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INTRODUCTION 

Chaotic time series data are now commonly observed in a large variety of fields. 
The analysis of such time series and the extraction of physical information is there- 
fore a topic of growing interest. The techniques have matured to the point where 
they have become of practical use. It is the purpose of this review to discuss some 
such applications. For excellent general recent reviews of the available techniques 
we refer the reader to references 1 and 2. 

This type of analysis presumes that the data have been generated by a low 
dimensional physical dynamics of a priori unknown nature, and that the signal may 
have been contaminated by noise of various sorts. In most applications we have at 
our disposal only a single measured quantity, i.e., a scalar time series. Fortunately 
one can exploit a very powerful redundancy principle that is discussed in the pion- 
eering papers by Packard et aL3 and by Takens4 (cf. also reference 5 )  which allow 
one to reconstruct an image of the whole dynamics in an embedding space. These 
embedding theorems allow one then to extract useful information about the 
unknown dynamics from this single measured variable. 

The first step in the analysis then consists of a phase-space reconstruction in an 
embedding space. In order to achieve it, we have to determine the embedding 
dimension d, of the reconstructed phase space (also called state space). Of particular 
interest is of course the minimum embedding dimension, i.e., the lowest dimension 
for which the reconstruction gives an unambiguous image of the attractor. The 
reconstruction may be carried out in a number of ways, but it is safest to use several 
techniques because none of them alone is foolproof (for excellent reviews, cf. refer- 
ences 1 and 2). All these methods rely on delay coordinates, i.e., constructing the 
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vectors of length (dimension) d ,  

y" = (s(tn), $tn - r h  4 t n  - 271, . . . , s (rn  - (dE - 1,r)) (1) 

from a scalar time series {s,} = {s( t , ) }  that is sampled stroboscopically, i.e., at equal 
time intervals t ,  = to + nst ,  where the delay A = zSt. We note that in some applica- 
tions, such as astronomical observations, such a regular sampling may not be pos- 
sible, and it is generally necessary to interpolate the data prior to the analysis. 

Once the dimension d, is known, we have the freedom to build a coordinate set 
to span the reconstructed state space. There exists an infinity of linear combinations 
of these delay vectors that are mathematically equivalent (e.g., reference 6), but 
because of unavoidable noise, in practice a suitable choice is important. A prolific 
literature is devoted to this issue. Many applications use the bare Y, because this 
way the d, coordinates all have the same noise properties, but other linear com- 
binations have also been used, such as derivative coordinates, either direct differ- 
ences, discrete Legendre polynomials6 or Krawchuck polynomials (Auvergne, priv. 
comm.), etc. We note also that some care must be exercised because certain types of 
filtering of the data can augment the apparent dimension of the dynamics (e.g., 
reference 1). In whatever form delay coordinates are used, a crucial step is to deter- 
mine an optimal value of the time delay A. However, this optimal value depends on 
the application. One popular choice is to use the value for which the mutual 
information' has its first zero. When polynomial maps are constructed from real 
data we shall see that the optimal value is a compromise that limits the nonlinearity 
of the map and minimizes the effect of noise. The method of false nearest neighbors' 
provides an efficient general guideline both for the dimensionality of the attractor 
and for the delay. 

Once we have reconstructed the attractor in an embedding phase space, the next 
step is to obtain a set of equations which models the evolution of the system in the 
phase space. More particularly, we are interested in global models here, ie., models 
which describe the dynamics on the whole state space, rather than models which 
approximate the dynamics in local balls. These methods then allow what we call a 
global oector jield or pow reconstruction. 

The chapter is organized as follows. First, we briefly review the general methods 
based on delay coordinates8-" and on derivative coordinates" for global vector 
field reconstructions. Secondly, a section is devoted to applications of these methods 
to real, i.e., experimental and observational data. Thirdly, a recent extension of 
global vector field reconstruction methods, which provides a set of equations 
incorporating a control parameter with an explicit physical meaning, is examined. 
In particular, preliminary results with data arising from an electrodissolution experi- 
ment are discussed. Finally, the conclusions are presented. 

THE RECONSTRUCTION METHODS 

Let us consider an a priori unknown nonlinear dynamical system defined by a 
set of autonomous ODES : 

x = g(x; a) (2) 
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in which x E Rd and g is the unknown true vector field associated with the under- 
lying dynamics of the physical system, and we call the solution vector x(t;  p) the 
state vector which describes a trajectory in phase space. The quantity p E Rp is the 
parameter vector with p components, which for a given time series is assumed to be 
constant in this section. We note that in many situations we do not have an a priori 
knowledge of the dimension d of the dynamics. The dynamics can equivalently be 
described by a map 

Xn+' = G(X"; p), (3) 

where X" = x(t,) E Rd, with tn = n6t, represents a stroboscopic sampling of the tra- 
jectory at the equal time intervals 6t.  The measured time series s, is assumed to be a 
generic function of the trajectory, s, = s(x(t,)). 

Depending on the applications, our goal is either to reconstruct a corresponding 
map F in a d ,  dimensional embedding space with the help of the given delay vectors 
Y" (1) 

Y"+' = F(Y"; p) (4) 

Y = f(Y; c) (5) 

or to reconstruct a flow f 

where y(t,) = Y". The embedding theorems tell us that there is a one-to-one corre- 
spondence between the embedded flow f of (4) and the physical flow g (2). We refer 
to the latter as physical because it represents the number of variables that are 
required to fully describe the dynamics. It is however important to distinguish 
between the dimensions of the two flows. Because the embedding can cause spurious 
cusps or intersections, in principle dE is greater or equal to d ;  in practice it is often 
found, or assumed, that d = d ,  (perhaps because the cusps and intersection points 
are rare and do not appear to cause havoc when the map is iterated to create 
synthetic signals). 

Maps 

The reconstruction can be very conveniently made with polynomial nonlin- 
earities in such a way that the components of F(Y) take the form of multivariate 
polynomials. The Weierstrass theoremI3 guarantees the convergence of the approx- 
imation of any smooth function by a polynomial expansion. Consequently, using 
polynomial expansions to build global models of dynamical systems comes into 
mind in a natural way. Polynomial techniques for example have been extensively used 
for local modeling, in which the vector fields F(Y) (or f(y)) are locally approximated 
by polynomials whose coefficients are determined by least-squares (LS) fits. In con- 
trast, when a global model is desired, the situation becomes more difficult due to the 
large number of required data points and to the need for the use of higher-order 
polynomials. In order to overcome such difficulties, several groups have indepen- 
dently proposed using orthogonal, or better, orthonormal polynomials generated by 
the invariant density on the a t t r a ~ t o r . * . ~ * ' ~ ~ ' ~ * ' ~  There are two equivalent ways to 
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construct these polynomials, namely, by a Gram-Schmidt orthonormalization or by 
a LS fitting with monomials, both of which give complementary insight into the 
data requirements. 

Gram-Schmidt Construction of Orthogonal Polynomials 

Interestingly the determination of the coefficients of the polynomials and there- 
fore of the coefficients of the reconstructed vector field, P(y), only requires the com- 
putation of moments of the data. (Henceforth we shall drop the tilde from the 
reconstructed maps and vector fields when there is no confusion possible.) More 
specifically, a basis of orthonormal multivariate polynomials {4k(y) = 4k(y1, y2, . . . , 
ydE)} on Rd6 can be built with a conventional Gram-Schmidt (GS) procedure. 
According to this procedure, the polynomials I # J ~ ( ~ )  read as: 

in which Pk's designate the leading multivariate monomials and ( , ) is a scalar 
product. The orthonormality condition is (4 i ,  4 j )  = h i j .  The polynomials of the 
orthonormal basis are then found to be given by expansions on the monomials P, 
with expansion coefficients defined as :I6 

/I- k k 1liZ 

where 

Each component F i  of the vector field F(y) which describes the dynamics is approx- 
imated as: 

P 

in which the c i j  are the Fourier coefficients for the ith component F ,  of the vector 
field F, which are: 

ci j  = (Fi ,  4j). (11) 

In practice, the expansion is terminated at some maximum polynomial order P. 
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Least-Squares Construction of Orthogonal Polynomials 

A mathematically equivalent alternative to constructing the orthogonal poly- 
nomials and the expansion coefficients is to perform a linear LS fit with all possible 
monomials up to order P, i.e., to minimize the expression 

N -  1 

S = IY"+l - F(Y")Iz, 
n =  1 

where N is the number of delay vectors. The vector function F is given by 

F ( Y ) = C A k  Y t l Y y Y y  ..., 
k 

where the & are the components of Y, and the vector index k = (kl, k , ,  k , ,  . ..) 
runs over all powers with the constraint 1 k j  I P, the maximum order of the 

expansion. 
The LS minimization" is most straightforwardly carried out with a Q R  algo- 

rithm. It can be shown that the expansion of F in monomials (14) can be regrouped 
into the form obtained with the GS procedure (11). The two approaches, mathe- 
matically, are therefore strictly equivalent, although their numerical stability proper- 
ties are different. In fact, both the GS and the QR methods run into numerical 
difficulties when either the embedding dimension or the order of the expansion P gets 
large, because the number of coefficients gets large and the fit becomes ill- 
conditioned when used on short data sets. 

For that reason Serre et aL9 have found it useful to use another standard 
method for solving the LS problem, namely, a singular value decomposition 
(SVD)." In the LS problem, which determines a vector of parameters a by mini- 
mization of (12), 

j 

S = 1IA . a - b1I2, (14) 

the matrix A is decomposed into a product of orthogonal and diagonal matrices as 
follows: 

A = U . diag(w,) . (15) 

and the solution appears in the form 

When the problem is well conditioned, all eigenvalues wi are above machine preci- 
sion and the SVD gives an answer equivalent to the other solutions of the LS 
problem. The power of the method resides in the fact that it possesses a good behav- 
ior even when the LS design matrix A is poorly conditioned, i.e., when the param- 
eters are close to being linearly dependent, whether because of a poor choice of 
parameters or because their number exceeds the number of data points. It suffices 
then to restrict the sum i over the eigenvalues w j  to the ones above some (numerical) 
noise threshold. With SVD the number of coefficients can be taken arbitrarily large, 
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in fact even larger than the number of available data. The SVD method thus auto- 
matically selects the most important linear combinations of the coefficients and dis- 
cards the rest. 

Flows 

Standard Formulation 

The preceding methods are not only useful for constructing global polynomial 
maps, but they can also be extended to reconstruct Jows globally. In fact since the 
data are given at discrete times one needs to replace the standard flow (4) by a 
discrete approximation anyway and the difference between a map and a flow is not 
very big. As previously, one uses delay coordinates generating a vector y" in the 
phase space, namely, 

y" = (sn,  S n - r r  .". S n - ( d ~ - l ) r ) .  (17) 
The practical implementation of the vector field obviously also depends on the inte- 
gration scheme. For instance, an explicit Euler integration may be used: 

y"+ = y" + f(y")dt, (18) 

where now yn = y(n6t) with the time step S t .  Given this equation, the model works 
well when the time interval 6t  between measurements is small. In many cases, 6t  
must be a few hundred times smaller than the characteristic time of the oscillations 
that occur in y. 

In many experimental situations, it is not feasible to use a small enough sam- 
pling interval. It is therefore worthwhile to seek a method that is capable of accu- 
rately modeling f when at,  the time step between two successive measurements, is 
much larger than the Euler method would allow. This issue has been addressed by 
Brown et a1.' who advocate the use of an Adams predictor-corrector method. 
Under this method, one formally integrates an initial condition y" to the next point 
y"+ in one step of size 6t via 

where 6t is the time step of the integration and are the implicit Adams 
predictor-corrector coeffcients.8 M indicates the order of the corrector portion of 
the integration. The numerical values of the aiM) are given by the method described 
in reference 17. In their study, Brown et a/.' use a time delay A in terms of S t  that is 
estimated by using the mutual information method.' 

The model flow f is optimized with the help of a minimum description length 
technique in which an error function 

is introduced. This error function is quadratic with respect to the fitting coefficients 
Ki  giving a LS problem. The full error function involves a length criterion based on 
the minimum description length principle for truncating a model (references 8 and, 
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more recently, 18 and references therein). It is indeed very elaborate and provides an 
efficient automatic criterion to determine the model coefficients. The quality of the 
model depends on the time delay A, on the order M of the correction in the integra- 
tion and on the number N ,  of retained polynomials. Unfortunately, the interest and 
efficiency of the error function are reduced by the need for a serious coding effort and 
large computing time requirements. However, the use of an SVD approach which 
would alleviate these problems has not yet been tried. 

The Derivative Approach 

In many experimental situations, a dynamical system may be described by a 
variable, say s, and its successive derivatives S, Ir, . . . . The first derivative can be 
called a speed and the second derivative an acceleration, as in the case of mechani- 
cal oscillators, i.e., derivatives may receive a direct physical interpretation. For this 
reason (and others), it is of interest to develop models which use an embedding 
based on derivative coordinates in which the phase space vector is: 

where s!) designates the ith derivative of the time series variable s, at time n6t.l’ The 
successive derivatives may be estimated either by using a linear discrete filter built 
on a basis of discrete Legendre polynomials6 or by using a local fit with an mth- 
order polynomial (where m is greater than the largest order of derivative required 
in the model). In both cases, a window size A has to be determined and plays a role 
rather similar to the time delay A used in the time delay method. Nevertheless, from 
our experience, it appears that the quality of the derivative embedding is less sensi- 
tive to the value of A than the time delay A in the case of a time delay embedding. 
For a good evaluation of the derivatives, the time interval 6t  must be a few hundred 
times smaller than the typical characteristic time of oscillations that occur in the 
recorded time series {sn}. 

We thus search for a model in the canonical form 

One may then remark that the reconstructed vector field f (z)  is composed of 
(dE - 1) explicitly known components and by a single unknown component h, 
which may be given a polynomial form. Consequently, this method only requires the 
determination of a single function h, in contrast with the previous method which 
requires the determination of the dE functions. This advantage is however balanced 
by the need of a higher-order polynomial which is required to express the scalar h,, . 

The function hdE is taken to have the form 
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where P,(z) are the monomials up to order N ,  that can be formed from the d, 
components of the vector z according to a relationship defined in reference 12, 
namely, P,(z) = ($z;Z . . . ~2;). The biunivocal relationship used between the sub- 
script i and superscript set {il, . . . , id,} is extensively described in reference 12 when 
d ,  = 3. In their applications” { ~ L Z ) }  is a basis of orthonormal polynomials con- 
structed via a GS procedure starting from $ l ( z )  = 1 and using a scalar product 
defined on a data set, and the vector field (22) F is integrated by using a fourth- 
order Runge-Kutta scheme with an adaptive stepsize control.” 

The model is optimized by using an error function 

N P  N, 
yldE’ - 1 K, P ,  I/ I yldE’ I E, = 

i =  N v  1 I p = 1  i = l  

This error function is calculated by using absolute values for computational efi- 
ciency. It is found that the quality of the model depends on reconstruction param- 
eters, namely, the number N ,  of vectors y,, the number N ,  of yn’s sampled per 
pseudo-period and the number N ,  of retained multivariate polynomials. The error 
function E, is used as a guideline to determine the values of the reconstruction 
parameters as follows. First, optimal values of N ,  and N ,  are found by minimizing 
the error function. However, for a given N,, the obtained approximated system is 
not necessarily successful, in particular it cannot necessarily be successfully inte- 
grated, although the error function passes through a (possibly local) minimum. Con- 
sequently, the search of a successful global modeling needs systematical trials on 
N,’s which can nevertheless be automatically done with computational help. More 
generally, finding an optimal modeling of nonlinear data series remains a tricky 
problem for which Brown et a/.* proposed a more elaborated error function than 
the one of Gouesbet and Letellier, which however is computationally faster. 

It is the ultimate goal of the analysis and the nature of the available data set 
which determine whether one prefers to use a map or a flow, and in the second 
alternative which of the alternate forms (5)  or (23). Generally it seems that maps give 
more stable reconstructions than flows (e.g., references 10 and 11). 

As far as the choice of GS approach versus thc LS approach with SVD is con- 
cerned, both approaches work for large data sets, but the first method can be ill- 
conditioned for high embedding dimensions and high-order polynomials. 
Furthermore the SVD LS approach is faster. 

Noise 

Measured time series are of course always contaminated with noise, and the 
question arises how these methods hold up under realistic situations. We note that 
the noise problem can be particularly bad in astronomy. Not only is the signal to 
noise ratio often small, the data generally are not or cannot be obtained at the 
equal space time intervals that the methods require. The necessary interpolations 
introduce additional noise. 

References 1, 9-11 and 21 address the problems introduced by noise. It should 
be noted though that noise can also have a beneficial effect, namely, in moderate 
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amounts it stabilizes the maps without affecting their properties, and in fact it has 
been found useful to add low-level noise to the data for this r e a s ~ n . ~ * ” - ~ ~  

APPLICATIONS TO PHYSICAL SYSTEMS 

The global reconstruction techniques discussed above have been successfully 
applied to experimental and observational data, as well as to data generated by 
realistic numerical models of complex physical systems as reviewed below. In each 
case, a brief discussion concerning the validation of the models will be given. We 
note that not all variants of the reconstruction method have been applied to the 
same data. It is therefore not possible to make direct comparisons between them. 

Nonlinear Vibrations in a Thin Wire 

Brown et al.” have applied their techniques to experimental data obtained from 
an apparatus used to study nonlinear vibrations in a thin wire.” The apparatus 
basically consists of a mount holding a tensioned wire fed by an alternating current. 
The frequency of the current is close to the fundamental frequency of the free oscil- 
lations of the wire. This current excites forced vibrations when the wire is placed in 
a permanent magnetic field. As the amplitude and frequency of the current are 
varied, the system can undergo a torus-doubling route to chaos.” Optical detectors 
are used to measure the transverse amplitude of the wire. The transverse displace- 
ments of the wire generate the time series to be analyzed. Control parameters of the 
experimental set-up may be found in reference 19. 

The amplitude oscillations have a pseudo-period equal to about 0.1 s. The time 
step 6t between two successive measurements is equal to 7.7 x s. Thus, 130 
points per cycle are available. A three-dimensional embedding (FIG. 1) of a chaotic 
trajectory is created out of the scalar amplitude measurements made by a single 
detector by using delay coordinates. The time delay is fixed to A = 396t, based on 
the mutual information criterion. The embedding dimension d ,  is found to be equal 
to 3. 

The model (FIG. 2) is validated by comparing Lyapunov exponents. From the 
experimental data, the positive Lyapunov exponent is A, = 4.97 x lo-’ and the 
negative one is A, = -0.702, while, from the synthetic data, they are A l  = 4.31 
x lo-’ and 1, = -0.576. These values differ by approximately 15% for the posi- 

tive exponent and 20% for the negative exponent.” 
Another method for checking the model is synchronization.* The modified Fuyi- 

saka and Yamasada method of synchronization is given by 

where e is the coupling matrix between the two dynamical systems involved in 
(26). The x(t) E R d h  denotes the trajectory of the experimental system in its phase 
space, and y(t )  E RdE the trajectory generated by the model in the embedding phase 
space, namely the response system in the jargon of synchronization.2’ The driving 
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FIGURE 1. Plane projection of the three embedded t h e  series from the string experiment. 
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FIGURE 2. Projection of the reconstructed attractor generated by integrating the model. 
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and the response systems are said to be synchronized if there exists a coupling 
matrix with a few nonzero components ensuring that the response trajectory is 
slaved to the driving trajectory. Brown et a1.” used only one nonzero component 
lying on the leading diagonal which may be written as eSB = E .  They showed that, 
depending on the value of B, setting E to a too small or to a too large value does not 
produce any synchronous motion. More important, synchronization could only be 
obtained if the reconstructed vector field f was a good enough approximation to the 
true dynamics f.* By using the third component of x for coupling, they found that 
the model is synchronized for E 2 E, x 0.5. Tests were given for E = 0.75 and 3.0. 

The topological analysis has been also used as a third test to check the model. A 
review concerning topological characterization may be found in reference 24. Tufil- 
laro et a1.19 showed that the model induces the same template as the experimental 
data, i.e., the relative organization of the periodic orbits is the same for both the 
experimental data and the model data. Such a topological analysis guarantees that 
the original attractor and the reconstructed attractor are topologically equivalent. 
We think that topological analyses may provide the best criterion for checking a 
model, particularly if the populations of periodic orbits are also compared. 

Brown et a1.’ have also obtained models for experimental data arising from an 
electronic circuit for two values of a control parameter CI. The corresponding attrac- 
tors are displayed in FIGURES 3 and 5. They form a so-called single attractor and a 
symmetric attractor with two wings, respectively. The models contain N ,  = 4 and 

I I I I I I 
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FIGURE 3. Plane projection of the single attractor. 
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N ,  = 5 polynomials for ct = 17.4 and ct = 18.9, respectively, i.e., chaotic trajectories 
have been successfully reconstructed with rather simple mathematical expressions 
(FIGS. 4 & 6). 

Finally, we mention the reconstruction of a model of the Belousov-Zhabotinskii 
reaction* whose topological analysis has been given by Mindlin et aLZ3 A projection 
of the corresponding attractor (cf. reference 23 for a specific embedding procedure) is 
displayed in Fieme 7. Here again, the model is found to be rather simple, contain- 
ing N ,  = 7 polynomials with a 3D-embedding (FIG. 8). 

Electrodissolution of a Rotating Cu Electrode 

We start with a time series which has been obtained from current measurements 
during the potentiostatic electrodissolution of a rotating Cu electrode in phosphoric 
acid. The experiments have been described in detail in references 25 and 26. Briefly, 
the experimental set-up consisted of a rotating disc electrode which had a copper 
rod, 8.26 mm in diameter, embedded in a 2 cm diameter Teflon cylinder. The rotat- 
ing speed was maintained at 4400 rpm. The cell was a 500 ml flask with a side neck 
in which the capillary probe was fixed. The cell contained 250 ml of 85% phosphoric 
acid and a water bath was used to maintain its temperature at 20°C. A Potentiostat 
(Princeton Applied Research model 273) was used to regulate the potential of the 
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FIGURE 7. A differential-integral phase space embedding of the Belousov-Zhabotinskii data. 

working disc electrode with respect to the reference electrode and to monitor the 
current. The data were recorded at a frequencyf, of 1500 Hz. 

The state space of the electrodissolution has been reconstructed from the current 
time series I(t) by using successive time derivatives. The embedding dimension d, is 
found2’ to be equal to 3 from the estimation of the correlation dimension by using 
the Grassberger-Proccacia algorithm.32 In the reconstructed phase space, the 
asymptotic motion settles down onto a chaotic attractor displayed in FIGUIW 9. The 
so-called copper attractor is found to be characterized by a horseshoe template (cf. 
references 25, 26 or 24). The window size A used to evaluate the derivatives is taken 
to be equal to 21&, where St = 6.67 x s. The pseudo-period of the oscillations 
is about 0.102 s. Thus, we have approximately 150 points per pseudo-period. The 
number of retained polynomials in the model is found to be equal to 26 which is 
rather large in comparison with N,’s obtained in the cases discussed in the previous 
section. As explained earlier, it is inherent to the form of the model, all the nonlinear 
dynamics being stored in a single standard function. 

By numerically integrating the reconstructed model, a reconstructed attractor 
(FIGURE 10) is obtained which looks rather similar to the original copper attractor. 
The model is checked by using topological analysis. Both attractors indeed induce 
the same template. Moreover, a slight difference which has been found between the 
corresponding two orbit spectra has been explained in terms of contamination of 
the experimental data by noise.26 
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FIGURE 8. Reconstructed model of the Belousov-Zhabotinskii reaction. 
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FIGURE 9. Attractor generated by the copper electrodissolution (copper attractor). 
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FIGURE 10. Reconstructed attractor A ,  of the copper electrodissolution by integrating the 
reconstructed vector field. 

A second electrodissolution has also been studied subsequently. The experimen- 
tal set-up is very similar to  the previously described one except that it concerns an 
iron electrodissolution in sulfuric acid. The embedding dimension d ,  has been found 
to be equal to  3 by using the mutual information criterion analysis (kindly per- 
formed by R. Brown). The window size A is equal to 35St .  The attractor generated 
by the experimental data is displayed in FIGURE 11. 

In a model for this dynamics, the number N ,  of polynomials has been found to 
be equal to 78. The attractor obtained by integrating the model (FIGURE 12) looks 
very similar to, but also slightly different from the original attractor. The model has 
then been validated, but only partiallyz7 insofar as the topological analysis could 
not be safely performed. In particular, the absence of a hole in the middle of the 
attractor prevents a safe enough definition of a Poincare section inducing many 
difficulties in performing the topological characterization. For these reasons, syn- 
chronization has also been used. The model has been successfully synchronized with 
the experimental time series by using E , ,  = 0.05 and E , ,  = 0.05 as nonzero ele- 
ments in the coupling matrix of (25). We may then state that the model dynamics is 
close to the experimental dynamics. 

Astrophysical Applications 

Two applications of the global flow reconstruction method have been made to 
problems of astrophysical interest; the first to  the irregular pulsations of a model of 
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FIGURE 11. Projection in the XY-plane of the attractor generated by the iron electro- 
dissolution. 

a star of the W Vir type that were obtained with a state-of-the-art numerical hydro- 
dynamical code, and the second to the observed irregular light-curve data of two 
stars of the RV Tau type. 

W Vir Model Pulsations 

The reconstruction of Serre et al." confirmed that the irregular pulsations of W 
Vir modelsz8 are indeed chaotic, and they furthermore could show that the 
dynamics could be embedded in a three-dimensional space (dE 2 3). Lyapunov 
exponents were also computed and led to a fractal Lyapunov dimension d ,  x 2.02 
for the reconstructed attractor, with d,  independent of the embedding dimension. 
With the aid of the embedding theorem they thus concluded that the physical 
attractor also has a fractal dimension of x 2.02. From these two bounds d,  < d I 
d,  it follows that the physical dimension d is also 3. 

These results were robust with respect to changes in the delay and the maximum 
order P of the polynomials of the map. They also found that as d ,  is increased, the 
highest polynomial degree P can be decreased. A convenient and in some sense 
optimal representation of the attractor can be made in Broomhead-King coordi- 
nates Ck (projections onto the eigenvectors of the correlation matrix34). The projec- 
tions onto the planes spanned by the first three principal components are shown in 
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FIGURE 12. Reconstructed attractor of the iron electrodissolution obtained by integrating 
the reconstructed vector field. 

FIGURE 13. Once the map has been determined it can be iterated to produce syn- 
thetic signals. FIGURE 13 shows that the synthetic signals are very similar to the 
original data set, independently of the embedding dimension. For further details we 
refer to reference 11. 

W Vir  model 

I 

, 
, 

Syn 3D Syn 4D Syn 5 D  

FIGURE 13. W Vir model, lowest three principal component projections. Column I : data set; 
2-4 : synthetic signals from noisy data set in 3D, 4D and 5D. 



GOUESBET ef d.: SCALAR TIME SERIES 43 

One notes that the numerical hydrodynamical code replaces the PDEs of fluid 
dynamics and heat flow by a discrete approximation consisting of N mass shells. In 
the above-mentioned work a set of 3N = 180 coupled nonlinear ODES were thus 
solved. (These ODES are very stiff in the mathematical sense because of the sharp 
temperature sensitivity of the equation of state and opacity law.) It is therefore 
nontrivial that the resultant pulsation can be fully described by a mere three ODEs. 
This dimensional shrinkage from 180D (or any other number of zones N that suffi- 
ciently resolves the spatial structure of the star) to 3D shows that there is an inertial 
manifold in which the dynamics takes place. This implies that the time-dependence 
of all the physical variables throughout the star (e.g., velocity, density and tem- 
perature fields) can be expressed in terms of only three basic variables. 

While the physical picture is not entirely clear yet, these results taken together 
with a Floquet analysis of the hydrodynamical models3’ suggest that the linearly 
unstable fundamental mode of oscillation of the star interacts nonlinearly with a 
single overtone through a parametric resonance to produce the complex behavior. 
How the additional dimensional shrinkage from 4D (two complex modes) to 3D 
comes about is still under investigation. 

R Scuti Observational Data 

The recent availability of a suitably large and densely sampled observational 
data set has made it possible to apply the global flow reconstruction method to 
astronomical data”.” and to probe the properties of the irregular pulsation cycles 
of an actual star, namely star R Scuti. The light-curve is shown in FIGURE 14 on top. 
The authors demonstrated first that the observational light-curve data of R Scuti, a 
star of the RV Tau type, is not multi-periodic, and that it cannot have been gener- 
ated by a linear stochastic (AR) process. The nonlinear reconstruction analysis 
shows that this star’s complicated light-curve is captured by a simple 4D polynomial 
map or flow (four first-order ODEs) and that the bulk of the signal consists of low 
dimensional chaos. FIGURE 14, at the bottom, shows a typical synthetic light-curve 
that has been generated from the reconstructed 4D map. 

Synthetic signal 
3000 4000 5000 6000 7000 8000 

time [d] 

FIGURE 14. Top: R Scuti light-curve; bottom: synthetic light-curve. 
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FIGURE 15. Lowest three Broomhead-King coordinate projections. Column 1 : data set; 2 & 
3: synthetic signals from 4D and 5D maps; 4 :  synthetic signal from 4D flow. 

FIGURE 15 shows the lowest Broomhead-King projections of the R Scuti light- 
curve together with synthetic light-curves in 4D and 5D. The rightmost figures show 
a synthetic signal from a reconstructed flow (using the Adams integration scheme). 
The synthetic signals are not only very similar in appearance to the R Scuti light- 
curve as FIGURE 14 shows, but the more discriminating BK projections in FIGURE 15 
show that they are really very similar, and robust with respect to dimension. They 
also show that a flow really underlies the dynamics. 

For astrophysical purposes it is important that the method allows us to quan- 
tifv an irregular signal, in terms of Lyapunov exponents and dimension, which has 
the potential novel benefit for extracting novel stellar constraints from irregular 
light-curves. 

The low dimensionality 4 of the flow again suggests a simple physical picture of 
the pulsations, namely that the pulsations of R Scuti are the result of the nonlinear 
interaction of two vibrational “normal” modes of the star” (see also Kollith & 
Buchler in this volume for additional evidence). 

A preliminary study of another star of the same type, but not quite as irregular, 
AC Her, again indicates a low dimensional dynamics of 4.33 

Following the earlier discussion, we also note that in a first study” the orthon- 
ormal polynomials were constructed with the GS procedure. This led to difficulties, 
in particular concerning the highest polynomial degree as their figure 3 and associ- 
ated comments indicate. (Numerical cancellations cause negative norms.) A sub- 
sequent more thorough study resorted to the LS procedure with the help of an SVD 
algorithm. This procedure is not only a factor of 10 faster, but it remains numeri- 
cally stable for all values of d ,  and P (cf. reference 10). 

RECONSTRUCTION WITH A CONTROL PARAMETER DEPENDENCE 

We have discussed some applications of global vector field reconstruction with 
giuen control parameters to experimental systems. An additional step can be taken 
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in the direction of reconstructing models as a function of a control parameter 
dependence. Actually such a goal has already been reached with neural  network^,'^ 
but a study of control parameter dependence with a global vector field reconstruc- 
tion technique such as those discussed in the present paper is still very new. 

Principle 

We assume that the dynamical system of (2) is studied under the variation of a 
control parameter a taken from the control parameter vector 8. With the method 
described earlier, the standard system reconstructed from the recorded variable x 
with a-dependence reads as 

i 2, =fs(zI, z2,  z 3 ,  a), 

where the standard function& now depends on the control parameter a. The basis 
polynomials therefore involve monomials of the form (zi z$ z: a’), generalizing the 
previous discussion. The error function is furthermore modified to account for the 
control parameter a (for more details, see reference 30). 

z1 = z2 

i, = z3 (26) 

Numerical Check 

A numerical check of the validity of this approach is now given in the case of the 
Rossler system 

x =  - y - z  
j = x + a y  i i = b + z(x - c). 

This system has been extensively studied along a line in the control parameter space 
defined by (a E c0.33, 0.5571, b = 2, c = 4).” Moreover, we have shown that there 
exists a diffeomorphism between the y-induced attractor and the original Rossler 
a t t ra~tor .~’  Consequently, the y-variable for the Rossler system provides a good 
checkpoint for the present extension. The exact standard function, which may be 
analytically derived, then has a polynomial form involving 5 1 monomials.30 

The learning set of data is composed of four time series {yi, i E [l, N ,  = lOOO]}, 
generated for four different values of the control parameter a taken to be equal to 
0.2, 0.2625, 0.325 and 0.3875. Let us remark that these U-values correspond to three 
different limit cycles of the period-doubling cascade and to a chaotic behavior just 
beyond the accumulation point at a, = 0.386. The sampling rate of the time series 
is taken to be equal to 6t = lO-’s. A good approximation of the standard function 
is easily found with N ,  = 51 and A = 764 for which the generalized error function is 
E ,  = 3.8 x The estimated coefficients of the reconstructed standard function 
are reported in Table I1 of reference 30. 
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The integration of the reconstructed model generates attractors which may be 
shown to be topologically equivalent to  the original Rossler attractors. In order to 
check our model with respect to the control parameter dependence, let us now 
compare the bifurcation diagrams of the reconstructed and of the standard exact 
systems along the line a E C0.33, 0.5571 (FIGS. 16 and 17). The agreement between 
both diagrams is very satisfactory indeed. 

Preliminary Results from Experimental Data 

We now turn to a discussion of preliminary results concerning the use of the 
previously described technique with control parameter dependence to the case of 
experimental data. The data arise from copper electrodissolution experiments in 
which the potential between the reference electrode and the copper rod is varied. 
These data (from J. Hudson and Z .  Fei, University of Virginia) are made of 18 time 
series which have been recorded for different values of the potential, taken as the 
control parameter. The pseudo-period of the current oscillations is about 0.1 s and 
the time step 6t is equal to  5 x s. Thus, 200 points per pseudo-period are 
available. Each time series contains 5000 points and is smoothed. 

The experimental and reconstructed bifurcation diagrams are displayed in 
FIGURES 18 and 19, respectively. Although the agreement is not perfect, there is a 
general resemblance which is certainly encouraging. In particular, the model gener- 

FIGURE 16. Bifurcation diagram for the original Rossler system with y-coordinate. 
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FIGURE 17. Bifurcation diagram from the reconstructed model, with y-coordinate. 
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FIGURE 19. Reconstructed bifurcation diagram. 

ates a sequence of behavior which is similar to the experimental one. We hope that a 
further effort will significantly improve these preliminary results. 

CONCLUSIONS 

Global vector field reconstructions are a topic of growing interest. They allow 
one to obtain a global model from measurements carried out on a single variable 
scalar time series. In other words, they provide relevant information on variables 
from which no measurements have been taken. Several variants of this technique 
have been reviewed and applications have been discussed. It is important to remark 
that global vector field reconstruction is nowadays developed enough to  allow 
applications to (short, noisy) experimental data. We have also demonstrated that a 
control parameter dependence can be included in the technique. Then, measure- 
ments on one variable for a few values of the control parameter may allow us to  get 
information on variables and for control parameter values which were not experi- 
mentally investigated. We may imagine many uses of the phenomenological models 
so obtained, such as for prediction, encoding of long time series, and control, to  only 
quote a few key words, and it is expected that the interest for this topic will continue 
to grow. 
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