the cross-track and heading errors are
negligible. Real data from two Renault Zoé autonomous
vehicles were used to obtain experimental results. The use of
the covariance intersection filter instead of the Kalman filter
when communication appear seems to be the best choice
to avoid consistency issues. It has been also shown that the
present algorithm for cooperative localization is very efficient
to reduce the along-track error when the vehicles are driving
on curved roads. Vehicles with accurate GNSS receivers can
propagate their accurate localization to other vehicles. In a
platoon, only one accurate vehicle localization can increase
the localization of the whole platoon.
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