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Foreword

Our interest in the study and computation of electromagnetic fields started
during the 1990s. For Franck Assous, it originated from the need to compute
precisely the motion of charged particles for plasma physics applications. For
Patrick Ciarlet, it began with the study of the relations between the electro-
magnetic fields and their potentials from a mathematical point of view. From
both the numerical and the theoretical points of view, it soon appeared that
one had to be especially careful when dealing with singular configurations. A
typical example occurs when one has to solve a seemingly elementary problem,
namely the computation of the fields in vacuum, around a perfectly conduct-
ing body, or inside a perfectly conducting cavity or waveguide. Together with
Simon Labrunie, we started to investigate this problem for a class of such bod-
ies that are invariant by rotation. Since then, we have collaborated regularly
on this topic and many others.

Going back to the example, when the interface between the body and vac-
uum is piecewise smooth and when the computational domain is locally non-
convex near this interface, intense electromagnetic fields may occur. Pointwise
values are unbounded, and mathematically, the smoothness of the fields deteri-
orates. It turns out that this common situation induces challenging problems,
which we address here. Though the contents of this monograph chiefly deal
with theoretical issues, most results are derived in order to solve problems
numerically, using discretized variational formulations (we do not address the
issue of discretization in this book).

The focus of this monograph is clearly an applied mathematical one; how-
ever, we begin by discussing the physical framework of electromagnetism and
related models. One of the main points of the book is the introduction of
mathematical tools to characterize electromagnetic fields precisely and, among
others, the traces of those fields on submanifolds of R?. This issue is especially
important on nonsmooth submanifolds. Another important issue is the math-
ematical measure of those fields, which can take several forms. Interestingly,
this leads to very different categories of discretized problems. A third main
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issue is the introduction and justification of approximate models in a broad
sense, such as, for instance static, quasi-static or time-harmonic, and also of
reduced models, namely 2D and 2%D models. The last important issue deals
with the introduction and study of models that govern the motion of charged
particles interacting with electromagnetic fields.

The text is entirely self-contained: we only assume from the reader a
bachelor-level background in analysis, and we give all the necessary basic
definitions. Nevertheless, this monograph includes some original approaches
and novel applications not covered, to our knowledge, in previous books. It is
chiefly intended for researchers in applied mathematics who work on Maxwell’s
equations and their approximate or coupled models. Much of its material may
also serve as a basis for master or doctorate-level courses on mathematical
electromagnetism.

We are indebted to a number of people who contributed, to various extents,
to the topics we address in this monograph. Let all of them be thanked: Régine
Barthelmé, Anne-Sophie Bonnet-BenDhia, Annalisa Buffa, Lucas Chesnel,
Pierre Degond, Emmanuelle Garcia, Erell Jamelot, Pierre-Arnaud Raviart,
Jacques Segré, Eric Sonnendriicker, Jun Zou and Carlo Maria Zwolf.

Finally, we gratefully acknowledge the help of the following readers of pre-
liminary versions of the manuscript: Lucas Chesnel, Lipeng Dai, Benjamin
Goursaud, and Claire Scheid.

Franck Assous, Patrick Ciarlet and Simon Labrunie
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1

Physical framework and models

The aim of this first chapter is to present the physics framework of electromag-
netism, in relation to the main sets of equations, that is, Maxwell’s equations
and some related approximations. In that sense, it is neither a purely physi-
cal nor a purely mathematical point of view. The term model might be more
appropriate: sometimes, it will be necessary to refer to specific applications
in order to clarify our purpose, presented in a selective and biased way, as it
leans on the authors’ personal view. This being stated, this chapter remains a
fairly general introduction, including the foremost models in electromagnetics.
Although the choice of such applications is guided by our own experience, the
presentation follows a natural structure.

Consequently, in the first section, we introduce the electromagnetic fields and
the set of equations that governs them, namely Maxwell’s equations. Among
others, we present their integral and differential forms. Next, we define a class
of constitutive relations, which provide additional relations between electro-
magnetic fields and are needed to close Maxwell’s equations. Then, we briefly
review the solvability of Maxwell’s equations, that is, the existence of electro-
magnetic fields, in the presence of source terms. We then investigate how they
can be reformulated as potential problems. Finally, we relate some notions on
conducting media.

In Section 1.2, we address the special case of stationary equations, which have
time-periodic solutions, the so-called time-harmonic fields. The useful notion
of plane waves is also introduced, as a particular case of the time-harmonic
solutions.

Maxwell’s equations are related to electrically charged particles. Hence, there
exists a strong correlation between Maxwell’s equations and models that de-
scribe the motion of particles. This correlation is at the core of most models
in which Maxwell’s equations are coupled with other sets of equations: two
of them — the Vlasov—Maxwell model and an example of a magnetohydrody-
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namics model (or MHD) — will be detailed in Section 1.3.

We introduce in the next section approximate models of Maxwell’s equations,
ranging from the static to the time-dependent ones, in which one or all time
derivatives are neglected. We also consider a general way of deriving such ap-
proximate models.

In Section 1.5, we recall the classification of partial differential equations, and
check that Maxwell’s equations are hyperbolic partial differential equations.

At an interface between two media, the electromagnetic fields fulfill some
conditions. In a similar way, when one of the media is considered as being
exterior to the domain of interest,! interface conditions are then formulated
as boundary conditions on the boundary of the domain. Also, to reduce the
overall computation cost, one usually truncates the domain by introducing an
artificial boundary, on which (absorbing) boundary conditions are prescribed.
Another possibility is to introduce a thin, dissipative layer, in which the fields
are damped. This constitutes the first topic of Section 1.6. The second topic
is the radiation condition, which is required for problems set in unbounded
domains to discriminate between outgoing and incoming waves.

The aim of the last section is to recall the basic notions of energy in the
context of Maxwell’s equations. In particular, notions such as electromagnetic
energy flow, Poynting vector and energy conservation are defined.

We conclude this introductory chapter by providing a set of bibliographical
references.

1.1 Electromagnetic fields and Maxwell’s equations

We present the electromagnetic fields in their time-dependent form, as the so-
lutions to Maxwell’s equations. The various components of the electric and of
the magnetic fields are related to source terms by either a set of integral equa-
tions or a set of first-order partial differential equations. Then, we study the
constitutive relations, which provide additional relations for the electromag-
netic fields. With this set of equations — differential Maxwell equations and
constitutive relations — we can state that, starting from a given configuration,
the electromagnetic fields (exist and) evolve in a unique way. We also expose
another formulation, called the potential formulation, with a reduced number
of unknowns, which can be interpreted as primitives of the electromagnetic
fields. Finally, we conclude with a brief study of conducting/insulating media.

! Unless otherwise specified, in this chapter, a domain is an open region of space.
Another meaning is given for the mathematical studies, starting in Chapter 2.
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1.1.1 Integral Maxwell equations

The propagation of the electromagnetic fields in continuum media are de-
scribed using four space- and time-dependent functions. If we respectively
denote by & = (z1,22,23) and t the space and time variables, these four
R3-valued, or vector-valued, functions defined in time-space R x R? are

the electric field E,

the magnetic induction B,
the magnetic field® H,

the electric displacement D.

=W

These vector functions are governed by the integral Mazwell equations below.
These four equations are respectively called Ampere’s law, Faraday’s law,
Gauss’s law and the absence of magnetic monopoles. They read as (system of

units ST)
d
—</D-dS>— H~dl:—/J~dS, (1.1)
dt \Js a5 5

i( B-dS>+ E.-dl -0, (1.2)
dt S/ BS/
D.dsS :/ odV, (1.3)
ov 174
B-dS — 0. (1.4)
ov’

Above, S, S’ are any surface of R?, and V, V'’ are any volume of R3. One can
write elements dS and dl as dS = ndS and dl = T dl, where n and T are,
respectively, the unit outward normal vector to S and the unit tangent vector
to the curve 5. When S is the closed surface bounding a volume, then n is
pointing outward from the enclosed volume. Similarly, the unit tangent vector
to 05 is pointing in the direction given by the right-hand rule.

There are two source terms, respectively, o and J. g is an R-valued, or scalar-
valued, function called the electrostatic charge density. It is a non-vanishing
function in the presence of electric charges. J is an R3-valued function called
the current density. It is a non-vanishing function as soon as there exists
a charge displacement, or in other words, an electric current. Now, take the
time-derivative of Eq. (1.3) and consider S = 9V in Eq. (1.1): by construction,
S is a closed surface (0S = ), so that these data satisfy the integral charge
conservation equation

%(/ngv)Jr/avJ.ds_o. (15)

Again, V is any volume of R3.

2 H is sometimes called the magnetizing field.
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1.1.2 Equivalent reformulation of Maxwell’s equations

Starting from the integral form of Maxwell’s equations (1.1-1.4), one can refor-
mulate them in a differential form,® with the help of Stokes and Ostrogradsky
formulas

/curlF-d.S': F.dl and/diVFdV: F-dSs.
S o8 \%4 ov

One easily derives the differential Mazwell equations (system of units SI):

86—? —curlH = —J, (1.6)
i)—? +curl E =0, (1.7)
div D = p, (1.8)
div B = 0. (1.9)

The differential charge conservation equation can be expressed as

do .
Eer“’J_O' (1.10)

However, the above set of equations is not equivalent to the integral set of
equations. As a matter of fact, two notions are missing.

The first one is related to the behavior of the fields across an interface between
two different media. Let X' be such an interface.
Starting from the volumic integral equations (1.3)-(1.4), we consider thin vol-
umes V. crossing the interface. As e goes to zero, their height goes to zero, and
so does the area of their top and bottom faces (parallel to the interface), with
proper scaling. The top and bottom faces are disks whose radius is propor-
tional to €, while the height is proportional to €2. As a consequence, the area
of the lateral surface is proportional to € and its contribution is negligible as
€ goes to zero. Passing to the limit in Eq. (1.3) and Eq. (1.4) then provides
some information on the jump of the normal (with respect to ') components
of D and B:

[D-’I’LE]E:O’E, [B’I’LE]E:O (111)

Above, [f]s denotes the jump across the interface fiop — foottom, and nx
is the unit normal vector to X going from bottom to top. The right-hand
side oy corresponds to the idealized surface charge density on X: formally,

0 = 0'252(4).

3 The standard differential operators curl, div, grad, and A are mathematically
defined in §1.5.1.

4 By definition, d5 is the surface Dirac mass on X, so one has f ov = fz oxv g dS
for ad hoc functions v.
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Starting from Egs. (1.1)-(1.2), the reasoning is similar. For the tangential
components, one gets

[’I’LEXE]EZO, [’I”LEXH]EZjE, (112)

with j 5 the (idealized) surface current density on X (j 5 is tangential to X).
Finally, if divy denotes the surface divergence, or tangential divergence, op-
erator, integral charge conservation equation (1.5) yields

a(;LtE +diV2j2+[J"I’LE]E =0.

The second notion is topological. For instance, one can consider that the do-
main of interest is the exterior of a thick (resistive®) wire, or the exterior of
a finite set of (perfectly conducting®) spheres. In the first case, the domain is
not topologically trivial, and in the second one, its boundary is not connected.
In both instances, a finite number of relations — derived from homology theory
— have to be added to the differential equations (1.6)-(1.9) and the interface
relations (1.11)-(1.12) (see Chapter 3 for details). We assume that, by doing
s0, we obtain a framework that is equivalent to the integral Maxwell equations
(1.1)-(1.4).

1.1.3 Constitutive relations

Maxwell’s equations are insufficient to characterize the electromagnetic fields
completely. The system has to be closed by adding relations that describe
the properties of the medium in which the electromagnetic fields propagate.
These are the so-called constitutive relations, relating, for instance, D and B
to E and H, namely

D=D(E,H) and B=B(E H).

(We could also choose a priori to use such a relation as D = D(E, B), etc.)
These constitutive relations can be very complex. For this reason, we will
make a number of assumptions on the medium (listed below), which lead to
generic expressions of the constitutive relations. This will yield three main
categories of medium, which are, from the more general to the more specific:

1. the chiral medium, a linear and bi-anisotropic medium ;

2. the perfect medium, a chiral, non-dispersive and anisotropic medium ;

3. the inhomogeneous medium, a perfect and isotropic medium, and its sub-
category, the homogeneous medium, which is, in addition, spatially homo-
geneous.

In what follows, E(t) (or B(t), etc.) denotes the value of the electric field on
R? at time t: © — E(t, ). Let us now list the assumptions about the medium.

5 See the end of the section.
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e The medium is linear. This means that its response is linear with respect
to electromagnetic inputs (also called excitations later on). In addition, it
is expected that when the inputs are small, the response of the medium is
also small.

e The medium satisfies a causality principle. In other words, the value of
(D(t), B(t)) depends only on the values of (E(s), H(s)) for s < t.

e The medium satisfies a time-invariance principle. Let 7 > 0 be given. If
the response to t — (E(t), H(t)) is t — (D(t), B(t)), then the response
tot— (E(t—7),H({t—7))ist— (D(t—71),B(t—71)).

Note that the first assumption corresponds to a linear approximation of
D = D(E, H): for electromagnetic fields, whose amplitude is not too large,
a first-order Taylor expansion is justified. Furthermore, the smallness require-
ment can be viewed as a stability condition (with respect to the inputs). An
immediate consequence of the second assumption is that, if (E(s), H(s)) =0
for all s < tg, then (D(to), B(tp)) = 0. Taking all those assumptions into
account leads to the constitutive relations

{D:&:E—i—{H—i—@d*E—i-{d*H

B=(E+pH+ (% E+ g » H. (1.13)

Let us comment on expression (1.13).

The constitutive parameters e, §, ( and p are 3 x 3 tensor real-valued func-
tions or distributions of the space variable x. Indeed, according to the time-
invariance principle, these quantities must be independent of t. Among them,
¢ is called the dielectric tensor, while p is called the tensor of magnetic per-
meability.

The constitutive parameters €4, &4, (4 and pg are 3 x 3 tensor real-valued
functions of the time and space variables (¢, ). The notation * denotes the
convolution product, a priori with respect to the four variables (¢, x):

(eqa* E)(t,x) = / / ca(s, y)E(t —s,x —y)dyds, etc.
s€R JyeR3

The causality principle implies €q4(s) = $a(s) = (a(s) = pa(s) = 0, for all
s < 0. As a consequence, the convolution product reduces to

(ea*x E)(t,x) = / / ca(s, y)E(t —s,x —y)dyds, etc.
0 y€ER3

Often, the response depends very locally (in space) on the behavior of the
input. So, one assumes locality in space in the convolution product, or, in
other words, that the integral in y is taken over a “small” volume around the
origin. Here, we further restrict this dependence, as we consider that one can
(formally) write® eq(s,y) = eq(s) @ do, etc. We finally reach the expression of
the convolution product

6 By definition, 0z, is the Dirac mass in @o, so one has f 00v = qov(xo) for ad hoc
functions v.
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(eax E)(t,x) = /000 ea(s)E(t — s,x)ds, etc. (1.14)

To summarize the above considerations, the constitutive parameters €4, &4,
(g and g are 3 x 3 tensor real-valued functions of the time variable ¢ which
vanish uniformly for strictly negative values of ¢, and as a consequence, the
convolution product * is performed with respect to positive times only (cf.
(1.14)).

To carry on with the comments on (1.13), we note that the right-hand side
can be divided into two parts:

(1.15)

eE+tH
(E+pH

is called the optical response. It is instantaneous, since the values of the input
are considered only at the current time. The other part,

{@d*E‘FEd*H, (116)

Cax E+pgx H,

is called the dispersive response, hence a notation with an index 4. It is dis-
persive in time, and as such, it models the memory of the medium.

The relations (1.13) with the convolution products as in (1.14) are linear and
bi-anisotropic; they model a linear and bi-anisotropic medium, also called a
chiral medium. Several simplifying assumptions can be made.

e The medium is non-dispersive when the dispersive response (1.16) van-
ishes. In other words, the response of the medium is purely optical (1.15).
The medium is anisotropic provided that § = ( = 0.

An anisotropic medium is isotropic when, additionally, the 3 x 3 tensors €
and p are proportional to the identity matrix: € = €l3 and p = uls.

For an anisotropic medium, the constitutive parameters ¢ and p are scalar
real-valued functions of @: € and p are respectively called the electric permit-
tivity and the magnetic permeability of the medium.

In this monograph, apart from the “general” case of a chiral medium, we shall
assume most of the time that the medium is perfect, that is, non-dispersive
and anisotropic, or inhomogeneous, that is, perfect and isotropic. In a perfect
medium, the constitutive relations read as

D(t,x) =¢(x) E(t,x) and B(t,x) = p(x) H(t,x), V(t,z) € Rx R®. (1.17)

In this case, the differential Maxwell equations (1.6-1.9) can be written with
the unknowns E and H. They read as
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OF
© o curl H = —J, (1.18)
[pa—I_tI +curl E =0, (1.19)
div(eE) = p, (1.20)
div(pH) = 0. (1.21)

To write down Egs. (1.6-1.9) with the unknowns E and B, one has to note
that p is necessarily invertible on R?, since we assumed at the beginning that
the constitutive relations could also have been written as H = H(E, B)...
So, Egs. (1.18-1.21) can be equivalently recast as

@%—? —curl(y™'B) = —J, (1.22)
i)—? +curl E =0, (1.23)
div(eE) = o, (1.24)

div B = 0. (1.25)

In an inhomogeneous medium, one simply replaces the tensor fields € and p
with the scalar fields e and u in Eqs. (1.18-1.21) or in Egs. (1.22-1.25).
Finally, if the perfect medium is also isotropic and spatially homogeneous, we
say (for short) that it is a homogeneous medium. In a homogeneous medium,
the constitutive relations can finally be expressed as

D(t,x) = E(t,x) and B(t,z) = p H(t,x), ¥(t,z) € R x R®.

Above, € and p are constant numbers. Remark that vacuum is a particular case
of a homogeneous medium, which will be often considered in this monograph.
The electric permittivity and the magnetic permeability are, in that case,
denoted as g¢ (g9 = (367.10°) "'Fm~!) and po (po = 47.10""Hm 1), and we
have the relation c?egug = 1, where ¢ = 3.10%ms ™! is the speed of light. The
differential Maxwell equations become, in this case,

E 1
%—t —c* curl B = —gJ, (1.26)
B
%—t +curl E =0, (1.27)
divE = ig, (1.28)
€0
div B = 0. (1.29)

1.1.4 Solvability of Maxwell’s equations

What about the proof of the existence of electromagnetic fields on R3?
To begin with, there exist many “experimental proofs” of the existence of
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electromagnetic fields! These experiments actually led to the definition of the
equations that govern electromagnetic phenomena, and of the related elec-
tromagnetic fields, by Maxwell and many others during the 19th and 20th
centuries. So, it is safe to assume that these fields exist, the challenge being
mathematical and computational nowadays...

Where does the theory originate? Let us give a brief account of one of the
more elementary (mathematically speaking!) results on charged particles at
rest (results have also been obtained for circuits, involving currents).

The fundamental experimental results we report here were obtained by
Charles Augustin de Coulomb in 1785, when he studied repulsive or attractive
forces between charged bodies, small elder balls. In the air — a homogeneous
medium (e = g,) — let us consider two charged particles, part; and part, at
rest. Their respective positions are 1 and «, whereas their respective electric
charges are ¢; and ¢. In short, Coulomb’s results (now known as Coulomb’s
law) state that the two particles interact electrically” with one another, in
the following way. The force F' acting on particle part and originating from
particle part; is such that:

it is repulsive if ¢1¢ > 0, and attractive if ¢3¢ < 0;

its direction is parallel to the line joining the two particles;
its modulus is proportional to |z — 1|72

its modulus is also proportional to ¢; and q.

If one sets the proportionality coefficient to (the modern) 1/4me,, one finds
that
_4a (z— 1)

Amey o — a1 |?

F(x)
Now, define the electric field as the force per unit charge. One infers that

o (x—x)

E(z) = I
@) dme, e —aq)?

Interestingly, it turns out, after some elementary computations, that one has

1 73

E = —grad, ¢, with ¢1(z) = Are, |z — o]

In particular, one gets that curl E = 0, which bears a striking resemblance
to Faraday’s law (1.27) for a system at rest. Moreover, after another series
of simple computations, one finds that div E = p1/e,, where g; is equal to
01() = (105, (x): in other words, the charge density is created by the particle
party, so Gauss’s law (1.28) is satisfied too...

Furthermore, Coulomb proved that the total force produced by N charged
particles on an (N + 1)-th particle (all particles being at rest) is equal to the

7 Or: electrostatically.
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sum of the individual two-particle forces, so the same conclusions can actually
be drawn for any discrete system of charged particles at rest! The formula for
the charge density is then on(x) = ), .« n €0z, (), while

: 1 qi
@ 1<i<N v

See §1.3 and §1.7 for continuations.

Now, we focus on the mathematical existence of electromagnetic fields. Ev-
idently, we note that one can devise by hand some solutions to Maxwell’s
equations for well-chosen right-hand sides (using, for instance, Fourier Trans-
form or Green functions, cf. Chapter 6 of [142]). However, one can also solve
this set of equations in more general and more systematic ways. We give two
examples below.

The first one deals with the mathematical existence of the electromagnetic
fields, assuming a homogeneous medium in R?. More precisely, one adds initial
conditions to Eqgs. (1.26-1.29), which read as

E(0)=E,, B(0)=B,. (1.31)

(Above, we assume that the problem begins at time ¢ = 0.)

The couple (Ey, By) constitutes part of the data, the other part being
t — (J(t),0(t)), for ¢ > 0. The set of equations (1.26-1.29) together with
the initial conditions (1.31) is called a Cauchy problem. Based on the semi-
group theory, one can prove that there exists one, and only one, solution
t — (E(t),B(t)), for t > 0, to this Cauchy problem. Moreover, it depends
continuously on the data (the so-called stability condition). In a more com-
pact way, whenever an existence, uniqueness and continuous dependence with
respect to the data result is achieved, one says that the related problem is well-
posed: in our case, the Cauchy problem set in all space R? made of a homoge-
neous medium is well-posed. Obviously, once the existence and uniqueness of
(E, B) is achieved, the same conclusion follows for (D, H) = (g0 E, yy ' B)
(see Chapter 5 for more details).

Here, one has to be very careful, since the uniqueness and continuous depen-
dence of the solution require a (mathematical) measure of the electromagnetic
fields and of the data. To achieve these results, one uses the quantity Wy
(see below) as the measure for the fields. In this case, it reads as

1 1
ch(t):/ Lol B(t @) + —|B(t, @)%} da. (1.32)
R3 2 Ho
It turns out that W, defines the electromagnetic energy in this kind of

medium. For more details on energy-related matters, we refer the reader to
the upcoming §1.7.
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The second result deals with the existence of the electromagnetic fields, assum-
ing now a general chiral medium in R3. By using the same mathematical tools
(in a more involved way, see [141]), one can also derive a well-posedness result.
To measure the fields, one resorts to an integral similar to (1.32), namely

Walt) = [ {1B(t.2)? +|H(t.2)?) da.

Note that this measure is used to define the stability condition, which has
been previously mentioned. Once the existence and uniqueness of (E, H) is
achieved, the same conclusion follows for (D, B), according to the constitutive
relations (1.13).

Remark 1.1.1 In a bounded domain, one can derive similar results, with a
variety of mathematical tools. We refer the reader again to Chapter 5.

1.1.5 Potential formulation of Maxwell’s equations

Let us introduce another formulation of Maxwell’s equations. For the sake of
simplicity, we assume that we are in vacuum (in all space, R3), with Maxwell’s
equations written in differential form as Eqgs. (1.26-1.29). According to the
divergence-free property of the magnetic induction B, there exists a vector
potential A such that

B =curlA.

Plugging this into Faraday’s law (1.27), we obtain

curl(% +E)=0.

Then, there exists a scalar potential ¢ such that

0A
— +E=—grad¢. (1.33)
ot
This allows us to introduce a formulation in the variables (A, ¢) - the vector
potential and the scalar potential, respectively - since it holds there that

E = —grad¢ — %—? ,
B =curlA. (1.35)

This formulation requires only the four unknowns A and ¢, instead of the six
unknowns for the E and B-field formulation. Moreover, any couple (E, B)
defined by Egs. (1.34-1.35) automatically satisfies Faraday’s law and the ab-
sence of free magnetic monopoles. From this (restrictive) point of view, the
potentials A and ¢ are independent of one another. Now, if one takes into
account Ampere’s and Gauss’s laws, constraints appear in the choice of A
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and ¢ (see Eqs (1.37-1.38) below). Also, the vector potential A governed by
Eq. (1.35) is determined up to a gradient of a scalar function: there lies an
indetermination that has to be removed. On the other hand, for the scalar
potential, the indetermination is up to a constant: it can be removed simply
by imposing a vanishing limit at infinity. Several approaches can be used to
overcome this difficulty. In what follows, two commonly used methods are
exposed. If one recalls the identity

curl curl — graddiv=—-A, (1.36)

then Egs. (1.26) and (1.28), with the electromagnetic fields expressed as in
(1.34-1.35), yield

”?A 9 1. op, 1
—ﬁ(d' A)—Ad)*i (1.38)
a1 1v = EOQ . .

These equations suggest that one consider either one of the following two
conditions, each one of them helpful in its own way for removing the indeter-
mination.

Lorentz gauge

Let us take (A, ¢) such that the gradient-term in equation (1.37) vanishes:

c%ﬁfo%:o.

Hence, Eqs. (1.37-1.38) are written within the Lorentz gauge framework as

2

%%—02AA:ELJ,
0

(92(;5 9 2

This gauge is often used for theoretical matters, since it amounts to solving
two wave equations, a vector one for A and a scalar one for ¢. Remark as well
that these equations are independent of the coordinate system. This property
is useful for many instances, such as, for example, those originating from the
theory of relativity.

Coulomb gauge

This consists in setting the first term in Eq. (1.38) to zero. We thus consider
A such that
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divA=0.
Egs. (1.37-1.38) are now written as

2A 1 06
61}2 —c"AA = E—OJ —grad(E) y
1
Ap=——p.
€0

Choosing such a gauge yields a potential ¢, which is related to ¢ by a static
equation (however, ¢ and g can be time-dependent). This model is often used
when A is irrelevant, because electrostatic phenomena dominate. This is usu-
ally the case in plasma models (see, for instance, §1.4.5).

Remark 1.1.2 The calculations formally performed here are justified for
problems posed in all space. Actually, difficulties appear for the same prob-
lems posed in a bounded domain. The first ones are due to the topological
nature of the domain. The other ones revolve around the definition of compat-
ible boundary conditions on the potentials (A, ¢), with respect to those of the
electromagnetic fields (E, B). For an extended discussion, we refer the reader
to Chapter 3.

1.1.6 Conducting and insulating media

For a medium that is also a conductor, we have to describe the property of
the medium in terms of conductivity. This leads to expression of the current
density J as a function of the electric field E

J=J(E).

Assuming that the medium is linear, the current density J and the electric
field E are governed by Ohm’s law

J=oE+o4xFE,

where o is a 3 x 3 tensor real-valued function of the space variable @, which is
called the tensor of conductivity. The quantity oy is also a 3 X 3 tensor real-
valued function, but of the time variable ¢t. The convolution product is similar
to (1.14): it is realized in time, enforcing the causality principle. Similarly to
the constitutive relations, we shall usually restrict our studies to a perfect
medium. In this case, Ohm’s law is expressed as

J(t,z) =cE(t,x) . (1.39)

If, in addition, the medium is inhomogeneous, o = ol and o is called the con-
ductivity. In the particular case of a homogeneous medium, the conductivity
is independent of . Alternatively, one could introduce the resistivity o= of
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the medium, together with the notion of a resistive medium.

In most cases, the current density can be divided into two parts,
J = Jext + Ja’ ;

where J¢;; denotes an externally imposed current density, and J, is the
current density related to the conductivity o of the medium by the relation
(1.39). As a consequence, one has to modify Ampere’s law (1.6), which can
be read as

OF
@E +0F — curl H = —J 5 . (1.40)

On the one hand, if the medium is an insulator — o = 0 — there is no electri-
cally generated current in this medium. An insulator is also called a dielectric.
So, one has, in the absence of an externally imposed current, J = 0.

On the other hand, we will often deal with a perfectly conducting medium,
that is, a perfect conductor, in which the conductivity is assumed to be “in-
finite”: all electromagnetic fields (and in particular, E and B) are uniformly
equal to zero in such a medium. This ideal situation is often used to model
metals. Let us discuss the validity of this statement, which is related to the
skin depth 6 inside a conducting medium. This length is the characteristic scale
on which the electromagnetic fields vanish inside the conductor, provided its
thickness is locally much larger than 6. The fields decay exponentially rela-
tive to the depth (distance from the surface), and so one can consider that
they vanish uniformly at a depth larger than a few §. Note that this behavior
is not contradictory to the accumulation of charges and/or currents at the
surface of the conductor, the so-called skin effect. The skin depth depends
on the frequency v of the inputs and on the conductivity of the medium: ¢
is proportional to (o v)~'/2 (see §1.2.3 for details). For radio signals in the
1-100 MHz frequency range, § varies from 7 to 70 10~%m for copper. In the
case of a perfect conductor, we simply assume that the skin depth is equal to
zero for all inputs. As we noted above, one can have non-zero charge and/or
current densities at the surface of a perfect conductor: this is the infinite skin

effect.

1.2 Stationary equations

It can happen that one studies fields and sources for which the behavior in
time is explicitly known. For instance, time-periodic solutions to Maxwell’s
equations, respectively called time-harmonic electromagnetic fields and time-
harmonic Maxwell equations. We first study the basic properties related to
these fields and equations. Next, we address the topic of electromagnetic plane
waves, which are a class of particular solutions, widely used in theoretical
physics and in applications, for instance, to assess numerical methods for the
time-harmonic Maxwell equations, or to build radiation conditions.
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1.2.1 Time-harmonic Maxwell equations

We deal with time-periodic, or time-harmonic, solutions to Maxwell’s equa-
tions in a perfect medium (here, R?), with a known time dependence exp(—wwt),
w € R. Basically, it is assumed that the time Fourier Transform of the complex-
valued fields, for instance,

ElW . z) = (27‘1’)71/ E°(s,x)exp(w's) ds,

is of the form E(w',z) = §(w’ — w) ® e(x), so that taking the reverse time
Fourier Transform yields

E°(t,x) = . E(n, z) exp(—mt) dny = e(x) exp(—wwt).

The real-valued — physical — solutions are then written as

E(t,z) = R(e(x) exp(—wt)) , (1.41)
H(t,z) = R(h(x) exp(—wt)) , (1.42)
D(t,z) = R(d(x) exp(—wwt)) , (1.43)
B(t,x) = R(b(x) exp(—wwt)) . (1.44)

Equivalently, one has E(t,z) = {e(x) exp(—wt) + €(x) exp(wt))}, etc. As
a consequence, one can restrict the study of time-harmonic fields to positive
values of w, which is called the pulsation. It is related to the frequency v by
the formula w = 27v.

Remark 1.2.1 Formally, for a pulsation w equal to zero, one gets static
fields, in the sense that they are independent of time. In this way, static fields
are a “special instance” among stationary fields.

The data o(t,z) and J(t, x) are also time-harmonic:

o(t,x) = N(r(x) exp(—wt)) , (1.45)
J(t,x) = R(j(x) exp(—wwt)) . (1.46)

Evidently, the time dependence is identical between the data and the solution.
Here, we just used straightforward computations!

On the other hand, what happens when one only knows that the data are
time-harmonic (without any information on the fields)? In other words, how
do the fields, seen as the solution to Maxwell’s equations, behave? The an-
swer, which is much more subtle than the above-mentioned computations, is
known as the limiting amplitude principle. It is important to note that this
principle can be rigorously/mathematically justified, cf. [105]. It turns out
that, provided the data is compactly supported in space, the solution adopts
a time-harmonic behavior as t goes to infinity, in bounded regions (of R3). So,
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common sense proves true in this case. Provided that ¢ and J behave as in
Egs. (1.45-1.46), then the electromagnetic fields behave as in Eqs. (1.41-1.44)

when t — +o00, with the same pulsation w.

The time-harmonic Maxwell equations are

wd+curlh = j, (1.47)
—wb 4+ curle = 0, (1.48)
divd =r, (1.49)

divb = 0, (1.50)

where the charge conservation equation (1.10) becomes
—wr +divy =0. (1.51)
Since the medium is perfect, we have
d(z) = e(@)e(z)  and  b(x) = p(@)h(z),

so that we can express the time-harmonic Maxwell equations in the electro-
magnetic fields e and b, as

wee + curl(u~'b) = 3, (1.52)
—wb + curle = 0, (1.53)
divee =, (1.54)

divb = 0. (1.55)

Clearly, one of the fields can be removed in (1.52) and (1.53) to give us

—w?ee + curl(p~! curle) = wj, (1.56)
—w?b + curl(e ! curl(uy~'b)) = curl(e'j). (1.57)

On the one hand, the set of equations (1.56-1.57) is often called a fized fre-
quency problem. Given® w # 0 and non-vanishing data (j,r), find the solution
(e,b). The conditions (1.54) and (1.55) on the divergence of the electromag-
netic fields are contained in Eqs. (1.56-1.57): simply take their respective
divergence, and use the charge conservation equation (1.51) for the electric
field, bearing in mind that w # 0.

On the other hand, one can assume that the current and charge densities
vanish. The equations read as

8 To deserve the label fized frequency problem, one assumes a non-vanishing value
of the pulsation. Otherwise, one solves a static problem, cf. §1.4.1.



February 22, 2018 17

—w?ee + curl(p~ ! curle) = 0, (1.58)
—w?b + curl(e ™ (curl(p—'b)) = 0, (1.59)
div(ee) = 0, (1.60)

divh = 0. (1.61)

As noted earlier, the condition on the divergence of the electromagnetic fields
would be implicit in Eqgs. (1.58-1.59) under the condition w # 0. However,
one does not make this assumption here. The set of equations (1.58-1.61) is
usually called an unknown frequency problem: find the triples (w,e,b) with
(e,b) # (0,0) governed by (1.58-1.61). The same set of equations can be
considered as an eigenvalue problem, also called an eigenproblem. Here, the
pulsation w is not the eigenvalue. More precisely, its square w? is related to
the eigenvalue. For that, it is useful (but not mandatory, see Chapter 8) to
assume that the medium is homogeneous, so that ¢ and p are constants, as,
for instance, in vacuum.

Remark 1.2.2 The unknown frequency problem models free vibrations of the
electromagnetic fields. On the other hand, the fized frequency problem models
sustained vibrations (via a periodic input) of the fields.

In a homogeneous medium, eliminating, as previously, the e-field or the b-
field from one of the above Eqgs. (1.52-1.53) yields, with f, = wpuj and f, =
pcurl § as the (possibly vanishing) right-hand sides,

curl curl e — e = f curl curl b— b= f,,

e

where
A= (ep)w?. (1.62)

Using the identity (1.36) leads to, with f, = —f, +¢e lgradr, f, = —f,

e + Ae = f! b+ Ab = f.

e

From the point of view of the fixed frequency problem ((£.,f,) # (0,0)),
this means that each component of the vector fields e or b (here called ) is
governed by the scalar Helmholtz equation

A+ X = f. (1.63)

From the point of view of the eigenvalue problem, (), 1) is simply a couple
eigenvalue—eigenvector of the Laplace operator: the pulsation w is related to
the eigenvalue A by the relation (1.62).

Remark 1.2.3 It is important to remark that the components are not inde-
pendent of one another. Indeed, the components are linked by the divergence-
free conditions dive = 0 and divb = 0. As we will see in §1.6, Eq. (1.63) plays
an important role in establishing the radiation condition, which is widely used
in diffraction problems.
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1.2.2 Electromagnetic plane waves

Let us study a particular class of periodic solutions to Maxwell’s equations,
the plane waves solutions, in a homogeneous medium (again, R?).

Introduce the time-space Fourier Transform of complex-valued fields, for in-
stance,

EW E)=(2r)" /E[R3 /6[R E°(s,y)exp(—1(k -y —w's))dsdy.

The plane waves can be viewed as the reverse time-space Fourier transform
of fields, which possess the following form in the phase space (w’, k'):

EW k) =EWw —w)@i(k'—k), B, k)=Biw —w) @ik —k).
(Eo and By both belong to C?, and k is a vector of R?, called the wave vector).

From the above, we deduce that the complex-valued plane waves consist of
solutions of the form

E°(t,x) = Egexp(i(k - x — wt)), (1.64)
B¢(t,z) = Boexp(i(k - x — wt)). (1.65)

We keep the convention, according to which the physical electromagnetic fields
are obtained by taking the real part of (1.64-1.65): for instance,

1 _
§{E0 exp(u(k - & — wt)) + Egexp(—u(k - & — wt))}.
Again, the pulsation w takes only positive values.

Remark 1.2.4 We will examine how the plane waves are involved in obtain-
ing the absorbing boundary conditions (cf. Section 1.6).

A plane wave propagates. To measure its velocity of propagation, one usually
considers the velocity at which a constant phase (a phase is the value of
(E°, B°) at a given time and position) travels. It is called the phase velocity
and, according to expressions (1.64-1.65), it is equal to

w
k|

So, k # 0. The quantity |k| is called the wave number, and A = 27/|k| is the
associated wavelength. If we let d € S? be the direction of k, i.e., k = |k|d,
we can further define the vector velocity of propagation, v, = v,d.

Let us consider that the medium is without sources (charge and current
density), so that the fields and pulsation solve the problem (1.52-1.55) with
zero right-hand sides, due to the explicit time-dependence of the plane waves.
In addition, they have a special form with respect to the space variable x, so

vp(w, [k]) = (1.66)



February 22, 2018 19

one has curl E = 1k x E and div E = 1k - E. The equations become, since
e, b are constant numbers,

epwBo+k x By =0, (1.67)
—~wBo+kx Eg=0, (1.68)
k-Eo=0, (1.69)
k-By=0. (1.70)

One can remove B from the first two equations to obtain

k x (k X Eo) = —EILszEO .
This equation requires the vector k x (k x Eq) to be parallel to Eg, which
is possible if and only if k- Ey = 0, i.e., Eq. (1.69) precisely. This yields
|k|? = euw?, and then k x (k x Eg) = —|k|*>Ey. Finally, this allows one to
characterize a plane wave as a solution to the following system of equations:

k| = enw, (1.71)
k-Eo=0, (1.72)

1
BO = —kx EQ. (173)
w

Expression (1.71), relating k to w, is called the dispersion relation (see, for
instance, [152]). Additionally, the relations (1.72-1.73) prove that Ey and By
are transverse to the propagation direction of the plane waves, and orthogonal
to one another.

From (1.66) and (1.71), one infers that v, = ¢, with ¢ = 1/,/n. Denoting

k = |k|, one may compute the group velocity defined by
dw
k)= —(k
v!]( ) dk( )a

which usually measures the velocity at which energy is conveyed by a wave.
In a homogeneous medium (see (1.71)), k — w(k) is linear. Hence, the group
velocity is the same for all electromagnetic plane waves, and equal to the

phase velocity: v, = v,. These waves are non-dispersive, and in this sense, a
homogeneous medium itself is non-dispersive.

To conclude this series of elementary computations, we have established that,
for any wave vector k € R?\ {0}, there exists an electromagnetic complex-
valued plane wave, which reads as

E(t,z) = Eqexp(iu(k - x — c|kl|t)),
B¢(t,z) = Boexp(i(k -« — c|k|t)),

with E verifying (1.72) and related to By as in (1.73).
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More generally, the electromagnetic fields in R? can be considered as a super-
position of plane waves (plus constant fields), so that Eg and B depend on
the wave vector, and one ultimately has

E‘(t,x) = Eo(k)exp(i(k - = — c|k|t)) dk,
keR3

B¢(t,x) = e By(k)exp(iu(k - x — c|k|t)) dk .

The physical electromagnetic fields can be expressed in two forms. First, as
1 N
E(t,x) = 5 / {Eo(k)exp(u(k - & — c|kl|t)) + Eo(k) exp(—u(k - @ — c|klt))} dk,
keR3
1 -
B(t,x) = 5 / {Bo(k) exp(u(k - « — c|k|t)) + Bo(k) exp(—u(k - @ — c|klt))} dk.
keR3

Second (and the expressions are equivalent), as

E(t,x) = 1 /keks {Eo(k) exp(—uc|k|t) + Eo(—k) exp(ic|k|t) } exp(ik - ) dk,

B(t,x) = L /keks {Bo(k) exp(—1c|kl|t) + Bo(—k) exp(ic|kl|t) } exp(ik - ) dk .

Remark 1.2.5 Everywhere in space, any couple (k,w) such that c|k| = w
yields a plane wave governed by Mazwell’s equations (with all possible choices
of propagation directions in S%). In particular, any strictly positive w is ad-
missible, which yields all values X > 0 (cf. (1.62)). If one thinks in terms
of the eigenvalue problem (1.58-1.61), the corresponding “eigenvector” is not
measurable in the sense of (1.32), so it is called a generalized eigenvector.
Adding the constant vectors (generalized eigenvectors related to X = 0), the
set of values X\ is {\ > 0}, which is the continuous spectrum. In a bounded
domain, however, the situation is completely different: a quantisation phe-
nomenon occurs, i.e., only certain definite values of w are possible. What is
more, classical eigenvectors exist, and the set of eigenvalues is discrete and
countable. Most examples studied in this book will fall into the latter category
of a countable spectrum.

1.2.3 Electromagnetic plane waves inside a conductor

Let us focus on the time-harmonic Maxwell equations inside an inhomoge-
neous conductor. In this case, it holds that j(x) = o(x)e(x), in the absence
of an externally imposed current. The time-harmonic Maxwell equations (1.52-
1.55) become
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we e+ curl(p~'b) =0,
—wb 4 curle = 0,
dive,e =0,

divb = 0,

with the complez-valued e, = e4+10w ™. From now on, the medium is assumed
to be spatially homogeneous. Consider an electromagnetic plane wave as in
(1.64-1.65), that is, e(x) = Egexp(tk - ) and b(x) = Bgexp(tk - x), with
k € C3 of the form k = k d, where d is a real unit vector and k = k, +1k_ € C.
Note that one can write

exp(i(k - x —wt)) = exp(—k_d - x) exp(r(kid - T — wt)),

so d can be considered as the actual direction of propagation, if k. > 0. This
is the convention we adopt below.

One reaches Eqs. (1.67-1.70), with € replaced by e,. Eliminating By, one finds
the relation k x (k x Eg) = —e,uw? Eyg. It follows that k? = ¢, puw?, and one

finds that
1/2

)

1 2, ,—2_.—2 1/2:|:1
ki:s~/5uw<( row 25 ) >

with s = +1. According to the convention we adopted, one necessarily has
s = +1. In particular, it holds that k_ > 0, so one can write

exp(u(k - & — wt)) = exp(—k_d - x) exp(1(k4d - x — wt)),

with an attenuation factor exp(—k_d - x). The electromagnetic plane wave is
absorbed by the conductor as it propagates. In other words, the conductor is
a dissipative medium. To conclude, note that the notion of skin depth follows
from this discussion, if one considers an approximation of the attenuation
factor when 1 = o(we) ™! > 1. More precisely, the skin depth & is the distance
parallel to d such that the attenuation factor decreases by a factor exp(1),
ie.,, k_d = 1. Since n > 1,

5= L ()21 (ov)~1/2
= — = ~ — (O
k—  Jeuw 2 T ’

which is the result stated in §1.1.6.

As e, depends on w, electromagnetic waves inside a conductor are dispersive,
in the sense that they do not travel at the same velocity for different w (see
also §1.2.4 next). To characterize their behavior, one can study their group
velocity, now equal to vy (k%) = w'(k}), which measures the velocity at which
energy is transported, for values of k close to k?r.
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1.2.4 Dispersive media

Applying the (time) Fourier transform to a convolution product results in
the product of the (time) Fourier transforms, times 27. One infers that the
constitutive relations (1.13) can be equivalently recast in the w variable as®

{ D(w) = (e + 2mé4(w)) E(w) + (§+ 27rla(w)) H (w)
B(w) = ((+ 2m(q(w)) E(w) + (1 + 27mfa(w)) H (w).

It follows that a medium is non-dispersive as soon as the Fourier transforms of
the constitutive parameters are independent of w. We outline the discussion
below on some properties of the constitutive parameters for ”physically rea-
sonable” media, cf. [170, §1] for details. Assuming that the causality principle
holds, it follows that

tal) = (2m) |

seR

(1.74)

eq(s) exp(uws)ds = (2m) ! /000 eq(s) exp(ws) ds.

This expression has two simple, but important, consequences. First, because
€4 is a real-valued tensor, it holds that ¢4(—w) = €4(w) for all w € R. Also,
one notices that ¢; has a regular analytic continuation in the upper half-
plane §(w) > 0. In addition, assume, for instance, that w — €4(w) is square
integrable over R. Then, one can build dispersion relations, also called the
Kramers-Kronig relations, that respectively relate the real part R(€q(w)) to
all imaginary parts (3(€4(0)))e>0 and the imaginary part 3(€4(w)) to all real
parts (R(&a(0)))oo:

R(ea(w)) = %pv /OOO Wd& F(8a(w)) = _Z_WPV /Ooo Mdg

02 — w? T 02 _ 2 0

where pv denotes Cauchy’s principal value. On the other hand, if w — &4(w)
is square integrable over R and if one of the two Kramers-Kronig relations
holds,'® one finds by applying the (time) inverse Fourier transform that
eq(s) = 0 for s < 0. Hence, the causality principle holds.
Among dispersive media, one model, which describes the optical (and ther-
mal) properties of some metals, has received renewed attention in recent years.
This is the Lorentz model, with &1 (w) = (é1 + €a,r(w))l3, where &1, = g¢ is
the optical response and the dispersive response is given by
2
Eowp
£ w))=--———
a1 w) w? —w? +wyg
2 2
2 wT—wWr WYL )
= egow, | — “+1 .
P ( (W? —w?)? + w2 (W2 — w?)? + w2
% The fields P(w) = 2réq(w)E(w) and M(w) = 2mfa(w)H (w) are respectively
called electric and magnetic polarizations.
10" Other conditions on &g lead to the same conclusion. For instance, if w — ¢4(w)

is a real-valued, even function of w that can be expressed as a rational fraction,
with decaying condition ¢4(w) = O(w™?) for large |w|.
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Above, w, is the plasma frequency, v, > 0 is a damping coefficient that
accounts for the dissipation, and wy # 0 is the resonance pulsation. The
case wy, = 0 is usually called the Drude model. One may also add a param-
eter that acts on the optical response: £y is modified to é;, = e,.6¢ with
€5 > 1. Note that in the absence of damping, there exist pulsation ranges
in which €7, + £4(w) < 0. One may generalize the Lorentz model by defining
€a,c(w) = (€6 + X p—1 ng f1€4,0(w))ls with different values of the resonance
pulsation wy, for 1 < L < Ng, and where fr, are strength factors. By construc-
tion, the one-pulsation Lorentz model with 7 > 0 is square integrable, and
it fulfills the Kramers-Kronig relations. As a consequence, the causality prin-
ciple holds for this model. Thanks to the results of footnote '°, the causality
principle is also verified in the absence of damping.

Finally, the real and imaginary parts of £; have been measured experimentally
for a number of metals. In general, &g is approzimately real, i.e., |R(£4(w))]
is usually much larger than |3(£4(w))|. In given pulsation ranges, these ex-
periments can be matched by either the one-resonance Lorentz model, or the
generalized model, with appropriately chosen coefficients.

As seen previously, an inhomogeneous conductor is dispersive. Indeed, in
Ampere’s law (1.40), 9; D is replaced by €0, E+ o E. So, after the time Fourier
transform, one finds that —wD(w) = —weE(w) + cE(w). In (1.74), €4.cond

is equal to
. 10
Ed,cond(w) - % .

As expected, Econg = € + 24, cona IS equal to e, as defined in §1.2.3.

1.3 Coupling with other models

Maxwell’s equations are related to electrically charged particles. For instance,
Gauss’s law (1.3) can be viewed as a (proportionality) relation between the
flux of the electric displacement D through a surface and the amount of
charges contained inside. In the same way, Coulomb’s law allows one to express
the electromagnetic interaction force between particles, from which one can
deduce the static equations for the electric field E. In a more general way, the
motion of charged particles generates electromagnetic fields. Conversely, for a
population of charged particles with a mass m and a charge ¢ (for simplicity
reasons, we consider particles that belong to a single species), the main force
field is the electromagnetic force field, called the Lorentz force. This force
describes the way in which the electromagnetic fields E (¢, ) and B(t,x) act
on a particle with a velocity v(t):

F=q(E+vxB). (1.75)

Hence, there exists a strong correlation between Maxwell’s equations and mod-
els that describe the motion of (charged) particles. This correlation is at the
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core of most coupled models, where Maxwell’s equations appear jointly with
other sets of equations, which usually govern the motion of charged particles.

To describe the motion of a set of N particles, one can consider the molec-
ular level, namely by looking simultaneously at the positions (x;)1<i<n and
the velocities (v;)1<i<n of these particles. Assuming that the particles follow
Newton’s law, the equations of motion are written as

dilti d

— v, m%zF—i—Fmt, 1<i<N. (1.76)

Above, F' is the external force acting on the particles and F';;;; denotes the
interaction force that occurs between the particles. These equations are com-
plemented with initial conditions, for instance, at time ¢t = 0,

z;(0) =z, ©i(0)=0], 1<i<N. (1.77)

Note that the system (1.76-1.77) is uniquely solvable, in the sense that it al-
lows one to determine the motion of the IV particles. This corresponds to a
mechanical description of the set of particles.

Another approach — the statistical description — relies on

7n(t, X, V), where X = (x1,---,xzy) €R*N, V = (v1,--- ,on) € R?V,

7wy is the N-particle distribution function: 7y (t, X, V)dXdV denotes the
probability that the N particles are respectively located at positions (x1,- - , &N ),
with velocities (vq,---,vy), at time ¢. Then, if one considers the actual tra-
jectory of the particles in the 6 N-dimensional space t — (X (t), V (t)), it holds
that

Lan(t XO,VW) =0, mx(n0) =74 (). (1.78)

Indeed, along the trajectory actually followed by the particles, no particle is
created, and no particle vanishes.
With the help of the chain rule, one can rewrite the previous equation as

o dX 9 av o
ot dt 0X dt o0V

0 al d.’l)k N dvk
Z Sk 27k —0.
<8t + ; @ Vet 2 7dt v”’“) ™

) mn =0, or
(1.79)

(This is the Liouwville equation.)
One can prove that the mechanical and statistical descriptions are equivalent,
via the method of characteristics (see, for instance, [99]).
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The charge and current densities induced by the motion of these particles can
be written as

N N
ot,x) = Zq Og,ty(x) and J(t,x) = Zq Oz, (1) (T) @ v;(t), (1.80)

where 0, ;) is the Dirac mass in a;(t).
In the following, we will consider more tractable approaches, namely the ki-
netic model and the fluid model. Note that the kinetic description can be
viewed as an intermediate stage between the molecular and the fluid descrip-
tions: it contains information on the distribution of the particle velocities,
which is lost in a fluid description. Indeed, the fluid model consists in looking
at macroscopic averages of the quantities associated with the particles. The
next two subsections are devoted to the models resulting from the coupling
of Maxwell’s equations with either the kinetic or the fluid approach.

1.3.1 Vlasov—Maxwell model

In this kinetic approach, we consider a population of charged particles, subject
to a given external force field F(¢,z,v) such that'! div,, F = 0. Each particle
is characterized by its position  and its velocity v in the so-called phase
space (z,v) € RS x R3. Instead of considering each particle individually, we
introduce the distribution function f(¢,«,v), which can be defined as the
average number of particles in a volume daxdv of the phase space. So, we have

f(t, 2, v) dedv = number of particles at time ¢ in a
volume dxdv centred at (x,v) in the phase space.

How can this approach be related to the mechanical description (1.76-1.77),
or to the statistical description (1.78-1.79)7 Simply, if we denote by X _ and
V _ the variables (z2,--- ,zy) and (va, -+ ,vn), we remark that

(t,:v,v)»—>N/ / an(t, e, X _,v,V_)dX_dV_
x_Jv_

is an admissible distribution function. Let it be called f.
Now, we recall that Eq. (1.76) writes
d d
T Vg, mk F(t,xy,vr) + Fin(t, (xe)e), 1<k<N.
dt dt
Here, we assume that F';,; does not depend on (vy);. More generally, it would
be enough that div,, Fin: = 0, for all k.

1 In particular, this is the case for the Lorentz force (1.75). As a matter of fact,
divy F(t,x,v) = q(dive E + dive (v X B)) = 0, since the electromagnetic fields
are independent of v in the phase space.
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To determine the equations that govern f, we integrate Eq. (1.79) with respect
to X _, V _. This leads to

—f—i—v mf+//d”1 Vo, mn dX _dV _

+Z//vk Vo, mn dX _dV _ +Z// Wi G oy dX_ AV =

We note that the first two terms are directly expressed in terms of f, since
the differentiation is performed in ¢, or in @ = @, both of which are absent
n (X_,V_). Let us perform the integration by parts of the penultimate
integrals with respect to the variable ) (the same index as in the summation).
If there is no particle flux at infinity, when |xx| — 400, we find that, since it
holds that divg, vi, = 0 (v}, is another variable), one has

//’Uk~vmk7TNdX,dV, :—//(divmk 'Uk)TrNdX,dV, =

Similarly, integrating the last integrals with respect to the variable v, we find
that they vanish too (div,, vi = 3 is independent of t). Next, we have to deal
with the middle term, which can be split as

d 1 1
//ﬂ Vo, mn dX _ dV_:EF-va—F//EFmt-VvledX_dV_.

Then, summing up, we reach the relation

ﬁ—i—'u-me—l-iF-V,,f: —/ / lFmt-V,ﬂrNdX,dV,.

ot m m

The right-hand side is called the collision integral. To model collisions, one
usually rewrites this right-hand side as a collision kernel Q(f), which is the
rate of change of f per unit time. There are different expressions of Q(f)
(linear, quadratic, etc.) depending on the physics involved, which can be very
intricate. This yields the relation

of

Dro. Vf+1F Vof = Q(f).

Finally, substituting the expression of the Lorentz force (1.75) in this equation,
we obtain that the distribution function f(¢, x, v) is governed by the following
transport equation, called the Boltzmann equation:

of

5T Vel t (B +vx B)-Vof = Q). (181)

In the kinetic description, the expressions (1.80) of the charge and the current
densities are respectively given by
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o(t,x) =¢q ft,z,v) dv, (1.82)
R3

J(t,x) = q/[RS flt,x,v)v dv. (1.83)

When there are several species of particle (respectively, with masses (mg)q
and charges (¢a)a ), one introduces one distribution function per species (fo)q -
Each function is governed by Eq. (1.81). Then, the contributions of all species
add up to define g and J,

ot ) => o /[R falt,z,v) dv, (1.84)
an fa (t,z,v)v dv. (1.85)

When several species coexist, the collision integrals include intra-species in-
teractions and inter-species interactions. The inter-species interactions here
model transferred quantities (such as the momentum or the energy) between
different species. If the collision kernels (Qq(f))a model elastic collisions be-
tween neighboring particles, then conservation laws apply. One finds that

Qu(f) dv =0, Yo and Z o(f)vdv =0. (1.86)
RS

To simplify'? the presentation, we neglect collisions, so the distribution func-
tion is governed by the so-called Viasov equation

of

o7 v Val+ (E+v><B)-v,,f:o, (1.87)

when only a single species of particles is concerned. To be able to couple the
Vlasov equation with Maxwell’s ones, one has to check that p and J, defined
as above, satisfy the differential charge conservation equation (1.10). First,
one has divy v = 0 in the phase space, so that v - Vg f = divg(fv). In the
same way, one has F -V, f = div,(fF). So, the integration of ¢ times Eq.
(1.87) in v over R? yields

O:qg fdv+q/ divy(fov) dv—l—i divy, (fF) dv
Ot Jry R} m Jey

_ % rdivy+ 2 [ il R do

12 Note, however, that in the more general case of a kinetic description given by
Eq. (1.81) for several species, one can still prove that ¢ and J defined by Egs.
(1.84-1.85) satisfy the differential charge conservation equation (1.10). This is a
straightforward consequence of Eq. (1.86).
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Assuming that f|F| goes to zero sufficiently rapidly when |v| goes to infinity,
we obtain, by integration by parts, that the last term vanishes. Indeed,

/ divy(fF) dv = lim divy (fF) dv = lim f(F-n,) ds =0.
R3 R=+o /B, (0,R) R=+o0 JoB,(0,R)

So, we conclude that ¢ and J given by Eqgs. (1.82-1.83) satisfy the differential
charge conservation equation as expected.

The relations (1.22-1.25) and (1.82-1.87) clearly express the coupling of
Maxwell’s and Vlasov’s equations, since o(t,x) and J(t,x) are the right-
hand sides'? of Maxwell’s equations. Moreover, the electromagnetic fields E
and B play a crucial role in the force F' acting on the particles, cf. Eq.
(1.75). Hence, even if Vlasov’s equation and Maxwell’s equations are lin-
ear, their coupling yields a problem that is globally quadratic. Indeed, the
term L(E +v x B) -V, f is a quadratic term in f, since E and B depend
linearly'® on f through ¢ and J. Thus, the Vlasov—Maxwell model is a non-
linear, strongly coupled problem to solve. See Chapter 10 for mathematical
studies on this topic.

For the sake of completeness, we conclude this section with a review of
several variants of the Vlasov—Maxwell model, which are used in certain ap-
plications according to the relative importance of electromagnetic phenomena.
For instance, when rapid electromagnetic phenomena occur, it is more consis-
tent to assume a priori that particles obey the relativistic laws of motion. In
this framework, phase space is described in terms of positions and momenta
(xz,p) € RS x [Rf, rather than velocities. The distribution function is written
as f(t,x,p); and velocity becomes a function of momentum:

v(p) = b .

pl\*
mq/1l+ <—>
mcC

The distribution function is governed by a modified version of (1.87), namely

At o(p) Vel +a(B+o(p) x B)- Vpf =0.

The charge and current densities are now defined as

o) =a [ ftapdo,  Ta)=q [ ft.o.p)ol)dp

These satisfy the differential charge conservation equation (1.10).

13 It can happen that, in Maxwell’s equations, parts of ¢ and J are due to external
charge and current sources. In this case, E and B depend in an affine way on f.
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1.3.2 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the study of the flow of a conducting fluid
under the action of applied electromagnetic fields, e.g., a plasma. Usually,
one considers the plasma as a solution of electrons and ions (a compressible,
conducting, two-fluid). Roughly speaking, it consists in coupling the classical
hydrodynamical equations for the fluid with an approximation of Maxwell’s
equations, in which the displacement current 0; D is neglected.

In a first step, we recall how one can build a fluid model from the Vlasov
equation (1.87). Then, we derive usable expressions for the magnetic induc-
tion. Finally, the hydrodynamical equations are coupled to Maxwell’s, to fi-
nally yield the magnetohydrodynamics model.

As recalled in the introduction to this section, hydrodynamical models are
based on a set of conservation equations derived from the Vlasov equation.
A simple way to derive these equations is to take the moments of the Vlasov
equation. Indeed, fluid descriptions consist in looking at macroscopic averages
(with respect to the velocities) of the particle quantities over volumes that are
large enough to cancel the statistical fluctuations, but that are small compared
to the scales of interest. Hence, fluid unknowns are moments of the distribution
function f, such as the particle density n(t, ), the mass density p(t, x), the
mean velocity w(t, x), the mean energy W (¢, ) or the 3 x 3 pressure tensor
P(t, ). The first four can be respectively defined as

n(t,x) = fdv, p(t,e)=mn(t, ),
RY
nu(t,x) = fvdv,
RY
nWitz)= = [ flv]? dv
R

For the sake of completeness, we have included the moment of order 2 that
corresponds to the mean energy. Note that the preceeding equations, together
with Egs. (1.82-1.83), immediately yield

o(t,x) = gn(t,x), J(t,x)=qgn(t,x)ut,x).

Before proceeding, we introduce a variable that allows us to describe the
random motion of the fluid:

w(t,z,v) =v —u(t,x) <so that ft, z,v)w dv = 0) .
RY

Then, the pressure tensor P(t, ) is defined as
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P(t,z)=m | fw@w dv.
R?
(Above, w ® w is a symmetric tensor of order 3.)

We split this tensor as
P =pl; + Q.

The field p is the scalar pressure of the fluid. From the above, one easily infers
the relation 2nW = mn|u|? + 3p, which corresponds to a splitting of the en-
ergy (kinetic and internal). Usually, p, u and p are called the hydrodynamical
variables.

To obtain the evolution equations, we multiply Eq. (1.87) by a test function
¢(v) and integrate with respect to v to get

0

- f¢dv+div/ fv¢dv+i/ divy(fF) ¢ dv = 0.
Ot Jr; R} m Jrg

Using an integration-by-parts formula (for the last term), and assuming that
f&|F| goes to zero sufficiently rapidly at infinity, we find

0 f¢dv+div/ foodo—~ [ fF-Vydv=0.
Ot Jr; R} m Jg;

Now, choosing ¢(v) respectively equal to 1, (vg)g=123 and |v|?, in other
words, by taking moments of order 0, 1 and 2, we obtain a sequence of hydro-
dynamical evolution equations.
First, taking ¢(v) = 1 leads to the integral equation

0

— fdv+div| fvdv=0,
Ot Jrs R

or, with the above definitions of the mass density and mean velocity,

9p | . B
pn +div(pu) =0. (1.88)

To write simple expressions for the moments of order 1 and 2, let us consider
the special case of a laminar (or monokinetic) beam that is a gas in which all
the particles move at the same velocity wu(t, ). In this case, the distribution
function becomes simply

f(tv T, 'U) = n(ta w)5u(t,m) ('U)

As a consequence, for the moment of order 1, we find the equivalent scalar or
vector formulas

(pug) +divipuru) =nF,, 1<k<3, or
(1.89)
(pu)+divipu®@u)=nF.

SIS
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(The definition of the vector operator div is clear from the equivalence be-
tween the scalar and vector formulas.)

For the moment of order 2, we note that in this special case of a laminar beam,
one has P = 0. The fluid is without pressure (in particular, p = 0). Eqs. (1.88-
1.89) are, respectively, the mass and momentum conservation equations for a
fluid without pressure.

On the other hand, what happens when such a construction is used to establish
fluid equations in general? For instance, for a simple fluid with pressure, or
for a fluid including several species of particle. If there are two or more species
(labeled by the index «), then one builds one Eq. (1.88) and one Eq. (1.89)
per species. Eq. (1.88) remains unchanged. For the moments of order 1, Eq.
(1.89) retains the same structure, with the following modifications (on the
vector formula):

e The pressure tensor appears on the left-hand side. More precisely, the
second term is changed to div(pu®@u+P) = div(pu®@u)+grad p+divQ.

e For a fluid including several species of particles, a term is added on the
right-hand side, to take into account the transferred mean momentum T'r,
between different species.

To summarize, one obtains the system of equations

%L: + div(pa ua) = 0, Ya (1.90)

0
&(pa Uq) + div(ps Uy @ uy) + grad p,, + divQ, = ng F 4+ Tr,, Va. (1.91)

According to Eq. (1.86), it holds that ) Tr, = 0.

Furthermore, the evolution of the mean energy (moment of order 2) is gov-
erned by an equation that involves Q,, the flux of kinetic energy K, which
is a moment of order 3, and finally, the heat H,, generated by the collisions
between particles of different species (on the right-hand side). So, one needs
to choose ¢(v) of degree 3 to derive the equation governing the flux of kinetic
energy K. But this would yield a term of order 4, and so on... In other words,
one gets a series of equations that is exact, but not closed!

To avoid this problem, one has to add a “closure relation” to the system of
equations at some point. For instance, one chooses to keep the hydrodynami-
cal variables (pa)a, (Ua)as (Pa)a, Whereas the other terms Qq, Tr, K, and
H, are approximated or, in other words, expressed as functions of the hydro-
dynamical variables. To that aim, one usually assumes (see [152, 156]) that the
distribution function f,, is close to a Maxwellian distribution.'* In this situa-
tion, one can determine the higher-order terms approximately, and after some

14 14 est, consider fa(v) = Aq exp(—Bal|v — ua|2), with Aa, Ba > 0.
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simplifications, one finally derives a modified momentum conservation equa-
tion together with a “closure relation”, that involves only (pa)as (%a)as (Pa)a-

Let us follow Lifschitz [156], to see how one can write a closed system in the
particular case of a plasma. More precisely, we consider a two-fluid, made
of electrons (¢ = —e) and a single species of ions, so the hydrodynamical
variables are (pa)a=e,is (Wa)a=c,is (Pa)a=e,i- The aim is to model slow, large-
scale plasma evolution. The assumptions originating from the physics involved
can be listed as follows:

e The plasma is electrically neutral: g.ne + ¢;n; = 0;
e The pressure is scalar: Q. = Q; =0;
e The electron inertia can be neglected: 9;(pe we) + div(pe e @ u.) = 0.

First, we remark that since gene +¢;n; = 0, pe is proportional to p;. Eq. (1.90)
writes (for a = )
Ipi
ot
Then, Eq. (1.91) writes (for o =, ¢)

0
&(Pz‘ u;) + div(p; u; ® w;) + grad p; = niq;(E +u; x B) +Tr;,

gradp. = neqe.(E + u. X B) + Tr..

Adding up these two equations (recall that Tr; + Tr. = 0), we find

0 .

E(ﬂi w;) +div(p; u; ® u;) + grad(p; + pe) = nigi(w; — ue) x B.
Moreover, we know from the definition of the current density that one has
J = negeue + nigiu; = nigi(u; — ue), so the right-hand side can finally be
expressed in terms of J and B only:

0 .

E(m w;) + div(p; u; ® u;) + grad(p; +p.) = J x B. (1.92)
One could carry out the same analysis for the evolution of the mean en-
ergy. In the same spirit as Eq. (1.86), the energy conservation law writes
H;+H.=-Tr; u; —Tr. - u., where the sum H; + H. corresponds to the
Joule effect. It is omitted here (see Eq. (1.98) below for the final result).

In particular, a relevant set of hydrodynamical variables is p = p;, u = wu;,
and p = p; + p.. Based on this observation, it turns out that one can consider
the electrically neutral plasma as a one-fluid.

Let us return now to Maxwell’s equations. In the MHD model, the displace-
ment current 0;D is always neglected with respect to the induced current J.
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This corresponds to the magnetic quasi-static model (see the upcoming sec-
tion 1.4). Moreover, we know that ¢ = n.qg. + n;q; = 0. The electric field E is
thus divergence-free (more precisely, diveE = 0). In terms of the Helmholtz
decomposition (1.120) (see section 1.4 again), this means that E is transverse:
E = E7. So, Maxwell’s equations write

curly~'B =J,

B
%—t +curl ET =0,
div B = 0.

in terms of B only, since one has
J x B =curl(y 'B) x B.

Now, the equation governing the evolution of B, namely Faraday’s law (1.94)
requires knowledge of E”. It appears that (see, for instance, [156], Eq. (7.12)),
to take the motion of the fluid into account, Ohm’s law (1.39) can be gener-

alized to
J=0s5(E" +uxB).

(o is sometimes called the Spitzer conductivity.)
With this relation, we can remove the electric field from Faraday’s law:

curl E” = — curl(u x B) + curl(og'J)
= —curl(u x B) + curl(og' curl(u ™' B)).

The main conclusion is that, for the magnetohydrodynamics model (MHD)
that governs the evolution of the plasma, a relevant set of variables is p, wu,
p, and B. Let us recall them here. For the sake of completeness, we have
added Eq. (1.98), which governs the evolution of the mean energy, with the
parameter vy set to 5/3:

% +div(pu) =0, (1.96)

%(pu) +div(pu ®u) + gradp = curl(u"'B) x B, (1.97)
Y - —y —1 —1132

po— 5 PP ") +u-grad(pp™) | = o5 |curl(pT"B)I", (1.98)

OB U

5 curl(u x B) + curl(og” curl(y™ " B)) =0, (1.99)

div B = 0. (1.100)

Briefly commenting on Egs. (1.96-1.100), we note first that Eq. (1.100) is
implied by Eq. (1.99). Also, ET and J are respectively determined by Eq.
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(1.94) and Eq. (1.93). Thus, all fields can be inferred from these equations. For
some applications, one can consider that agl = 0, thus leading to the ideal
set of MHD equations. In other words, the plasma is perfectly conducting.
Contrastingly, when the plasma is resistive, one cannot set agl to zero, and
one has to solve the resistive set of MHD equations.

Another variant of the above model is given by the incompressible, viscous,
resistive MHD equations, which come up when the conducting fluid is a liquid
(such as molten metal or an electrolyte, e.g., salt water) rather than an ionised
gas. Compared to gases, liquids are typically nearly incompressible, but much
more viscous and dense; this requires different scalings and approximations.
Namely, the system (1.96)—(1.100) is modified as follows:

1. The mass density p, or equivalently the particle density n, of the fluid
is assumed to be constant: this is the incompressibility condition. The
conservation equation (1.96) reduces to divu = 0; this equality serves as
the “closure relation”, replacing the adiabatic closure (1.98).

2. The momentum conservation equation (1.97) is modified by introduc-
ing a viscosity term —vrAw. Under certain scaling assumptions, such a
term appears [59, §2.2] when the system of hydrodynamic equations is
derived from the Boltzmann equation (1.81), rather than the Vlasov equa-
tion (1.87).

3. We allow for some external, non-electromagnetic force f (such as gravity)
acting on the fluid, in addition to the Lorentz and pressure forces.

Thus, we arrive at the system:

p%—? —vAu+p(u-V)u+gradp=curl(y 'B) x B+ f, (1.101)

0B
v curl(u x B) + curl(og' curl(u~'B)) = 0, (1.102)
divu=0, divB=0. (1.103)

The notation (a - V)b stands for 2?21 a; Oy, b; the replacement of div(u @ u)
with (uw-V)u is possible thanks to divu = 0. See Chapter 10 for mathematical
studies on how to solve the MHD equations.

1.4 Approximate models

We have already introduced the time-dependent Maxwell equations formu-
lated as problems with field or potential unknowns. Let us now adopt a dif-
ferent point of view. As a matter of fact, many problems in computational
electromagnetics can be efficiently solved at a much lower cost by using ap-
proximate models of Maxwell’s equations. As a particular case, the static
models are straightforward approximations corresponding to problems with
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4

“very slow” time variations or “zero frequency” phenomena (with a pulsa-
tion w “equal to zero”), so that one can neglect all time derivatives. We also
present a fairly comprehensive study on how to derive approximate models,
as in [97, 178]. These models are studied mathematically in Chapter 6.

1.4.1 The static models

Let us consider problems (and solutions) that are time-independent, namely
static equations, in a perfect medium. In other words, we assume that 0; - =
0 in Maxwell’s equations (1.22-1.25). This assumption leads to (with non-
vanishing charge and current densities)

stat __ —1 pstaty __
{curlE =0, curl(p™'B**)=J, (1.104)

div(e E*'*") = o, div B5'*" =0,

where the superscript *?* indicates that we are dealing with static unknowns.
In the following two subsubsections, we will consider the electric and the
magnetic cases separately. Again, they are set in all space, R3.

Remark 1.4.1 Within the framework of the time-harmonic Mazwell equa-
tions (see §1.2), we looked for solutions to Mazwell’s equations with an ex-
plicit time-dependence. In this setting, the static equations can be viewed as
time-harmonic Maxwell equations with a pulsation w “equal to zero”. This
interpretation can be useful, for instance, for performing an asymptotic anal-
YSis.

Electrostatics
Equation curl E***" = 0 yields E*'* = —grad ¢*'*, where ¢**** denotes
the electrostatic potential; see the connection to (1.33) when ;- = 0. As

div(eE*"*") = o, the potential $**** solves the elliptic'® problem
—div(e grad ¢*"**) = p.

Moreover, in a homogeneous medium (for instance, in vacuum e = ol3), we
obtain the electrostatic problem with unknown ¢34t
£
€0

—Agftet = (1.105)
This is the Poisson equation in variable ¢! (see, for instance, Chapter 3 of
[104, Volume II]), which is an elliptic PDE, and by definition, a static problem,
much cheaper to solve computationally than the complete set of Maxwell’s

equations. Then, one sets E5'* = —grad ¢*'*" to recover the electrostatic
field.

15 See the upcoming §1.5 for a precise definition.
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Magnetostatics

In a similar manner, a static formulation can be written for the magnetic
induction B*'**. By applying the curl operator to equation curl(p~—!B**") =
J, we obtain

curl curl(py~*B*"*") = curl J.

In a homogeneous medium (for instance, in vacuum p = pols), and using the
identity (1.36) again, we obtain the magnetostatic problem

—AB® = gcurlJ , divB¥ =0,

whose solution, B**** is called the magnetostatic field. This is a vector Pois-
son equation, i.e., an elliptic PDE (left Eq.), with a constraint (right Eq.).
Again, this formulation leads to problems that are easier to solve than the
complete set of Maxwell’s equations.

Note also that one has B*"*" = curl A***" (see (1.35)). If, moreover, the
Coulomb gauge is chosen to remove the indetermination on the vector poten-
tial A%'“! one finds the alternate magnetostatic problem

—AAS = g, div ATt =0, (1.106)

with A*" as the unknown. Then, one sets B***" = curl A*'* to recover the
magnetostatic field.

1.4.2 A scaling of Maxwell’s equations

In order to define an approximate model, one has to neglect one or several
terms in Maxwell’s equations. The underlying idea is to identify parameters,
whose value can be small (and thus, possibly negligible). To derive a hierarchy
of approximate models, one can perform an asymptotic analysis of those equa-
tions with respect to the parameters. This series of models is called a hierarchy,
since considering a supplementary term in the asymptotic expansion leads to a
new approximate model. An analogous principle is used, for instance, to build
approximate (paraxial) models when simulating data migration in geophysics
modelling (cf. among others [43], [86]). From a numerical point of view, the
approximate models are useful, first and foremost, if they coincide with a
physical framework, and second, because in general, they efficiently solve the
problem at a lower computational cost.

In the sequel, let us show how to build such approximate models formally
(i.e., without mathematical justifications), recovering, in the process, static
models, but also other intermediate ones.

Let us consider Maxwell’s equations in vacuum (1.26-1.29). As a first step,
we introduce a scaling of these equations based on the following characteristic
values:
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1 : characteristic length,
t : characteristic time,
T : characteristic velocity, with 7 = /1,
E,B : scaling for E and B,
0, J : scaling for o and J .

In order to build dimensionless Maxwell equations, we set

x=lx o _19
Ox; 1 0z,
t=1t" = 9 _ ii
ot tot
E =FEF', ctc.

We thus obtain for Maxwell’s equations in vacuum
v E OF
ccB Ot
v cB OB’

Ef W —‘,—CurllE/ - 07

—curl’ B = —7ZM:0J/,
B

r
EOEQ )
div' B’ = 0.

div'E =7

37

(1.107)
(1.108)

(1.109)

(1.110)

As far as the charge conservation equation (1.10) is concerned, we find

/

+div'J =0.

|
<3
Q| @
S

t/
Now, given 1, %, 8, we choose E, B, J such that
_ 3 - E _—
E=2 B=Z J=c=
€0 C

_EAI
o

We define the parameter n with

ol

7’]:

Maxwell’s equations in the dimensionless variables E’, B’ can be written as

OE’
Mo~ curl B' = —J',
!/
n o +curl E' =0,
div E' =/,

divB' =0,
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while the charge conservation equation writes

00

Tov

Assuming now that the characteristic velocity ¥ is small with respect to the
speed of light ¢, we have

+div' J' = 0.

n=-<1. (1.111)
C

This assumption is usually called the low frequency approzimation, since it
assumes “slow” time variations, which correspond after a time Fourier Trans-
form to small pulsations/frequencies.

Obviously, the static models are obtained by setting n = 0 in these equa-
tions. Thus, they appear as a zero-order approximation of Maxwell’s equa-
tions. Next, we derive more accurate approximate models.

1.4.3 Quasi-static models

More general approximate models can be obtained by discriminating the time
variations, respectively, of the electric field and the magnetic induction. Hence,
after the scaling step in Maxwell’s equations in vacuum, that is, in Eqgs. (1.107-
1.110), if we suppose that

E
cB
we easily obtain that we may neglect the time derivative 0; B in Faraday’s
law, whereas the coefficient of the time derivative 0; E in Ampere’s law is

comparable to one. We then obtain the electric quasi-static model, which can
be written in the physical variables E, B as

7= <1 and

&=l &l

ol

~1,

curl E =0, (1.112)
1
divE = —o, (1.113)
€0
1 0F
1B = —— 1.114
cur wod + ERrT ( )
div B = 0. (1.115)

It can be proven (see §6.4) that this model is a first-order approximation of
Maxwell’s equations. As mentioned, it is formally built by assuming that the
time variations of the magnetic induction are negligible.

In a similar way, let us suppose, contrastingly, that

B
<1 and v7=~=1
E
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thus we may neglect the time derivative O;E in Ampere’s law, whereas the
coefficient of the time derivative 9; B in Faraday’s law is comparable to one.
We thus obtain the magnetic quasi-static model, which can also be written in
the physical variables E, B as

curl B = poJ, (1.116)
div B = 0, (1.117)
0B

1E = —— 1.118

cur 5 ( )
1

divE = —o. (1.119)
€0

This set of equations constitutes another first-order approximation of Maxwell’s
equations, which is derived formally by assuming that the time variations of
the electric field, namely the displacement current, are negligible.

At first glance, there is no difference between the quasi-static electric equa-
tions (1.112-1.113) plus the quasi-static magnetic equations (1.116-1.117) and
the static ones (1.104). However, we observe that the right-hand sides are
time-dependent in the case of the quasi-static equations, whereas they are
static in the other case. Let us consider, for instance, the electric quasi-static
model (i.e., ;B is negligible). The right-hand side g of the Poisson equation
(1.113) is (explicitly) time-dependent, since it is related to the electric field
FE that is a priori time-dependent. Now, with the supplementary assumption
that O, F is also negligible, p becomes a static right-hand side and the twice
quasi-static model is actually static.

From now on, it is important to note that the “quasi-static/static” differ-
ence is not only a terminological subtlety. Indeed, from a numerical point of
view, solving a quasi-static problem with a time-dependent right-hand side,
amounts to solving a series of static problems after the time-discretization is
performed [24].

1.4.4 Darwin model

Let us introduce another approximate model, also known as the Darwin model
[91]. Tt consists in introducing a Helmholtz decomposition of the electric field
as

E=FE"+E", (1.120)

where EL, called the longitudinal part, is characterized by curl Ef =0,
and ET, the transverse part, is characterized by div ET = 0. Starting from
Maxwell’s equations in vacuum, one then assumes that 98, E” can be ne-
glected in Ampere’s law: one neglects only the transverse part of the dis-
placement current, whereas, in the quasi-static model, the total displacement
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current £90;F is neglected. In this sense, it is a more sophisticated model
than the quasi-static one. Moreover, it can be proven (see §6.4), by using the
low frequency approximation (1.111) and the resulting dimensionless form of
Maxwell’s equations, that this model yields a second-order approximation of
the electric field and a first-order approximation of the magnetic induction.
The Darwin model in vacuum is written in the physical variables E, B as

curlE:—gB, divE:g,
ot €o
curlcurl B = 4 curl J | div B = 0. (1.121)

Then, if one uses the Helmholtz decomposition (1.120) with div E” = 0 and
E" = —grad ¢, we see that the three fields B, ET and ¢ solve three elliptic
PDEs, namely (1.121) and
_A(b = £ )
€0

9
ot
Compared with the original time-dependent problem, these problems are eas-

ier to solve. As a matter of fact, only the data are time-dependent, while the
operators are time-independent.

curlET = ——B, divET = 0.

To conclude, we emphasize that the main difficulty, when using the Darwin
model in a bounded domain, is how to define suitable boundary conditions
for each part of the electric field: more precisely, how one should “split” the
boundary condition on E into two boundary conditions on EX and ET. We
refer the reader to [97], [84] for more details (see also §6.4).

1.4.5 Coupled approximate models

When considering the Vlasov-Maxwell model, in many cases, the interactions
between particles are mainly electrostatic; the self-consistent magnetic field is
negligible. Furthermore, particles have velocities that are much smaller than c:
they obey the non-relativistic dynamic. So, one reverts to the position-velocity
description of phase space (z,v) € R3 x R2; in addition, in the Lorentz force,
the term v x B is negligible before E, unless there is a strong external magnetic
field (as in tokamaks, for instance). One replaces the Maxwell’s equations
with an electric quasi-static model; and the magnetic part (1.114)-(1.115) is
irrelevant. The electric part (1.112)—(1.113) is rephrased as E = — grad ¢ and
—A¢ = p/ep. Thus, we arrive at the Viasov—Poisson system:

ot m

_Ai'c¢ = £7
€o
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with o given by (1.82). Also, there exist intermediate models such as Vlasov—
Darwin, which couples Eq. (1.87) with the model of §1.4.4 (see, for instance,
[7, 38]).

1.5 Elements of mathematical classifications

In this section, we first recall the definition of some standard operators, to-
gether with a classification of the partial differential equations (PDE) and their
physical counterparts. In a second part, we reformulate and classify Maxwell’s
equations. In the last part, we present well-known computations that estab-
lish a correspondence between the time-harmonic dependence with the notion
of resonance. The material presented here is very classical: the well-informed
reader may skip this section.

1.5.1 Standard differential operators

Let us begin by recalling the definitions of the four operators grad, div, A
and curl, which we use throughout this book.

Let E,, be a finite-dimensional Euclidean space of dimension n, endowed with
the scalar product -, and let A,, be an affine space over E,. Furthermore,
let U be an open subset of A,,. Respectively introduce a scalar field on U,
f + U—R, and a vector fieldon U, f : U — E,.

Assume that f is differentiable at M € U, and let D f(M) be its differential
at M. Then, the gradient of f at M is defined by

grad f(M)-v:=Df(M)ev, YveE,.

Provided that f is differentiable on U, the vector field M +— grad f(M) is
called the gradient of f on U. The operator, grad, is called the gradient op-
erator.

Assume that f is differentiable at M € U, then the divergence of f at M is
defined by

div F(M) := tx(DF (M),
where tr denotes the trace of a linear operator. Provided that f is differen-

tiable on U, the scalar field M — div f(M) is called the divergence of f on
U. The operator, div, is called the divergence operator.

Assume that f is twice differentiable at M € U, then the Laplacian of f at
M is defined by
Af(M) := div(grad f)(M).
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Provided that f is twice differentiable on U, the scalar field M — Af(M) is
called the Laplacian of f on U. The operator, A, is called the Laplace operator.

Consider that n = 3, and assume that f is differentiable at M € U. Then, for
any given vy € E3, the mapping f x vg : U — Fj is differentiable at M.
The curl of f at M is defined by

curl f(M) - vg :=div(f X vg)(M), Yvg € Es.

Provided that f is differentiable on U, the vector field M — curl f(M) is
called the curl of f on U. The operator, curl, is called the curl operator.

In physics, one is mainly interested in three-dimensional Euclidean and affine
spaces F3 and Az. Moreover, to obtain expressions that involve partial deriva-
tives, let us introduce (e1, e, e3) as an orthonormal basis of Es3, (O, ey, e2, €3)
as an affine (or cartesian) coordinate system of As, and finally, (21,22, x3) as
the associated coordinates, that is, M = O + Zz‘:l,z,g zie;. We can write
f = Zi:1,2,3 fie;. Then, with respect to the affine coordinate system, the
four operators defined above can be respectively expressed as

1=3
) o,
gradfzza—jei, div f = Z f 282’
i=1 v
Ofs  0f2 df1 3f3 Of:  Ofi
Curlf (8«@2 8173) ert (8173 8(171 et 8:171 8x2 €s-

1.5.2 Partial differential equations

We begin with the simple case of a linear second-order two-dimensional partial
differential equation

0%u 0%u 0%u ou ou
A— +2B——+C D E—+ Fu=GaG, 1.122
922 TPy a2 T s TRy T (1.122)
where the solution u, the coefficients A, B, ..., F' and the data G are functions

of (z,y). It is well known that, following the sign of the discriminant
— AC,

one can build a classification of partial differential equations that write as in
Eq. (1.122) in a domain Dom of R%. We have the classes:

1. if B2 — AC < 0 on the domain Dom, the PDE (1.122) is of the elliptic
type. It corresponds to equilibrium problems, such as, for instance, the
static problems, and it can be written in a canonical form, the prototype
being the Poisson equation (cf. §1.4.1).
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2. if B2 — AC = 0 on the domain Dom, the PDE (1.122) is of the parabolic
type. It can also be transformed into a canonical form, a typical exam-
ple being the heat transfer equation. From a physical point of view, this
corresponds to diffusion problems.

3. if B2 — AC > 0 on the domain Dom, the PDE (1.122) is of the hyper-
bolic type. After rewriting the equation under its canonical form, one can
easily identify the wave equation as the prototype of the hyperbolic equa-
tion. An important property of the hyperbolicity is that it corresponds to
propagation of solutions with a finite velocity.

If we consider now the more general second-order linear partial differential
equation set in a domain of R™, that is, in n variables, it can be written as

; ]:Zl i 8$18$J * :

where the solution u, the coefficients a;j, b;, ¢, and the data d are functions of
the n variables (x;)1<i<n. In order to classify the PDEs (1.123) into different
types, we consider the so-called principal part, that is, the highest-order terms
in (1.123), which we express as

n

ou
b —d, 1.123
by en (1.123)

n n 82
ZZ%—M =9 -pd+ lot. (1.124)
1=1 j=1

Above, 8 = (6%1, ce %)T € R™, and A denotes the n x n matrix of the

coefficients a;;, and l.o.t. (or lower-order terms) stands for first or zero-order
terms that vanish if the a;;s are constant. Now, using Schwarz’s theorem
9% = 0%, one can rewrite the coefficients a;; so as to obtain a symmetric
matrix A, which we assume to belong to R"*"™ (i.e., it is a real-valued matrix).
Classically, all eigenvalues of the symmetric real-valued matrix A are real. We
denote them by A1, Ag, ..., A, counted with their multiplicity. Furthermore,
we introduce a corresponding orthonormal set of eigenvectors uq, . . ., u,, such

that A can be diagonalized as
Ar... 0
V'aU=D=| : e
0 ...\,

where U is an orthogonal matrix (UT = U~!) with the eigenvectors u; as its
n columns. Introducing now the directional derivative operator

8 p—
o&

we define the vector differential operator

u; -0, 1<i<n,
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851
9 =09, withd' = | :
Oe,,

Plugging this expression into the first term of the right-hand side of (1.124)
and using the orthogonal character of the matrix U gives us

8- 2r0=0T8-DUTH =8 -D& .

In this way, one gets that (1.124) can be rewritten equivalently

iia"i_i)\‘ajﬂot
= z]axiaxj _. - 7,8512 .0.L.,

where the l.o.t. here again represents the lower-order terms. This expression
provides an obvious way to extend the previous classification to the general
case, which appears to be strongly related to the sign of the eigenvalues \;.
Hence, we define, by analogy to the two-dimensional case, several classes of
partial differential equation:

1. if either \; > 0,Vi or \; < 0, Vi, the equation is said to be elliptic;

2. if exactly one of the A; > 0 or A; < 0 and all other (\;);2; exhibit an
opposite sign, the equation is said to be hyperbolic;

3. if one of the \; = 0, the equation can be parabolic. For that, all other
(Aj)ji must exhibit a fixed sign;

4. other instances are possible:
e if Card{)\; = 0} > 2, the equation is said to be semi-parabolic;
o if \; #0,Vi, and Card{)\; > 0} > 2, Card{\; < 0} > 2, the equation

is said to be semi-hyperbolic.

When we are dealing with a system of equations that can be reformulated
as one or several PDEs acting on vector unknowns, we refer to it as a vector
PDFEs. As we shall see in the next subsection, the time-dependent Maxwell
equations are an example of hyperbolic vector PDEs.

To end this subsection, we remark that there exist other ways to define the el-
liptic, parabolic and hyperbolic types of equation. In particular, when we deal
with systems of equations, one can relate the classification to the inversibility
of the principal symbol of the operator, namely the Fourier transform of the
highest-order terms. We refer the interested reader, for instance, to [93, 94].

1.5.3 Maxwell’s equations classified

Though it is often alluded to in this chapter, we have not so far explicitly
classified Maxwell’s equations. It turns out to be quite easy. Assume we are
considering a homogeneous medium (vacuum):
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let us build 9;(Eq. (1.26)) +c? curl(Eq. (1.27)) — ¢ grad (Eq. (1.28)) formally,
to find

’E 1 [0
— —CcCAE=—— | — 2 do). 1.12
o ¢ = <8t tcgra 9) (1.125)
Then, build d;(Eq. (1.27)) — curl(Eq. (1.26)) — ¢? grad(Eq. (1.29)) to find
?°B 1
52~ C AB = - curl J. (1.126)

Both vector PDEs, respectively governing the behavior of E and B, are vector
wave equations and, as such, they are hyperbolic. In particular, the electro-
magnetic fields propagate with finite speed (equal to ¢, see §1.2.2). They have
to be supplemented with some first-order initial conditions. Indeed, to obtain
Eqgs. (1.125-1.126), one differentiates in time both Ampere’s and Faraday’s
laws. If one keeps only these equations, constant values (w.r.t. the time vari-
able) of those laws — considered as mathematical expressions — are neglected.
Hence, one adds the relations

OFE 1
(_8t — 62 curl B) |t:0 = —5J|t:0
0B ’
(E —+ Curl E> |t:0 = O

which equivalently write, with the help of the zero-order initial condition (1.31),

%—lf(O):El =c? curlBo—%J(O), %—?(O) = B; := —curl E,.
(1.127)

Also, one must keep Gauss’s law (1.28) and the absence of magnetic monopoles

(1.29), which appear here as constraints on the solutions to Eqs. (1.125-1.126).

Remark 1.5.1 One can choose not to add contributions resulting from the
divergence part of the fields, to reach

0’E 10J
52 +¢? curlcurl E = o (1.128)
’B 1
i)tQ +¢c? curlcurl B = = curlJ. (1.129)
0

Let us examine briefly — and formally — how the set of second-order equations
(1.125-1.126), supplemented with the initial conditions (1.31) and (1.127) and
constraints (1.28-1.29), allow us to recover the original set of Maxwell’s equa-
tions (1.26-1.29), supplemented with the initial condition (1.31). Gauss’s law
and the absence of magnetic monopoles are contained in both sets of equations,
and so is the zero-order initial condition. To recover Ampere’s and Faraday’s
laws, introduce the quantities
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U::%—f—c2 curlB—l—%J, V::%—?—l—curlE.

According to the initial conditions (1.31) and (1.127), one has U(0) = V' (0) =
0. Then, after some elementary manipulations, one finds that

ou ov
E—l—c curlV =0, E—curlU_O,
divU =0, divV =0.

(Above, one uses the charge conservation equation (1.10) to prove that U is
divergence-free.)

In other words, we showed that the couple (V,c¢~2U) solves the set of equa-
tions (1.26-1.29) with zero right-hand sides, and with zero initial condition
(1.31). So, it is equal to zero, according to the results on the solvability of
Maxwell’s equations. We thus conclude that it holds that

oFE 1 0B
E—CQ curlB:—gJ, W—i—curlE:O,

as announced.

The calculations performed here formally can be mathematically justified to
prove the equivalence between the first-order and the second-order Maxwell
equations. We refer the reader to Chapter 7.

1.5.4 Resonance vs. time-harmonic phenomena

We consider the time-dependent Maxwell equations in a homogeneous medium
(for instance, vacuum), set in a bounded domain Dom, written as two second-
order wave equations (see Egs. (1.128)-(1.129)). Assuming that there is no
charge, both electromagnetic fields are divergence-free. The wave equations
for each of the fields being of the same nature, we will consider only one of
them, for instance,

0’E 10J
5z +¢? curlcurl E = —E—OE ,
divE =0,
with the initial conditions
oFE
BO) =By, 5 (0)=F;.

Since the domain Dom is bounded, one has to add a boundary condition, such
as the perfect conductor boundary condition (1.135). The problem to solve
can be expressed as

d*U aUu

where:

(0)=U;, (1.130)
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U (t) is the unknown, here the electric field ;

A is the operator acting on the solution, here ¢? curl curl ;
F(t) is the right-hand side, here —e;'0;J ;

Uy,U; is the initial data.

The problem is set in the vector space of divergence-free solutions with van-
ishing tangential components on the boundary, the so-called domain of the
operator A. It can be proven that the operator A is compact, self-adjoint
and positive-definite, and that there exists an orthonormal basis of eigen-
modes (p;,)r>1 and a set of corresponding non-negative eigenvalues (Ag)r>1
(counted with their multiplicity) such that Ap,, = Ay, for all k > 1 (we refer
the reader to Chapter 8 for details). Moreover, the multiplicities of all eigen-
values are finite, and furthermore, limy_; 4o A = +00. The set {\x, k > 1} is
the spectrum of the operator A. Such modes correspond to the so-called free
vibrations of the electric field. One can expand the solution U and the initial
data on the basis:

Ut) = Zuk(t)uk, Uy = Zulguk, U, = Zulfuk

Solving the problem (1.130) mode by mode yields, thanks to the superposition
principle,

k

Ut) = Zuk(t)uk, with ug(t) = kst sin(wyt) + ul cos(wyt)
k=1 Wk

1 t
+— (/ sin(wg (t — s)) Fr(s) ds) , (1.131)
Wi 0

with wi = /A for all k. As pointed out by the expression (1.131), the values
wg play a particular role in the physical interpretation. Assume that the energy
input to the system can be expressed by a right-hand side F'(t) such as

F(t) = fi cos(wt)py, (1.132)

with a prescribed positive w. This corresponds to the so-called sustained vi-
brations of the electric field, expressed here in the time-dependent case. Com-
puting the mode-by-mode solution with this right-hand side, one finds that
ug(t) is equal to

e, 1

QW W —WE W+ Wk

1. Heos(wyt) — cos(wt)) if w # wy;

2. respectively 2—ktsin(wt) if w=w,.
w

In case 1, all terms in (1.131) appear with a bounded amplitude, the lead-
ing term being proportional to fi(w — wk)_lwlzl when w &~ wy. If case 2
occurs, there exist one or several terms in (1.131), i.e., those that write
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(2w) ! frtsin(wt) for k such that wy = w, which have an unbounded ampli-
tude, equal to (2w) ! fxt. This is called a resonance. It can occur only when
the excitation frequency w is equal to one of the wy’s. For this reason, the
quantities (wg)x are called resonance frequencies'® of the system.

This result can also be interpreted in terms of energy. Indeed, taking the dot
product of (1.130-left) by U’ and integrating over the domain Dom yields

LN 1)+ (401 1) = (01D 1)) tor 1> 0.

It can be written as

{1 ||dU( t)|1* + %(AU(t)|U(t))} = (F(t) %( t)) for t > 0.
Above,
1/2
OV - [ UV [U0]- ( | e dw) |

The first term between brackets represents a kinetic energy, the second one
represents a potential energy and the right-hand side represents the power
brought to the system at a given time t. Integrating this equation over time
leads to the energy conservation equation

1 au
= 24 — 24
IO+ 5ATOD0) = [ F6) 6)is+ 3101+ (AT T,
t
in which the energy brought to the system is / (F(s)|U’(s))ds. Assuming

again that F is of the form (1.132), the energ}? has a bounded amplitude
as soon as w ¢ {wg, k > 1}. Contrastingly, this amplitude is unbounded if
w = wg. Physically, the resonance corresponds to the excitation of one eigen-
mode of the system, creating an unbounded increase of its internal energy.

Let us now build a solution to the time-harmonic problem, cf. §1.2.1. We
introduce a right-hand side F' with harmonic time-dependence exp(—wt) (w >
0), that is, F(t,x) = R(f(x)exp(—wt)), with a complex-valued f. Let us
consider that the solution U to Eq. (1.130-left) adopts the same time-harmonic
dependence for t large enough, so that U(t, ) = R(u(x) exp(—wt)), with a
complex-valued u. Plugging the expression of U into Eq. (1.130-left) and
using, as above, expansions of u and f yields, with obvious notations,

R <Z(w,% — w?) up, py, exp(—wwt) ) (Z I 1ty exp(—zwt)) . (1.133)

k

16 More precisely, w is a pulsation and the corresponding frequency is w/(2m).
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Now, Eq. (1.133) is equivalent to (wi — w?)uy = fi for all k. Assume that w

is equal to some wg. In order for a solution to exist, one must have fr = 0
for all the corresponding indices k (such that w = wy). It follows that no
resonance can occur in the time-harmonic case. From a mathematical point of
view, one can use the Fredholm alternative (cf. Chapter 4 for a more detailed
discussion).

1.6 Boundary conditions and radiation conditions

In order to close Maxwell’s equations when the domain is a strict subset of
R3, one must provide conditions, in addition to the differential Maxwell equa-
tions (1.6-1.9). These conditions are usually imposed on the boundary of the
domain, and they are called the boundary conditions. Also, when the domain
is unbounded in at least one direction, it is interesting, from a computational
point of view, to bound it. The computational domain thus corresponds to
a truncation of the original domain. This can be achieved via the introduc-
tion of an artificial boundary, and an ad hoc absorbing boundary condition is
imposed on this boundary, so that the electromagnetic waves can leave the
computational domain without (significant) reflections. Another possibility is
to introduce — not a boundary plus a boundary condition — but a thin, dissipa-
tive layer, in which the waves can propagate while being damped at the same
time. This technique is called the perfectly matched layers. In other respects,
when one focuses on the time-harmonic Maxwell equations (1.47-1.50), one
must add a condition at infinity, which permits us to discriminate incoming
and outgoing waves: this condition is called a radiation condition. Physically,
it prevents energy inputs from infinity. Mathematically, it allows one to prove
uniqueness results.

1.6.1 Boundary conditions

As we remarked at the beginning of this section, the differential Maxwell
equations are insufficient to characterize the fields in a strict subset of R3. On
the other hand, the integral Maxwell equations yield four interface conditions,
respectively described by Eq. (1.11) and Eq. (1.12). How can these conditions
be used? Let us call O the domain of interest, and 9O its boundary. Note
that 9O can alternatively be seen as the interface between O and R3 \ O,
so the electromagnetic fields fulfill conditions (1.11-1.12) on 9O. In addition,
the behavior of the electromagnetic fields is known in R? \ O (otherwise, we
would have to compute them!) or, more realistically, in an exterior domain O’
included in R*\ O, such that 0N0O =00. As a consequence, one can gather
some useful information as to the behavior of the fields in O, on the boundary
00.

For instance, let us assume now that the domain O is bounded, or partially
bounded (i.e., along one direction, like the “pipe” in Figure 1.1), and that it



50 (©Assous-Ciarlet-Labrunie 2017

is encased (at least locally) in a perfect conductor. Then, as we saw in §1.1,

Fig. 1.1. “Pipe” domain.

the fields vanish outside O (cf. our discussion on skin depth and on the notion
of perfect conductor). From condition (1.11 right), we infer that

B-n=0o0n00, (1.134)

with n the unit outward normal vector to 90, with the convention that out-
ward goes from O to O'. Likewise, from condition (1.12 left), we get

E xn=0o0n0d0. (1.135)

The conclusion is that the normal component B,, = B-n|50 (respectively tan-
gential components E+ = n x (E x n)p0) of B (respectively E) uniformly
vanish on 9O: we call these conditions'” the perfect conductor boundary con-
ditions.

7 One may also use the interface conditions to describe electromagnetic fields glob-
ally in R3: this is an integral representation. More precisely [168, §5.5], consider
that R? is split into two media M™ and M™, one of them being bounded, and let X
be the interface between the two media. If one is interested in the electromagnetic
fields that are governed by the homogeneous time-harmonic equations in M™ and
M~, then, assuming that the jump jy, = —[H X nx]x (condition (1.12 right)) is
known, one can use integral representation formulas for the values of E(x) and
H(z), for all x € R®\ X. The integrals are taken over X and depend only on
js. In the same spirit, one can represent the (different) values of E*(xx) and
H* (zy) for all zx € ¥. Within this framework, one may generalize these results
in the presence of magnetic polarization by assuming that the magnetic current
on ¥, msx. = [E xnx]s, is also different from 0. In this case, one ends up with in-
tegral representation formulas of E and H, with integrals over X that depend on
Jsx and mx. In the same manner, one may use the jump relation oz = [D-nx|s
(1.11 left) to solve a diffraction problem expressed as a scalar Helmholtz equation,
assuming oy is known, where the unknown is the scalar electric potential.
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From the physical point of view, these conditions are macroscopic, since
they result from the idealization of quantities defined on surfaces. On the
other hand, from a mathematical point of view, these conditions are sufficient
to ensure the uniqueness of the solution, in the absence of topological con-
siderations. As we shall see in Chapter 5, condition (1.134) can be rigorously
inferred from condition (1.135), whereas the reciprocal assertion is not valid.

From the point of view of wave propagation, the perfect conductor bound-

ary condition can be viewed as a reflection condition. Indeed, since the elec-
tromagnetic fields uniformly vanish inside the perfect conductor, one can say
that the boundary completely reflects any impinging plane wave. As a con-
sequence, the reflection coefficient, which is equal to the ratio of amplitudes
between the reflected and incident waves, has a unit value. Also, in terms of
energy, no energy is transmitted to the exterior domain O'. In other words,
the energy flux through the boundary is equal to zero, and the energy remains
constant in the domain O (in the absence of sources).
However, there also exist media that are more or less dissipative. This occurs,
for instance, when the exterior medium O’ is a conductor (but not a perfect
one). The fields do not vanish inside ', so a wave originating from the do-
main O penetrates into the exterior domain O'. More precisely, if we consider
an impinging plane wave, it should penetrate — at least partially — into O,
where it is damped. In the special case when 0O is a plane and if the velocity
of propagation of the plane wave is equal to ¢ = 1/,/gzm, one finds by direct
computations that it holds that

Exn—i-\/EnX(Hxn)_O.
€

So, to allow a plane wave to penetrate into O, one usually introduces a
boundary condition, called the impedance boundary condition, which is written
as

Exn+Znx(H xn)=0ond0. (1.136)

In its simplest form, the impedance Z is a positive number, which is charac-
teristic of the medium. The obvious example is Z = y/p/e, which allows the
plane wave with velocity ¢ = 1/,/zun to leave the domain O without being
reflected (when 0O is a plane). More generally, Z is an operator (local in
space), and the generalized impedance boundary condition is understood as
Exnpo+Z(nx(Hxn)po) = 0. In terms of energy, this condition allows the
electromagnetic energy to decrease in the domain. Note that condition (1.136)
is usually considered for time-harmonic fields (see [28] for an example of time-
dependent fields), and in this instance, Z can be a function of the pulsation w.

In most cases, these boundary conditions are not sufficient to model problems
originating from physical situations efficiently. Let us consider more specifi-
cally the time-dependent Maxwell equations in a domain O. Obviously, if the



52 (©Assous-Ciarlet-Labrunie 2017

domain O is not bounded, it has to be “numerically adjusted” to perform
numerical computations. Note that this difficulty occurs for exterior problems
(diffraction, etc.) as well as for interior problems (waveguides, etc.) (see Fig-
ures 1.2 (left) and 1.3 (left)). Let the computational domain (2 be equal, for

e 0 R
=

Fig. 1.3. Adjustment of a sample interior problem.

instance, to'® O N B(O, R), with a suitable radius R. Then, the boundary of
the computational domain 9f2 can be split into two parts:

e a “physical” part, which is included in 0O: I' = 02 N 00.
e the remainder, I'4, which is purely “artificial”.

For a diffraction problem on a bounded object, the radius R is chosen so that
I's does not intersect the “physical” boundary O (see Figure 1.2 (right)). In

8 Instead of B(O, R), one can choose any reasonable volume in which the compu-
tations ought to be performed: a cube, as in Figure 1.3 (right, rightmost I'4),
etc.
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other words, there holds OI'N Iy = ), with I' = 90, I'y = 9B(O, R). So,
for numerical purposes, one handles a truncated exterior problem.
Contrastingly, for an interior problem, R is usually chosen in such a way that
I'y intersects the “physical” boundary: dI'NAI4 # () (see Figure 1.3 (right)).
In the latter case and as a rule of thumb, one must be careful to avoid artifi-
cial boundaries I'4 that intersect 0O at positions where the electromagnetic
fields can be locally “intense”, such as the neighborhood of reentrant corners
and/or edges of 9O. For numerical purposes, one handles a truncated interior
problem.

On I', one imposes the boundary conditions that model the behavior of the
exterior medium, as previously. On the artificial boundary I'4, a boundary
condition is also required. Let us go back to a plane wave with a velocity
of propagation ¢ = cd: when d-n > 0, one says that the wave is outgo-
ing, whereas it is said to be incoming when d - n < 0. Physically, one has
to model the following behavior: outgoing electromagnetic waves should leave
the computational domain (2 freely without being reflected at this boundary.
Or, equivalently, outgoing waves are absorbed at the artificial boundary, and
the corresponding condition is called an absorbing boundary condition.

Let (E“*, B®") denote the (exact) solution to the problem set in O, and let
(E, B) be the (possibly approximate) solution to the problem set in (2. Here,
the term ”problem” refers to Maxwell’s equations in the domain, plus the
boundary conditions on the boundary of the aforementioned domain.

It is possible to construct an exact absorbing boundary condition, which
is usually called the transparent boundary condition. It can be written as
E“ xnp, +T(n x (B x n)p,) = 0, where T is a pseudo-differential
operator (note the similarities with the generalized impedance boundary con-
dition). The action of the operator T' can be expressed in two equivalent
ways. Either T is considered as a transfer operator that relates the trace of
the tangential trace of the magnetic induction to its electric counterpart, and
its action is written as an (infinite) expansion in spherical harmonics. Or, an
integral representation of the fields can be used (in 2 and in R* \ B(O, R)),
which is determined by the values of the tangential traces of both fields on
Ly.

Mathematically, if one imposes the transparent boundary condition on I'4, it
can be proven that the restriction of the exact fields (E®*, B") to 2 is equal
to (E, B). Or, the other way around, one can build an exztension of the fields
(E, B) to O that coincides with the exact solution (see, for instance, [129]).
However, the transparent condition is non-local both in space and time: for
practical implementations, it is impossible to use the operator Texactly as it
is... So, for numerical purposes, one can choose, for instance, truncated (fi-
nite) expansions, when the action of T' is expressed via a transfer operator
(see below); or Boundary Element Methods that allow one to approximate
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integral representations.

Alternatively, one can choose to devise approximate conditions: the absorbing
boundary conditions (referred to as ABC or ABCs from now on). Within the
same framework, it is often required to model incoming waves from infinity.
The incoming waves should be able to enter the domain §2. The parameters
describing these incoming waves can be prescribed by given functions (denoted
e* and b* in the following), defined on the artificial boundary I's. A set of
ABCs for Maxwell’s equations can be written as

(E—cBxn)xn=e"xnonly, e"data, (1.137)
or, in a similar way,
(cB+E xn)xn=cb*"xnonl,s ©b"data. (1.138)

These conditions are obtained by locally approximating the boundary 'y by
its tangent plane. Moreover, an outgoing plane wave, which propagates nor-
mally to the boundary, is not reflected. In that case, we have to choose e* = 0
or b* = 0. On the other hand, when e* # 0 or b* # 0, conditions (1.137-1.138)
enable an incoming plane wave that propagates normally to the boundary to
enter the domain freely. The conditions (1.137-1.138) are known as the Silver—
Miiller ABCs [166]. When e* = 0 or b* = 0, they are said to be homogeneous.

Note that since we are considering boundary conditions that are an approxi-
mation of the exact transparent boundary condition, it follows that (E, B) is
different from the restriction of the exact fields (E*, B®") to {2.

If one differentiates Eq. (1.138) with respect to time and uses the trace of Fara-
day’s law on I'4, one finds another expression of the Silver—Mdiller boundary
condition that involves the electric field alone

*
g[(Exn)xn]—c(curlE)xn:caixnon I'y. (1.139)
ot ot
Or, as we already mentioned, one can choose to approximate the transparent
boundary condition directly. This can be achieved when the artificial boundary
is “smooth”, by performing either a Taylor expansion or a rational (Padé) ex-
pansion of the operator T, in terms of a small parameter: in the high—/fiequency

limit, the (small) parameter is equal to the angle of incidence (d,n) of the
waves on I'4. Keeping only the zero-order term, one recovers Eq. (1.138) with
b* = 0. Keeping the zero- and first-order terms, one tailors a priori a new
ABC." However, in the special case when the artificial boundary is a sphere

19 For instance (see [189)), if the artificial boundary I's is a cylinder of radius R and
axis Oz, one gets

0 c c
{a—i—ﬁ}[(Exn)><n]—&—EEeee—c(curlE)><n—00nFA7
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I'y = OB(O, R), the “new” condition still coincides with (1.138). Hence, the
initial Silver—Miiller ABCs, obtained by merging 4 with its tangent plane,
are still satisfactory up to the first order in this special geometry.

The precision of an ABC can be measured with the help of plane wave analysis:
any plane wave impinging on I'4 is partially reflected (and partially refracted).
The reflection coefficient (the ratio of amplitudes between the reflected and
incident waves) depends on the angle of incidence 6 = (d,n) €] — /2, 7/2].
When the reflection coefficient behaves like

1—cosf\*
_ 92(1
(1—}—0059) 0@™),

one says that the ABC is of order «.. Using this scale and assuming that I'4
is a plane, one finds that the Silver—Miiller condition (1.139) is of order 1,
whereas the perfect conductor condition is, by construction, of order zero.
One can also build ABCs of higher order. The following condition has been
proposed in [148]:

2

0 0 c ¢
<§ —l—c%) [(Exn)xn]+§ gradF(E"n)—l-? curlp(B-n) =0, (1.140)

or, alternatively,

0 0 1
<§ + c%) [(B xn)xn] —l—% grad(B-n)— 3 curlp(E-n) =0, (1.141)
where grad is the surface gradient, or tangential gradient, operator, and

curly is the surface curl, or tangential curl, operator. Assuming that I'4 is a
plane, it is proven that the condition (1.140) or (1.141) is of order 2.

Note that the ABCs are not equivalent to one another. In other words, two
different conditions yield two different sets of electromagnetic fields.

As we remarked earlier, approximate conditions such as the Silver—Miiller
ABCs have been developed as an alternate choice to the numerical approxima-
tion of the transparent boundary conditions. In particular, condition (1.139),
used in conjunction with the differential Maxwell equations (and another con-
dition on I'), leads to a well-posed problem [189]. In addition, the Silver—
Miiller boundary condition is sufficiently accurate for most interior problems,
and it is straightforward to implement numerically [23]. Contrastingly, for ex-
terior problems, the use of higher-order approximations is recommended [109].
A possible drawback of the higher-order ABCs is that they can lead to prob-
lems that are not well-posed. Finally, we note that these instances of ABCs

with £ = FE,e, + Epep + E.e. in cylindrical coordinates.
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can be used in the time-harmonic regime.

The last technique we review is credited to Bérenger [41, 42]. To adjust the
domain, one adds not an artificial boundary, but one, or a set of, artificial
layers, made of artificial media. These artificial layers, and the media they are
made of, exhibit special features:

(i) Interfaces between the computational domain and an artificial layer or
between two artificial layers are plane.

(ii) Electromagnetic plane waves that propagate in the artificial media are
attenuated: these media are dissipative.

(iii) At the interface between the layers and the computational domain, plane
waves are not reflected (whatever the angle of incidence).

(iv) At the interface between two layers, plane waves are not reflected (what-
ever the angle of incidence).

Basically, one first designs several types of layer. They are labeled L, Ly, L.,
depending on the chosen — constant (cf. (i)) — direction of the normal vec-
tor (nr = ey, ey, e;) to the interface between the computational domain and
conductivities in the artificial media have to be adjusted carefully. Indeed,
in addition to the conductivity o, one also needs to introduce a magnetic
conductivity o* such that in the artificial medium, Faraday’s law reads as
0B 4+ curl E*"" = ¢* H*"'. Furthermore, one has to split the magnetic
induction into two parts, and then, one has to duplicate Faraday’s law on
those two parts. By doing 50,2 one introduces additional degrees of freedom,
so that the problem at hand is solvable.

Second, to reconnect two different layers, for instance, L, and L,, one in-

%Y,
== R 72

(i) iii) (iv) p.c.b.c.

Fig. 1.4. Basic geometrical steps for the construction of PMLs.

troduces another artificial layer L, so that (iv) is fulfilled at the interfaces
O0L;NOLy, and OL,NOL,, (see Figure 1.4 (center)) through the use of similar

20 Manipulating Maxwell’s equations thusly is certainly admissible, since one is deal-
ing with artificial media, in which the electromagnetic fields are artifacts...
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techniques.

Note that there always exists a solution to the previous problems: in other
words, one can always choose the conductivities in the various artificial media
so that (ii-iv) hold.

Finally, this set of artificial layers is surrounded by a boundary on which
one imposes perfect conductor boundary conditions (see Figure 1.4 (right)).
The various artificial layers are called perfectly matched layers (or PMLs, for
short). Unsplit versions of the PMLs (based on stretched coordinates in the
artificial media, see [76, 176]) have been developed. In other words, the mag-
netic induction is not split anymore in the artificial media, which reduces the
total number of unknowns there. The same result can be achieved by the use
of anisotropic artificial media (as proposed in [183]), resulting in the so-called
uniazial PML (UPML).

From an algorithmic or computational point of view, outgoing plane waves can
leave the computational domain freely. Then, they are damped in the PMLs,
before being reflected by the perfect conductor boundary conditions. On their
way back, they are damped once more before entering the computational
domain freely. However, because of the dissipation in the artificial media, the
energy of the plane waves that enter the computational domain after traveling
in the PMLs is negligible. This process leads to numerical implementations
that are extremely efficient in practice. From a mathematical point of view,
the use of either the set of original PMLs of Bérenger or of unsplit versions
leads to problems that are (conditionally) well-posed mathematically (see [37,
36, 147)).

1.6.2 Radiation conditions

So far, we have focused mostly on the time-dependent Maxwell equations.
Here, we deal with the time-harmonic case as in §1.2, in a homogeneous
medium. Let w > 0 be the pulsation.

Let us assume for simplicity that the charge density o is equal to 0, so that
the current density is divergence-free. Under these conditions, each field is
solving a fixed frequency problem, which can be written in the manner of the
Helmbholtz-like equations (1.56-1.57),

{ curl curl e — Ae = wppg with A = w?/c?. (1.142)

curl curl b — \b = ygcurly

As we already pointed out, this equation is strongly connected to the scalar
Helmholtz equation (1.63), for which it is well known that the uniqueness of
the solution requires a so-called radiation condition at infinity.

Now, as far as radiation conditions are concerned, they are generally asso-
ciated with diffraction problems (see Figure 1.2). In others words, we are
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concerned with waves coming from infinity that are impinging on an obstacle
K: we are interested in solving the problem in O = R3\ K. As we saw before,
there may be (partial) absorption, as well as scattering by the obstacle, which
leads to different kinds of boundary condition on this obstacle.

In practice, the computational problem is usually set within a bounded do-
main, for instance, B(O,R) \ K. An ad hoc boundary condition is chosen
on 9B(0, R), together with the companion numerical approximation of this
boundary condition (see the previous discussion on transparent boundary con-
ditions and/or ABCs).

Then, supplementary conditions, which characterize the behavior of the so-
lution at infinity, are required. Denoting by (r, 6, ) the spherical coordinates
with associated vector basis (e,, eg, €4), we seek a condition that depends on
r only, so that it can be applied on the exterior boundary dB(O, R). At first
glance, it seems that imposing that the solution decrease like r—! at infinity is
sufficient. Indeed, this condition is similar to the one that is required for the
well-posedness of the scalar Poisson equation Aw = f in an exterior domain:
it can be easily understood as a requirement for avoiding a situation in which
the total energy [, |w|? de would be unbounded. However, unlike the case
of the Poisson equation, this condition is not sufficient to ensure uniqueness
of the solution to the Helmholtz equation. To illustrate this point, let us in-
troduce radial solutions to the scalar Helmholtz equation Aw + Aw = 0 set
in R3. In other words, since we are studying uniqueness, Eq. (1.63) is solved
in R3 with a zero right-hand side. Namely, we look for solutions of the form
w(x) = ¢(r). Under this assumption, Eq. (1.63) becomes, for r > 0,

1d de 2
—_ )+ k“C=0
2 KT(T l’f‘) C )

with k= VA =w /c. The general solution to the previous equation is
1
¢(r) =Cyle(r) +C_C_(r), with Cx € C, (4(r) = - exp(tekr). (1.143)

Two families of solutions coexist. One with the + sign in the exponent, corre-
sponding to an outgoing wave, the second with the — sign, associated with an
incoming wave.?! Hence, the uniqueness of the solution (up to a multiplica-
tive constant) can be recovered by imposing a radiation condition, that is,
a condition that describes the behavior of the solution at infinity, depending
on whether one wants to select an outgoing wave or an incoming wave. As a
matter of fact, from Eq. (1.143), we find

2! Tndeed, the unit outward normal vector to B(O, R) is n = e,.. Moreover, since
x = re, on B(O, R), for an outgoing plane wave that propagates normally to
OB(O,R) (kout = key), one finds kout - © = kr. Respectively, for an incoming
plane wave that propagates normally to dB(O, R) (kin = —ker), kin - @ = —kr.
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k
Cr) + ok ()~ 2R expukr), () = 1k, (r) = — 5 explub),

¢ (r) + k¢ (r) = _7% exp(—1kr), ¢ (r) — k¢ (r) =~ —? exp(—kr) '

This leads to the following radiation conditions, whose names correspond to
those given for the scalar Helmholtz equation:

1. The outgoing Sommerfeld condition (imposes C_ = 0 in Eq. (1.143))

Both instances are necessary and sufficient conditions to ensure uniqueness of
the solution to the scalar Helmholtz equation.

Remark 1.6.1 To express the general solution to the scalar Helmholtz equa-
tion, one uses expansions expressed in spherical coordinates as

_ exp(=thr) = Fu(6, ¢)
C(r.0,0) = — g -
This expansion is due to [25], [207] (see also [168]).

Let us consider the scalar, time-dependent, wave equation (in time-space R x
R3)

Pw

W — C A’LU =0.

One finds, assuming that the solution is radial in space — w(t, ) = p(t,r) —

0% 0 (28g0

- r_ - Z ) = f .
otz r29r T(’?T) 0, forr >0

This can be written equivalently as

(% —i—c%)(% - c%)(r@) =0, forr>0.
Now, solutions to (0 + ¢0,)(r¢) = 0 write r¢o = f(r F ct), so that ro =
Jout(r — ct) + fine(r + ct).
To see that foue(r — ct) (respectively finc(r + ct)) actually corresponds to an
outgoing wave (respectively an incoming wave), let us go back to the time-
harmonic regime.
Assuming, in addition, a time-harmonic dependence of these solutions like
o(t,r) = R({(r) exp(—wwt)), we have
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(—w + c%)(—zw — c%)(r() =0, forr > 0.
This is equivalent in turn to 0,(r¢) = +kr¢ or 0,(r¢) = —ikr{ for r > 0, so
that according to Eq. (1.143), ¢ coincides with the solution obtained there.
Moreover, we observe that (9; + ¢0,)(r¢) = 0 in the time-dependent regime
corresponds to 9, (r¢) = 4+ukr¢ in the time-harmonic regime. We conclude by
identification that

Jout(r — ct) = R(C (4 (r) exp(—wwt))
corresponds to an outgoing wave. In the same manner,

fine(r + ct) = R(C_C_(r) exp(—wwt))
corresponds to an incoming wave, as advertised above.

Denoting by w a radial solution to the time-harmonic Maxwell equations
(1.142) with a zero right-hand side, one finds that two families of solutions
coexist, in the form of an incoming part (denoted by w_) and an outgoing
part (denoted by w.). Again, one may select the outgoing or the incoming
parts, via radiation conditions for the solution:

1. The outgoing Silver—Miiller radiation condition (imposes u_ = 0)
1
curlu x n —ku = O(=). (1.144)
r

2. The incoming Silver—Miller radiation condition (imposes u; = 0)

curlu x n—i—zku:O(%). (1.145)
Often in the literature (see [168], [87]), the Silver—Miiller radiation conditions
appear in another form, derived from the first-order time-harmonic Maxwell
equations (1.52-1.55), with a zero right-hand side. In this instance, both elec-
tric field e and magnetic induction b are involved in the outgoing or incoming
expressions that read, respectively, as:

1. First-order outgoing expression

or cb—l—exn:O(i), (1.146)

1
e—cbxn=0( 3
r

r_g)v

2. First-order incoming expression

e—i—cb><n=O—1 ,orcb—exn=0 ! 1.147
2
r

)
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How can these conditions be used mathematically? For instance, let us go
back to a diffraction problem, as pictured in Figure 1.2. The total electric
field e can be split into two parts: the incident wave €;,., the known imping-
ing wave that propagates in the medium, and would not be affected in the
absence of a scatterer; and the scattered wave es.,, our unknown. By def-
inition, the scattered wave is supposed to be outgoing, i.e., fulfill condition
(1.144). Mathematically, this is expressed as

lim |curl eseq X 1 — 1hegseq|?dS = 0.
R=+o00 Jop(0,R)

According to [135], this outgoing Silver—Miiller radiation condition on ey,
together with the differential Maxwell equations (and a perfect conductor
boundary condition on I") on the total field € = €5 + €scq, leads to a well-
posed problem.

To emphasize the differences between the time-harmonic Maxwell equations
(1.142) and the vector Helmholtz one, note that the solutions to (1.142)
satisfy a constraint on the divergence: they are divergence-free (see remark
1.2.3). This is not the case of the plain radial solutions v(r) to the vector
Helmholtz equation. Nevertheless, these computations being essentially based
on the asymptotic behavior of (4 (r), the Silver—Miiller radiation conditions
— considered componentwise for the time-harmonic Maxwell equations — are
expected to be equivalent to the Sommerfeld radiation conditions. Indeed, it
was proven that each component of any solution to Maxwell’s equations sat-
isfying the Silver—Miiller radiation conditions also satisfies the corresponding
Sommerfeld radiation conditions for the scalar Helmholtz equation, and vice
versa (see [87] for a proof).

Let us conclude this section by briefly exposing the relation between the
Silver—Miiller radiation condition (1.146) and the Silver—Miiller ABCs (1.137-
1.138) in its homogeneous form, that is, with (e*,b*) = (0,0). Note first that
the similarity appears in the time-harmonic case, when comparing (1.137-
1.138) with relations (1.146). Second, for the time-dependent case, recall that
the ABCs were obtained by assuming that an outgoing plane wave, which
propagates normally to the boundary, is not reflected. According to the previ-
ous discussion, the ABCs can also be viewed as a way of selecting a direction
of propagation, by removing the incoming wave, the outgoing wave leaving
the domain freely.

1.7 Energy matters

The aim of this section is to recall the basic notions related to the energy in
the context of Maxwell’s equations.
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Let us consider first the case of a homogeneous medium (vacuum). Our
starting point is Faraday’s law (1.27) and the absence of magnetic monopoles
(1.29). We have seen that there exist two independent potentials — A and
¢ — that can be used to take into account these two relations, and define
the electromagnetic fields as in Egs. (1.34-1.35). For our purpose here, we say
that (A(t, @)« and (¢(t, x)),, are the generalized coordinates of our system.
Then, let us introduce the Lagrangian density

L(t,x) = E(A(tv :I}), (b(tv x))

1
= (%0|E|2 - 2—%|B|2 +A-J— ¢g) (t,z), (1.148)

together with the Lagrangian on a frozen (w.r.t. time) volume V C R3

/ Ladv.
v

Then, the idea is to use the least action principle, which amounts to finding
extrema of the action (with ¢; < to given)

to
S::/ /Edth
t1 1%

over trajectories t — (A(t), ¢(t)) with fized initial and final states. In other
words, one chooses infinitesimal variations § A and §¢ such that (6 A, 0¢)(t1) =
(0A,0)(t2) = 0 in the volume V. A necessary condition for an extremum of
S to exist is that 65 = 0, with

ta
6S ::/ /(5£dth,
t1 1%

for all admissible variations (§A, d¢). In a first step, one adds a new constraint
on the variations, namely that (0A,d¢)(¢t) = 0 for all ¢ €]ty,t2], on the sur-
face V. One finds that the electromagnetic fields necessarily satisfy Ampeére’s
and Gauss’s laws, which appear within this framework as equations of motion
of the electromagnetic fields. In a second step, one removes all constraints
on the variations, to focus on the relation that defines 4.5, which now takes
into account Ampere’s and Gauss’s laws, and holds for all variations (this
is not the least action principle anymore). One finds that another necessary
condition appears, which can be written as

d €0 2 1 2 > / 1
— —|E|* + —|B|*}dV | + —(E x B)-dS
dt (/\/{2 | 2#0' ™ av No( )
+/E-JdV:O. (1.149)
1%

This is an integral electromagnetic energy conservation relation. Indeed, let
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1 2 1 2
wy = {0l E]* + —| B[} (1.150)
Ho

be the density of electromagnetic energy, and let

1
So =—FE X B,
Ho
be the wvector flur of the electromagnetic energy, called the Poynting vector.
The conservation relation (1.149) writes

d
—</ deV>+/ So-dS+/E-JdV:O.
dt \Jv v v

From a physical point of view, the third term can be seen as the power dis-
sipated by the Joule effect, and the second as the flux of the electromagnetic
energy entering or leaving the domain V.
It can be written in differential form as

(9’[1}0

W"rdiVSo-f—E'J:O.

Note that one can define the total electromagnetic energy by
Wtot = / wo dv .
R3

As originally expressed by Feynman [111], no doubt better than by us, we
cannot be sure that these definitions are the “correct definitions”. However,
if one has a look at other possibilities in the definition of the Lagrangian den-
sity (1.148), one always comes up with non-linear terms in the equations of
motion of the electromagnetic fields. Thus, it is “natural” to keep the sim-
plest expressions, that is, (1.149-1.150). Nevertheless, these definitions have
to be considered as modelling assumptions, which are used extensively in the
mathematical analyses (see Chapter 5).

Let us consider next the case of a perfect medium, in which the constitutive

relations read as in (1.17), with symmetric tensors ¢ and p. By analogy, we
first introduce the density of electromagnetic energy:

1
Since € and p are both independent of ¢, one gets dyw = 0;D - E + 0;B - H.

We also introduce the Poynting vector S, defined as
S=FExH. (1.151)

Taking the divergence of S, we obtain
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divS=H -curlE - FE -curl H.

By using Faraday’s and Ampere’s laws, we can substitute in this expression
curl E by —0;B and curl H by ;D + J to reach
ow

ot

This equation is the differential electromagnetic energy conservation in the
case of a perfect medium, and it can also be expressed in integral form, in any
frozen volume V', as

i</ de)+/ S-dS+/E~JdV:O. (1.152)
dt \Jv v v

In the more general case of a chiral medium, the previous notions (density,
conservation of energy) are much more complex to build.

+divS+FE-J=0.

Let us examine now the case of static electromagnetic fields (cf. §1.4, Egs.
(1.104)), in vacuum.
Let us focus first on the total electrostatic energy: recall that E®'*' =
— grad ¢t with a potential ¢!t governed by the Poisson equation (1.105).
Then, one has, with the help of Ostrogradsky’s formula,
thisult _ E_O/ Estat . Estat dV = _5_0 grad (bStat . Estat AV

2 R3 2 R3

€0

= —— lim grad ¢stat 'EStat AV
2 R—+00 B(O,R)

8_0 lim / (bstat div Estat dV _/ (bstat (Estat . dS)
2 R—+oo B(O,R) dB(O,R)

1
Z lim / ¢StthdV _ 50/ ¢stat (Estat . dS)
2 R—+oo | JB(o,R) 9B(O,R)

1
- / ¢Stth dv .
2 Jrs

It remains to explain why the rightmost term vanishes when R goes to infinity.
For that, let us return to formula (1.30), which expresses the (static) electric
field created by N charged particles. This formula can be further generalized
to a volume distribution of charged particles, with density . One reaches

Estat(m)_ 1 /g(m’) |(2B—$/) d:n’.

 4Te, xz—x3

The above expression can be rewritten as a convolution product in space:

- Y
yl®

E*tt = ox G, with G(y)

4dme,



February 22, 2018 65

Introducing G(y) = |y|~!, which satisfies G = — grad G, one gets

1
Estat — grad Qz)stat, Wlth ¢stat — 1 0x G,

TEq

with ¢*% the corresponding electrostatic potential.
Provided that the support of g is a bounded subset of R? — physically, provided
that there are no charged particles at infinity — one finds that

Co

C
|¢stat($)| S e and |Estat($)| S Wu

||

with C, a constant that depends on p. Therefore, one has

/ ¢Stat (Estat . dS)
9B(O,R)

So, the conclusion follows. For a volumic distribution of charges — without
charges at infinity — the total electrostatic energy is equal to

47 C'g

<
- R

1
W = 2 /R gteav. (1.153)

Remark 1.7.1 Ezpression (1.153) involves the potential $*t** and the charge
density o, which are related by the Poisson equation (1.105). Thus, it can also
be viewed as the potential energy of the system of charges.

Interestingly, and for volume distribution of charged particles, Expression
(1.153) includes the self-energy of the distribution. In other words, if Vj de-
notes the support of the charge density, the expression

1
E, stat __ sta
WVo = 5 /V Qb ¢ thV
0

has a meaning. This can be proven mathematically, due to the properties of
the Green kernel G.

Contrastingly, the potential ¢*!** is meaningless for discrete systems of
charged particles (see Eq. (1.30), right) at the positions (x;)1<i<ny of the
charges, and the charge density o writes as a sum of Dirac masses located,
respectively, at (€;)1<i<n. So, one cannot define the self-energy for discrete
sets of charged particles. This is consistent with the fact that, in this situation,
E*""" is not square integrable in volumes enclosing one or several charges.

So far, we have considered 3D- and 0D-supported charge distributions. In-
between these two configurations, there exist 1D- and 2D-supported charge
distributions, such as idealized wires and surface charges on perfect conduc-
tors (cf. the infinite skin effect for the latter). On the one hand, it turns out
that one can define the self-energy of surface charge distributions as
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1
W§7stat _ _/ ¢Stat02 ds .
2 /s

But on the other hand, one cannot define the self-energy for linear charge
distributions.

The discussion of the total magnetostatic energy follows the same lines,
since one has B¥'*" = curl A*'* with A" governed by the vector Poisson
equation (1.106), with a constraint on the divergence. As previously, using
Stokes’ formula and provided there are no currents at infinity, one then finds
the identity

WB,stat — i Bstat . Bstat dV = l Astat - JdV
ot 210 Jgs R3 .

Provided the time-dependent electromagnetic fields behave similarly at infin-
ity, i.e., |E(t,z)| < C,o(t)|z|~% and |H(t,z)| < Cj(t) || =2, one finds that

AW
W“+ E-JdV=0.
dt RS

To conclude this section, we write down the electromagnetic energy flow in
the case of a time-harmonic dependent field. The electromagnetic fields are
expressed as in (1.41-1.42), and we substitute these expressions in the Poynting
vector (1.151), which characterizes the energy flow, to obtain the complez-
valued Poynting vector S°¢

S¢ = EEC x HC.
2
This complex-valued Poynting vector is generally used to measure the energy
flow for complex-valued electromagnetic fields (S = R(S¢)).
Finally, we consider the electromagnetic fields, expressed as a superposition of
plane waves (in a homogeneous medium). Using Parseval’s formula, we remark
that the total electromagnetic energy also writes

1 1
Wi =5 [ (alBa) + 1Bl ) a.
kERS Ho

1.8 Bibliographical notes

Concerning the form of Maxwell’s equations, we relied on the physical ap-
proach of Jackson [142, Chapter 1] and on the topological approach of Gross
and Kotiuga [128]. See also the book by Jones [149]. As far as the constitutive
relations are concerned, References [142, 153, 157, 150] have been helpful. The
experimental results acquired a historical status a long time ago, cf. Coulomb’s
experiments in 1785. The “existence” results of electromagnetic fields in all
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space R3 can be found in many places: we chose [141] for the general case of
a chiral medium and Chapter 6 in the monograph by Cessenat [73] for the
particular case of a homogeneous medium. In regard to conducting media,
we used the numerical results from [128, Chapter 1]. Regarding the issue of
vanishing electromagnetic fields inside perfect conductors, we mention [168,
Chapter 5], where illuminating comments and (partial) mathematical justifi-
cation can be found. Let us mention [197, 143, 142, 95, 162] for the definition
of skin depth in different models; see also [193] for the notion of magnetic
skin depth.

On the vast topic of the stationary Maxwell equations, we refer the reader
(for instance) to the introductory book by Laval [154], and to the monograph
by Krall and Trivelpiece [152]. See also the book by Van Bladel [203]. The
limiting amplitude principle is rigorously proven in the monograph by Sanchez
and Sanchez [185].

As far as the approximate models are concerned, we refer the reader to the
works of Raviart and co-workers [97, 178|, where the general methodology on
how to build those models is described. In geophysics, approximate models
are considered, for instance, in [43, 86]. The static models have been scru-
tinized extensively by Durand in his three-volume series [104]: in particular,
an impressive number of computations carried out by hand (before the era
of personal computers) are available. The Darwin model is named after C.
G. Darwin, who studied the motion of charged particles in the 1920s [91]. In
bounded domains, References [97, 84] provide some insight as to how one can
define suitable boundary conditions for the transverse and longitudinal parts
of the electric field.

The derivation of the Boltzmann and Vlasov equations can be found, for
instance, in the monographs by Krall and Trivelpiece [152] or by Lifschitz [156]
(physical point of view), or in the classnotes by Desvillettes [99] (mathematical
point of view). Regarding plasma physics, we refer to [74].

To our knowledge, the first theoretical works on the Vlasov equation are those
of Arseneev [12; 13]. For the coupled Vlasov—Maxwell system of equations,
local existence and uniqueness results of classical solutions can be found in
[202, 96] or in [208, 123]. Global existence results of weak solutions appeared
in [102, 130]. See also a survey in [59].

For the study of the transparent boundary conditions, including their repre-
sentations and their approximations, we recommend reading the monograph
by Nédélec [168].

The Sommerfeld ABC that we recalled for the Helmholtz equation is named
after A. Sommerfeld [195]. The Silver—Miiller ABCs that we described are
named after C. Miiller [166] and S. Silver [191]. In their time-dependent form,
they have been designed (cf. [23]) in the same spirit as the ones given in [47,
pp. 370-371]. There exists a wide literature on the topic of ABCs: see, for in-
stance, [106] for the scalar wave equation and [40, 148, 189, 119] for Maxwell’s
equations. In the time-harmonic regime, there also exist many noticeable re-
search works, such as [189, 39, 11]. As far as Bérenger’s PMLs are concerned,
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we refer the reader to the seminal papers [41, 42], and to variants, for instance
[76, 176, 183, 116, 117, 2, 52].

For radiation conditions, we refer the reader to the monographs [166, 87, 168]
and to [135].

The notion of electromagnetic energy is studied in-depth in many monographs.
Many aspects have been scrutinized: physical, computational, mathematical,
etc. We refer, respectively, to the book by Laval [154], and the monographs
by Jackson [142], Durand [104, Volume I] and Cessenat [73, Chapter 1].
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Basic applied functional analysis

To measure data and solutions spatially, we recall a number of useful defini-
tions and results on Lebesgue and standard Sobolev spaces. Then, we intro-
duce more specialized Sobolev spaces, which are better suited to measuring
solutions to electromagnetics problems, in particular, the divergence and the
curl of fields. This also allows one to measure their trace at interfaces between
two media, or on the boundary. Last, we construct ad hoc function spaces,
adapted to the study of time- and space-dependent electromagnetic fields.
For bibliographical references on the general results, we refer the reader to
[115, 187, 167, 158, 3, 201, 209, 63, 125, 93, 92, 94, 126, 4]. For some of the
more specialized results, we provide references along the way.

2.1 Function spaces for scalar fields

Unless otherwise specified, the function spaces will be defined on a subset
of R™ (possibly R™ itself). The definitions and properties that we list here-
after can depend on the category of subsets of R™ on which they are given.
We shall consider three categories: (C1) open subsets, (C2) open subsets with
Lipschitz boundary, and (C3) bounded, open connected subsets with Lipschitz
boundary, also called domains. The last category will include an important
subcategory, the curved polyhedra, that is, domains with a piecewise smooth,
curved boundary.

An element o = (o, - ,a,) of N is called a multi-index, with |a| =
Z?:l a;j. The partial derivative of order « is further denoted by

olelf

Bz - - Dal

Let de = dz1dxs - - - dx,, denote the Lebesgue measure in R™.

Ao f

Category (C1): open subsets of R™.
Consider a set {2 that belongs to the category (C1).
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Let us begin with the Lebesgue spaces LP(§2), for 1 < p < co. One usually
considers complex-valued functions, but all definitions are easily extended to
real-valued function spaces. Details on Banach and Hilbert spaces, and also
on the duality and interpolation theories, can be found in §4.1.

Definition 2.1.1 The space LP({2) is composed of all complex-valued, Lebesque-
measurable functions f on (2, and such that

1/p
porisp<oe Wl ={ [ 117} <o
0
for p =00 [l fllLoe () := esssup,eqlf(x)| < oo

Endowed with the norm || - ||L» (@), LP($2) is a Banach space and, for 1 <p <
00, is separable.

Let p € [1,00], f1 = f2 in LP(£2) mean that fi, fo € LP(£2) and f; = f2 almost
everywhere in 2. One can then define the spaces of functions that are locally
in L? in the following way. If' f1 belongs to LP({2) for every compact subset
K of 2, then f is locally in LP({2), and one writes

€ Lipe($2)-

One then has a stability result of the multiplication by elements of L>°(£2).

Proposition 2.1.2 Let 1 < p < oco. The multiplication is a continuous bilin-
ear mapping from L>°(§2) x LP(£2) to LP(£2).

Given 1 < p < oo, one defines its conjugate exponent p’ as 1/p+ 1/p’ = 1.
The Holder inequality yields the next result.

Proposition 2.1.3 Let 1 < p < oc and p’ BE its conjugate exponent. Then,
given (f,g) € LP(£2) x L¥ (£2), one has fg € L*(£2).

One can build dual spaces of the Lebesgue spaces.

Proposition 2.1.4 Let 1 < p < oo and p’ be its conjugate exponent. Then,
the dual space of LP(£2) can be identified with L¥' (£2): (LP(£2)) = LP (£2). On
the other hand, L'(£2) C (L*°(£2))" but (L>=(£2))" # L' ().

Emphasis is then laid on the L?(§2) space, which is, in addition, a separable
Hilbert space.

Proposition 2.1.5 The space L*({2) is a separable Hilbert space, endowed
with the scalar product

(flg) == /Q fgdz.

! Given any subset S of R", 15 denotes the indicator function of S.
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Let us recall now some basic ideas about distributions, including the definition
of differentiation in the sense of distributions. We begin with the space D(§2)
of infinitely differentiable functions,? with compact support on 2. Classically,
this function space is not reduced to {0}. In practice, one can use the conver-
gence of sequences to define the topology. Let (fx)r be a sequence of elements
of D(£2): it converges in D(£2) to f if, and only if:

(i) there exists a compact subset K of 2 such that supp(fx) C K, for large
enough k;
(ii) for all multi-indices o, (On.fk)r converges uniformly in K to O0nf.

Definition 2.1.6 A linear and continuous form T defined on D(§2) is called
a distribution. The space of distributions is denoted by D'(12).

Let T € D'(12) and f € D(£2): the action of T on f is written with the help
of duality brackets, that is,

(T, f).
According to the topology on D({2), T is continuous, provided that

Y(fx)k, J € D(£2) such that fr, — fin D(2), (T, fr) — (T, [).

A few examples will be provided in the sequel (2.1), (2.5), (2.6). As a dual
space, D’'({2) can be equipped in a "natural” way with a topology, called the
weak-star topology.

Definition 2.1.7 Let (Ty)r be a sequence of elements of D'(§2): it converges
in D'(2) to T if, and only if, for all f in D(2), Ty, f) = (T, f).

One can easily prove the imbedding
Lioo(£2) C D'(2), (2.1)

by identifying elements f of L}, (£2) with distributions, still denoted by f,
according to

Vg e D). ()= [ fode (2.2)
Since, for p € [1,00], one has LP(£2) C LY () C L} .(£2), one can also
consider elements of LP(£2) or L} (£2) as distributions. In particular, given
f € L?(02), one has (f,g) = (f|g) for all g € D(£2).
Let us recall a property that will be used throughout this book, namely...

Proposition 2.1.8 Let fi and f> be two elements of L}, .(£2). The relation

(f1,9) = {f2,9) for all g € D(2) implies that f1 = fa almost everywhere in
0.

Now, one can introduce the notion of differentiation in the sense of distri-
butions.

2 The space D(£2) can also be denoted by CS°(£2), where the index . stands for
compact support.
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Definition 2.1.9 Let T € D'(12). Its j-th partial derivative (7 =1,--- ,n) is

defined by
or of

VfE'D(.Q), <87j7f>:_<T7 8x]>

One thus has...

Proposition 2.1.10 The mapping T' — 0;T is linear and continuous from
D'(2) to D'(12).

Since L?({2) is a subspace of D'(§2) (by identification, cf. (2.2)), it is therefore
possible to differentiate its elements in the sense of distributions. We define
below the first Sobolev space in a long series.

Definition 2.1.11 Let H'(2) = {f € L*(Q2) : 90;f € L*(2), j =
1,---,n}, where differentiation is understood in the sense of distributions
(Definition 2.1.9). An associated norm is

1/2
ey = [ (7 + lerad s aa}
It is a separable Hilbert space, endowed with the scalar product
(f,9)m(0) = / (fg+grad f - gradg) dx.
0

It is also possible to give an equivalent definition of H!(2).

Proposition 2.1.12 Let f € L?(£2). Then, f belongs to H'(82) if, and only
if, there exist Cy,--- ,Cy, >0, such that, for j=1,--- . n,

0
vwep@), |15 < Gl
J

Now, let « be a multi-index. From Definition 2.1.9, one recursively deduces. . .

Definition 2.1.13 Let T € D'(£2); its partial derivative of order « is defined
by
Vf€D(R2), (9aT,f)=(~1)NT,0uf).

When o = (0,---,0), there is no differentiation involved!
This allows us to consider Sobolev spaces of integer order m, m > 2.

Definition 2.1.14 Letm € N: H™(2) := {f € L*(2) : 0of € L*(2), Va €
N™, |a| < m}. The canonical norm is

1/2

1y == /ﬂ S joufPda b (2.3)

aeN™, |a|<m

It is a separable Hilbert space, endowed with the scalar product
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(fs9)mm ) = /Q Z O fOng dx.

aeN”, |a|<m
Finally, |- |gm (o) denotes the semi-norm

1/2

Flim iy = /Q S 0ufPdry (2.4)

aeN”, |al=m

Remark 2.1.15 If m = 1, the two definitions of H'(§2) coincide, whereas if
m =0, one has H°(2) = L*(2).

Then, one can introduce fractional-order Sobolev spaces, that is, with order
s € Ry := [0,00[. Let us consider the case 2 = R™, for which one can use
the Fourier transform from L?(R™) to L?(R"™). Classically, for f € L*(R"), the

Fourier transform of f is f, given by

Vk e R", f(k)=(2r)™ / f(x) exp(—1k - x) dz .

melR'Vl
In particular, one has ||f||L2(Rn) = (2m) 72| f|| L2(rm).-

Definition 2.1.16 Let s € Ry: H5(R") := {f € L*(R") : (1+]|-[?)*/%f ¢
L?(R™)}, with norm

) L 2112 1 C12y8/2 712 1/2
[ f e ®ey == NN T2y + 1+ )Y FlI T2 ey

It is a Hilbert space, endowed with the scalar product

(f,9) s @®n) = (JE, G)r2®n) + ((1 + - |2)S/2fa (141 |2)S/2§)L2(Rn) .

Obviously, when s € N, H*(R™) coincides algebraically and topologically with
the space of Definition 2.1.14 (case 2 = R™).

When (2 is an open subset of R™, let us define H*({2) for s € Ry \ N by
interpolation.

Definition 2.1.17 Let s € Ry \ N, and write s = m + o, with (m,0) €
Nx]0, 1[. The Hilbert space H*(§2) is the interpolated space

H*(02) := [H™(2), H" (2)]1 -0
Its norm and scalar product are denoted by || - || g+ (o) and (-, ) gs(2)-

Remark 2.1.18 The above Definition is motivated by the fact that, when
2 = R"™, the definitions via the Fourier transform and the interpolation theory
coincide algebraically and topologically.
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One can then define the spaces of functions that are locally in H® in the
following way. If f belongs to H*(w) for every open subset w of every compact
subset of (2, then f is locally in H*({2), and one writes

[ € Hi,o(£2).
One has the continuous imbeddings, for ¢ > s > 0,
D(2) C H'(2) C H(N) C L*(N). (2.5)

To extend the scale of Sobolev spaces to negative fractional order, let us build
dual spaces of the Sobolev spaces H*({2), s > 0. As a matter of fact, one
instead considers the dual spaces of

H{(£2) := closure of D(£2) in H*({2), for s > 0.

As a closed subspace of H*(f2), Hj({2) is a separable Hilbert space. The
motivation is twofold:

e By a density argument, one can replace elements of H{(§2) with elements
of D(£2).

e When the boundary of 2 is bounded and appropriately smooth, Hg({2)
can be characterized as a subspace of H*({2), the elements of which fulfill
some homogeneous boundary conditions (see Theorem 2.1.62 and Remark
2.1.64.)

NB. It holds that H§(R™) = H*(R"), for all s > 0.

Definition 2.1.19 For s > 0, the dual space of H§(12) is called H*(2).
The action of elements of H *({2) on elements of H5(§2) is denoted with the
help of duality brackets: (-, ) us(0)-

Its canonical norm is denoted by || - || -5 (0)-

(fsv)ms (0
HfHH*S(Q) = sup 70()
veHG (£2),v#0 vl s (2)

Endowed with ||| -+ 0y, H~*(£2) is a Banach space. Furthermore, as the dual
of a (separable) Hilbert space, H*(§2) can be made into a (separable) Hilbert
space, with a scalar product (-,-)g—s (o) such that HfH%(,S(Q) = ([, a2
for all f € H—5(02).

Proposition 2.1.20 Let m € N. The space H="™({2) is made up of distribu-
tions of the form

> Oafar with fo € L*(92).

aeN”, |a|<m
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Identifying L?(§2) with its dual space, one has the continuous imbeddings, for
t>s>0,
L*(2)Cc H () Cc H'(2) c D'(92). (2.6)

In order to deal with functions that are defined on a proper subset of the
actual domain of interest, one has (unfortunately) to introduce a final class
of Sobolev space...

Definition 2.1.21 Let s > 0. The space H*(£2) is composed of elements f of
H?(£2) such that the continuation of f by zero outside 2 belongs to H®(R™).
The dual space of H*(§2) is denoted by H*((2).

Now, let us consider functions that are defined up to the boundary, i.e., on £2.
To that aim, we need some additional assumptions, which are summarized
below.

Category (C2): open subsets of R, with a Lipschitz boundary.

Definition 2.1.22 Let {2 be an open subset of R™, with boundary I'. the
boundary I is said to be Lipschitz if, and only if:

e at each point & of I', there exists a Lipschitz-continuous mapping (de-
fined on a hypercube of R"~* with values in R), the graph of which locally
represents I' in a neighborhood of x;

e at each point x of I', §2 is locally on one side only of I".

Similarly, the boundary is said to be C* (respectively C*1) for k € N*, when
all local mappings are of reqularity C* (respectively C*')().

Remark 2.1.23 When I is Lipschitz, it is, in particular, a Lipschitz sub-
manifold of R™. On the one hand, the interior {2; and the exterior (2. of a
cube belong to the category (C2). On the other hand, a set with a boundary
including cusps, cuts or slits does not...

It is then a priori possible to define the wunit outward normal vector to the
boundary of an open set of category (C2), where, by outward, it is understood
that the vector points out of 2.

Definition 2.1.24 In an open set §2 of category (C2), one denotes by n the
unit outward normal vector to its boundary I.

3 Classically, for k € N, 8 €]0,1], © C R™, C*#(0) is the Holder space defined by

oy [021(2) — 905 (w)
zAy |z —y|?

cPP(0) = {f e C*0O) : >

aEN?, |a|=k

< oo},

where C*(O) := {f € C°(O) : duf € C°(0), Ya € N", |a| < k}.
Lipschitz-continuity coincides with C%! continuity.
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Proposition 2.1.25 In an open set 2 of category (C2), the unit outward
normal vector field n is defined almost everywhere on I', and furthermore,
n; € L), i=1,--- ,n.

Remark 2.1.26 In an open subset of R™ with C*' boundary (k € N*), it
holds that n; € C*~LW(I), i=1,--- ,n.

In such open sets of R”, it is possible to establish very convenient density
results. Let us first introduce a set of smooth functions.

Definition 2.1.27 The space C°(82) is composed of the restrictions to 2 of
C* functions with compact support in R™.

Proposition 2.1.28 Let s > 0. In an open set 2 of category (C2), C=°(12)
is dense in H®(2).

It is because {2 is locally on only one side of its boundary that one can define
elements of C2°(£2) as restrictions. This property allows one to establish the
previous Proposition. Another closely related result is...

Proposition 2.1.29 Let s > 0. In an open set §2 of category (C2), D(£2) is
dense in H*($2).

These results are also related to restriction and continuation properties that
we recall below.

Proposition 2.1.30 Let s > 0, and let 2 be an open set of category (C2).
Then, the restriction operator u — u)q is continuous from H*(R™) to H*(2).

Proposition 2.1.31 Let s > 0, and let 2 be an open set of category (C2)
with a bounded boundary.

Then, there exists a continuous (linear) continuation operator E from H*({2)
to H*(R™), independent of s, such that, for all u € H*({2), (Bu) o = u.

Remark 2.1.32 If, in addition, {2 is bounded, one can choose a closed ball
O containing 2 such that for all w € H*($2), Eu is supported in O.

Category (C3): bounded, open and connected subsets of R™ with a Lipschitz
boundary. A set of category (C3) will be called a domain later on.

NB. £2; belongs to the category (C3), but {2, does not.

Let us review some practical instances of open sets {2 of the category (C3),
in R? and R3.

In R?, open sets bounded by a polygonal boundary automatically fall into this
category: these are called polygons.

This is also the case for curvilinear polygons, defined as follows. An open sub-
set 2 of R? of the category (C3) has a C? curvilinear polygonal boundary
I if, for all points G of I', there exists r¢ > 0 and a diffeomorphism x¢,
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such that x¢ is a piecewise, C?-diffeomorphism that maps the neighborhood
2N B(G,rg) of G to a neighborhood of the origin O, included in the plane
sector Pg = {(rcosf,rsinf) : r >0, 0 € [0;wg]} of opening wg € ]0; 27|,
G being sent to O.
In the same spirit, one can define spherical curvilinear polygons, as open sub-
sets of the sphere S? that fulfill the same property (existence of a piecewise,
C?-diffeomorphism) at all boundary points.
All of the above belong to the class of curvilinear polygons. Loosely speaking,
the boundary of a curvilinear polygon is a manifold with corners.
In R3, one can consider a set {2 with a boundary I', made of a finite set of
planes faces, i.e., a polyhedral boundary. Note that, contrary to the sets of
R?, there actually exist bounded open sets with a polyhedral boundary, which
do not fulfill the second requirement, stating that at each point of I', (2 is
locally on one side of I'. An example is pictured below: let {29 be an open set,
interior to the “two sugarcubes”. In any neighborhood of the point C, which
is located at the intersection of boundary edges, {2y is not only on one side of
its boundary.

One can also define curved polyhedra. Let us consider an open subset (2

Fig. 2.1. The “two sugarcubes”.

of R of the category (C3): £ has a C? curved polyhedral boundary I"
if, for all points G of I', there exists r¢ > 0 and a diffeomorphism xg,
such that yg is a piecewise, C?-diffeomorphism that maps the neighborhood
2N B(G,rg) of G to a neighborhood of the origin O, included in the cone
Ce = {xeR® : x/|z| € S¢}, with S¢ a spherical curvilinear polygon of
52, G being sent to O.

Subsets of R? of the category (C3) with a polyhedral boundary, or with a
curved polyhedral boundary, are called curved polyhedra.

Finally, let us mention briefly azisymmetric domains of R3, which are gener-
ated by the rotation of a polygon around one of its edges (these will be of use
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in Chapter 9). More precisely, the rotation occurs around a line, the so-called
axis, that contains this edge.

Remark 2.1.33 In general, an azisymmetric domain is not a curved poly-
hedron, because the rotation of each of the two edges that intersect the axis
generates a cone with a circular base, unless there is a right angle at the
corresponding vertezx.

Loosely speaking again, we note that the boundary of a curved polyhedron or
of an axisymmetric domain is a manifold with corners and edges.

The sets of curvilinear polygons, curved polyhedra and axisymmetric domains
form three important subcategories of (C3), in the sense that it is possible
to get more precise, and often more explicit, results than for the ”general”
domains of (C3).

In open sets that belong to the category (C3), one can nevertheless establish
many useful results.

Let us begin with a result that is sometimes called the Lions’ Lemma.

Theorem 2.1.34 In a domain 2, it holds that, algebraically and topologi-
cally,

Q) ={feH Q) : 9;fe H(2),j=1,---,n};
L) ={feli (2) : 0;f e HQ),j=1,---,n}.

loc

Let us continue with the definition of equivalent norms on H{*(§2), which
stems from the famous Poincaré inequalities.

Theorem 2.1.35 Let m > 1. Given a domain §2, there exists a constant C,,
which depends only on (2, such that

Ve Hy'(2), |flamw) < Cmlflam):-

NB. It is enough to assume that {2 belongs to the category (C2), and that
it is bounded in one direction (Je € R™ such that —co < infzep - e <
SUPLcn & - € < 400), to prove the claim in Theorem 2.1.35.

Accordingly,

Corollary 2.1.36 Let m > 1. Given a domain (2, || - ||gm (o) and | - |gm o)
are equivalent norms on H{*(§2).

In H™(2), one can further prove the so-called Poincaré- Wirtinger inequality.

Theorem 2.1.37 Let m > 1. Given a domain {2, there exists a constant C!,,
which depends only on §2, such that
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/8fdw

In practice, one uses the Poincaré-Wirtinger inequality in the subspace

H,,(02) == {f € H'(2) : (f1) = 0}.

From now on, the index .., generically indicates that one considers the sub-
space made of zero mean value fields, such as L2, (£2), H},,,(£2), etc.

In a domain (2, one can prove (cf. [198]) that the Definition 2.1.17 of the
fractional-order spaces H*®({2) coincides algebraically and topologically with

the definition below, where the norm is explicit.

1/2

Ve H™(2), |fllam@) < Cr S 1f1Ema) +

aEN”, |o¢\<m

Definition 2.1.38 Let s € Ry \ N, and write s = m + o, with (m,0) €
Nx]0,1[. The space H*(2) is composed of elements [ of H™(2), such that

1/2

0 f(x) = duf (W)
flasca) = / dx dy <oo. (2.7
o= aeNnZa|— oJo |w—y|”+2g @7)
Let 172
1 llsy 2= {1F im ey + 1B} - (2.8)

Endowed with the norm || - || g0y, H*(£2) is a Banach space.
It is a Hilbert space, endowed with the scalar product

(fs )HS(Q)

// af ) = 9 ) ag(@) = ad®) 4, .

_ n+2o
aENm?, \a| |$E y|

Remark 2.1.39 One can compare the semi-norms (| - |gs(0))sejo,1] to the
semi-norm | - |1 (), provided 2 is a domain. Following [61], one can prove
that

3C,,Co >0, Vf € H'(2), Cilflm(o) < ;E(l = 8)|flas ) < Colflm1 ()

For the comparison to hold, one must include the (1 — s) multiplicative factor
in the limit.

Remark 2.1.40 One can also introduce the series of Sobolev spaces based
on LP($2), with 1 < p < oco. This results in the well-known W*P({2), for
s > 0. Then, 2 (respectively 1/2) is replaced by p (respectively 1/p) in (2.3),
(2.4), (2.7) and (2.8). When 1 < p < oo, these function spaces are separa-
ble, reflexive Banach spaces and, for p = 2, they are Hilbert spaces: in this
case, one has W*2(2) = H*(2) algebraically and topologically. Afterwards,
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one defines the dual spaces W=7 (£2) of WP (2) (the closure of D(£2) in
W#P(§2)), with the conjugate exponent p’ s.t. 1/p+ 1/p’ = 1. Also, one can
identify W12°(02) with C%1(0), the space of Lipschitz-continuous functions
on 2. However, since most problems in this book are accurately resolved with
the help of the (H*®(2))ser series of spaces, we shall concentrate on them.

One can establish imbedding results: continuousimbeddings, also called Sobolev

imbeddings, and compact imbeddings.

Proposition 2.1.41 In a domain {2, it holds that, algebraically and topolog-
ically, for s >n/2:

o H*(2) C C*2), for k € N such that k < s —n/2;
o H*(0) C CHP(Q), for k € N such that k < s —n/2 < k+1, and 3 =
s—n/2—k.

We recall that the scale of Sobolev spaces is defined “recursively” by differen-
tiation. Let us note that differentiation loses ezactly one order, in the following
manner.

Proposition 2.1.42 Let 2 be a domain. Then:

o 0; : H*(2)— H* ) is continuous, for s € R\ {1/2}.
o 0; : HY?(Q)— H'Y2(Q) is continuous.

As far as compact imbeddings (denoted by C.) are concerned, one has the
results below.

Proposition 2.1.43 In a domain 2, it holds that

H¥ (2) C. H(2), fors',s" €R, s’ > s".
_ Let us now categorize the series of Sobolev spaces H*({2), Hg(£2) and
H5(£2), for s > 0. In the process, some useful results are derived.
Proposition 2.1.44 In a domain 2, it holds that

o H{(2)=H*(2), forall1/2> s> 0;

H§(02) is strictly included in H*(82), for all s > 1/2;
o H%(N2)= [HS'H/Q(Q),H5_1/2(Q)]1/2, for all s >0, such that s+1/2 € N.
By direct computations, one can bound integrals that appear in the definition
of fractional-order Sobolev spaces, cf. (2.7).

Definition 2.1.45 Let 2 be a domain, with boundary I.
The distance to the boundary pr is defined by:

= inf |x —y|.
priz) = inf [z —y|
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Lemma 2.1.46 In a domain §2, one has pr € W ().
Let o € [0,1]. There exist two constants Cy > ¢, > 0 such that

dy
Vo€ Q, copr(m) < / W < Cpr(x)
R\ |T — Y[ T2

This result has two important consequences. The first one is an alternate defi-
nition of H*((2). The second one concerns the equivalence between piecewise—
H? and H* fields (see Definition 2.1.48 and Corollary 2.1.49 hereafter).

Proposition 2.1.47 Let s > 0, and write s = m + o, with o € [0,1[. In a
domain {2, one can define H*(£2) by

0uf

r

H*(2) :={f € H{(2) : € L3(2), Ya € N", |a] = m}.

Furthermore, one has:

o H ()= H3(92), for all s > 0, such that s+ 1/2 ¢ N;
H?(02) is strictly included in H§(£2), for all s > 0, such that s+1/2 € N.

The last statement contains a justification of the need for the spaces Hs (apart
from a purely mathematical interest!). As a matter of fact, they are needed
when the exponent is equal to s = 1/2 in many situations, especially when one
considers functions, which are defined on a part of the boundary. For instance,
the characteristic function yo belongs to HY/?(£2) = Hé/z(!?), whereas it is
readily checked that ypn ¢ HY 2(2), according to Corollary 2.1.49 below.
Before that, let us introduce the notion of the partition of a domain.

Definition 2.1.48 Let {2 be a domain. A partition of 2, P := (£2p)1<p<p,
is such that:

o (2, is a domain, for 1 <p < P;
® QpﬁQqZ(Z)f_O’l“p#q;
* Q2=Uigp<p!dy.

We also introduce the corresponding set F of interfaces (here, only the man-
ifolds of dimension n — 1 are kept), indexed by pairs of indices: an element
Ypq of F is characterized by 1 < p # q < P such that Xy, = 082, N 0§24, and
N7 denotes the set of pairs of indices that correspond to an interface.
Finally, for s € [0,400], PH*(£2,P) is the set of piecewise—H® functions (with
the notation H*>® = C*), with respect to the partition P:

PH*(2,P):={f € L*(2) : flo, € H(f), 1 <p< P}.

Corollary 2.1.49 Let 2 be a domain, and P := (£2,)1<p<p a partition of £2:

o Ifse0,1/2], HY(2) = PH(2,P);
o Ifs>1/2, H5({2) is a strict subset of PH*({2,P).
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Let us now focus on functions defined on the boundary I" of a domain (2.

Remark 2.1.50 Before we proceed, let us remark that all results below, which
deal with function spaces defined on the boundary or with trace mappings, are
also wvalid for exterior domains, that is, open sets 2 = R™\ 2o, 2y being a
domain of R™.

Let dI" denote the usual Lebesgue measure on the surface I'. Introduce...

Definition 2.1.51 The space L*(I") is composed of all complez-valued, Lebesgue-
measurable functions f on I' such that

1/2
Ifllz2cry = {/Flf|2dl“} < 00.

Endowed with the norm || - || 2(ry, L*(I") is a Banach space. In addition, it is
a Hilbert space, endowed with the scalar product

(.92 == /F fgdr.

One can then further define, for suitable s, some Sobolev spaces on I

Definition 2.1.52 Let s €]0, 1].
The space H*(I') is composed of elements f of L*(I") such that

9 1/2
iy = [ [ L o are)} <o

r o=yl

Let 12
1 ey s= {113y + Ul |

Endowed with the norm || - || g=pry, H*(I") is a Banach space.

The dual space of H*(I") is called H—*(I"). Its canonical norm is denoted by
” ’ HH*S(I’)'

Let us now focus on H* Sobolev spaces on (a part of) the boundary, for

s €]0, 1[. First, we note that they can indeed be defined on an open subset I/
of the boundary, using the above Definition, with I instead of I".

Definition 2.1.53 Let 2 be a domain with boundary I, and let I'" denote
an open subset of I with measp(I'") > 0 such that its boundary is a Lipschitz
submanifold of I' (of dimension n — 2). We denote by H/2(I") the space
composed of elements of H/?(I"") such that their continuation by zero belongs
to HY2(I'). Its dual space is denoted by H=Y/2(I").

Let us consider the practical case of a curved polyhedron 2, with s = 1/2.
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Definition 2.1.54 Let {2 be a curved polyhedron, with a boundary I' made of
smooth faces, labeled (I';)1<j<np.. The restriction to a face I'; of the normal
vector n (respectively an element f of L*(I")) is denoted by m; (respectively
f3)-

Let §2 be a polyhedral domain. When two faces possess a common edge, it is
denoted by e;; = T';NT'j, and one can choose a unit vector T;; parallel to e;;.
Furthermore, one can introduce T;(j) = Ti; X n;, so that (7;(j), Tij, ni) is an
orthonormal basis of R3. The set of pairs (i,7) such that I'; N T; is an edge
is denoted by Ng.

NB. When I"; N I'j is not empty (for i # j), it is either an edge or a vertex.

Definition 2.1.55 Let {2 be a curved polyhedron, with the notations of Defi-
nition 2.1.54. Let H'/? (I') be the function space

HY*(D):={f e L*(I) : f; € HY*(I}), 1<j < Nr}.

Let (i,7) € Ng. Given f € Hi/2(f'), one writes f; 12 1 if, and only if,

/ /p e Iw—yl3 ) =L ar @) ary) < .

One can prove (cf. [67])

Proposition 2.1.56 Let {2 be a curved polyhedron, with the notations of Def-
inition 2.1.54. Let I'; and I'j share only a common wvertex. Then, for all

fe HYA(I), it holds that

// —lf(Taz:?J;fg)PdF(w)df(y)<oo

One infers from this Proposition an alternative definition of the space H'Y/?(T')...

Corollary 2.1.57 Let {2 be a curved polyhedron, with the notations of Defi-
nition 2.1.54 and Definition 2.1.55. One has

HYX(D) = {f e HYA(I') : fi'L f;, (0,§) € N}

Remark 2.1.58 To summarize, the values on two adjacent faces of elements
of H'/? (I') are not correlated, provided that the two faces share only a vertex.
On the other hand, it is clear that they are correlated, when they share an edge.
The correlation is explained below, in the particular case when the element
vanishes on one face. For more general results on compatibility conditions for

elements of H*(I"), see [124, 46].
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Proposition 2.1.59 Let {2 be a curved polyhedron, and let Iy be a face of
its boundary. The space H'/?(I7) is equal to

I

H'Y2(I) = {f e H/*(I) : :
oI

€ L*(I)},

where par, is the distance to the boundary OI% .

Let us consider again any domain {2 with boundary I', and let I be an
open subset of I'; with measp(I"") > 0, such that its boundary is a Lipschitz
submanifold of I': one can define the space HY/2(I") as in Definition 2.1.53.
Moreover, one notices that if f € H~1/2(I"), its restriction to I'!, denoted by
fir+, naturally belongs to H~Y2(I"), according to

Vg € ﬁl/Q(F/)a <f\F’79>1§1/2(p/) = ([ §>H1/2(F)7 (2.9)
where g is the continuation of g by zero to the whole boundary I

On the other hand, one has the result below.*

Proposition 2.1.60 Let 2 be a domain with boundary I', let I'' be an open
subset of I', with 0 < measp(I"") < measr(I'), such that its boundary is a
Lipschitz submanifold of I', and let I'" = int(I'\ IT").

Let f € H-Y2(I'). Then, one has fir € H=Y2(I'") if, and only if, firm €
H=Y2(I'"). In this case, one can write

Vg € H1/2(F)7 <f,9>H1/2(r) = <f\F’7g|F’>H1/2(F/) + <f|r~=9\F”>H1/2(p~)-

Moreover, for some C' > 0, which depends only on I" and I"':

I fio =12y < C (I =120y + W fioo =12 rmy) -
The next result establishes the existence of traces of elements of H*({2) on

the boundary I', for suitably chosen s (see [112] for the special case s = 1).

Definition 2.1.61 Let {2 be a domain. Let f be a smooth function defined
on 2. Its trace fir on the boundary I' is denoted by vof, and o is called the
trace mapping.

Theorem 2.1.62 Let 2 be a domain, and let s €]1/2,1]. The mapping o has
a unique continuous extension, from H*(82) to H*~1/2(I"), which is surjective.
In addition, the following characterization holds:

HG(2) ={f e H*(2) : fj, =0}

Remark 2.1.63 Since we assume only Lipschitz regularity of the boundary,
one cannot define the trace mapping of the normal deriative f — grad f -n

* Given any subset S of R™, int(S) denotes the interior of S.
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from H?(02) to HY?(I'). Indeed, assume that £2 is a curved polyhedron, and
consider f € H2(£2). One sees easily that, for 1 < j < Np, grad f-n .

belongs to HY/?(I}). But the values on two adjacent faces (sharing an edge) are
uncorrelated. According to Corollary 2.1.57, y1f does not belong to HY/?(I').
However, one can still define a trace mapping of the normal derivative with
values in H='/2(I") (see Corollary 2.2.20 in the next section). On the other
hand, if the boundary is CY', then this trace mapping actually goes from
H?(2) to H'/2(I).

Remark 2.1.64 In the same spirit, one can also characterize the spaces
Hi(92) for s > 1, provided 2 is a curvilinear polygon, a curved polyhedron
or an azisymmetric domain. It holds that (cf. [92])
s o o*f
H5(2)={fe H*(2) : ok | =0, Vke N, k<s—1/2}.
r

Above, the definition of the trace of the normal derivative of order k is

oFf 1
L — _ @
onk w Z a!(?afn ’
aeN” |a|=k
where a! = ag!---ay,! and n® = ni* ---nSn. For instance, for s €]3/2,5/2],

one has
HOS(Q):{feHS(Q) fIF:O’ gradfn‘F:()}

Definition 2.1.65 Let 2 be a domain with boundary I'. Let I be an open
subset of I' such that its boundary is a Lipschitz submanifold of I', with
measp(I"") > 0. Introduce

CX(02):={feC>(2) : f=0 in aneighborhood of I''}.
Then, one can define, for s €]1/2,3/2],
H§ 1/(£2) == closure of C72(2) in H*(£2);
furthermore, it holds that
H; 1 (2) = {f € H(2) + fi,, =0},

Also, one can prove another Poincaré inequality, set in H& (£2).

Proposition 2.1.66 Let {2 be a domain with boundary I'. Let I'' be an open
subset of I', with measp(I'") > 0. Then, there exists a constant Cy, which
depends only on 2 and I'" such that

VfeHyr(2), |Ifllaro <Culfla -
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Whenever applicable, we shall use the subscript ¢, to label subspaces com-
posed of elements with periodic traces.

Finally, let us conclude with a classical result, which uses traces on parts of
the boundary, and which can be seen as a complement to Corollary 2.1.49.

Definition 2.1.67 Let (2 be a domain partitioned into P := (§2,)p=1,—. Let
X = 004 N ON2_ be the interface separating 24 and (2_. Denote by n
(respectively m_ ) the unit outward normal vector field to 024 (respectively
02_). Denote by nx, a unit normal vector field to X, and define

5T = +lifny =ny on ¥ P +lifn_=ny on ¥
Y -1lifn,=-nyg on X’ Tl -lifn_.=-ngonX’

Given [ € PH*(£2,P) for s > 1/2, the jump of f through X is equal to

[fls = 6570+ f + 0570, -
The jump is understood as a difference, because 5; = —05..

Proposition 2.1.68 Let (2 be a domain partitioned into P := (£2p)1<p<p,
and let F denote the set of interfaces. For s €]1/2,1], it holds that

H*(2) ={f € PH*(,P) : [flz,, =0, ¥(p,q) € Ni}.

NB. To handle the case s = 1/2, one needs some ad hoc theory, see, for
instance, Corollary 2.1.57.

2.2 Vector fields: standard function spaces

In this section, since electromagnetic fields are considered, unless otherwise
specified, we stand explicitly in 2 = R3, or in an open subset 2 of R3.
In what follows, we use § defined on {2, and such that

£€L>®(2) and §'el™(), ie, (2.10)
(€)i; € L®(2) and (£1);;, € L=(2), 1<14,j < 3.

2.2.1 Elementary results

Let us introduce our first space of vector fields,
D(2):={g : g; €D(), j=1,2,3}.

Looking at Egs. (1.6-1.9), one sees that Sobolev spaces like H!(§2) are not
explicitly required, since the first-order differential operators that appear are
not the gradient, but rather the curl and divergence. More precisely, all partial
derivatives of the electromagnetic fields are used, but they appear in linear
combinations, if one recalls that
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9vs vy

8$2 8:173

divp o Qv Ov Ous | 9u Ous
n 8$1 8:172 8$3, n 8$3 8171 ’

vy Oup

(91:1 6$2

together with the formula div(v X w) = w - curlv — v - curl w.
For any smooth vector field v, the pointwise inequalities hold:

2
[divo(@)P < | Y Ovi (w)’ < 3|Gradv(z)|?, (2.11)
- Ox;
1<i<3
2 dv; ? 2
lcurlv(z)* <2 ) ()] <2/ Gradv(@)P, (2.12)
1<i,j<3, izj | O
with (Grad v(@)): s = 2% (2), 1< i,j <3, | Grad v(z)[® = 3 %(m)2
R e _1<ij<3 Oz,

This being remarked, let us note that the Sobolev space H!(§2) is useful, and
especially the space of its traces H/2(I'), since it is of fundamental impor-

tance in the definition and characterization of traces of the electromagnetic
fields.

Definition 2.2.1 Let 1 < p < oo. The spaces LP(2) = {v : wv; €
L?(2), i = 1,2,3} are Banach spaces. They are separable, with the excep-
tion of L™ (£2).

In particular, LQ(Q) is a Hilbert space, endowed with the scalar product

(v]w) ::/Qv-ﬁd:c.

Definition 2.2.2 Let s € Ry. The spaces below are separable Hilbert spaces:

H?(2):={v : v, € H(2), i=1,2,3}.
H(curl, Q) := {v € L*(2) : curlv € L*(2)}, where the curl is taken
in the sense of distributions. The canonical norm is

1/2
ol sreurt.) = { /Q (ol + |cur1v|2>dw} L @)

e H(curlf, Q) :={ve L*() : curlfv € L*(2)}, where the curl of (v is
taken in the sense of distributions. The canonical norm is

1/2
ol st = { [ o+ |cur1av|2>dw} L 2w
N
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e H(div,0) := {v € L*(2) : dive € L*(R2)}, where the divergence is

taken in the sense of distributions. The canonical norm is

1/2
HUHH(diV,Q) = {/ (|’U|2 + |d1V’U|2)dw} . (215)
2

o H(divE Q) := {v € L*(N) : diviv € L*(22)}, where the divergence of
fv is taken in the sense of distributions. The canonical norm is

1/2
lollavse ={ [ (o +lavioPyae} . (210)
L*(T):={v : v; € L*(I"), i=1,2,3}.
HY(I'):={v : v, € H}(I'), i =1,2,3}.
Let s €]0,1/2[. The spaces below are separable Hilbert spaces:
H_ (div, ) :={ve L*() : dive € H*(2)}.

The canonical norm is

1/2
vl e _ . (giv,0) = |v|? dx + ||divv||§{73(m )
(7]

Using (2.11) and (2.12) together with Proposition 2.1.28, one immediately
gets the imbedding results below.

Proposition 2.2.3 The space H'(£2) is continuously imbedded in H (curl, 2)
and in H(div, £2).

NB. Let us point out that one has to be careful with “reverse” imbeddings,
since H(div, 2) N H(curl, £2) is only imbedded in HJ, (£2) in general (see
[10]).

One then has the convenient properties below.

Proposition 2.2.4 Under the assumptions (2.10) on &, one has:

e v belongs to H(curlg, 2) if, and only if, v belongs to H(curl, 2);
o v belongs to H(divE, (2) if, and only if, v belongs to H(div, {2).

This Proposition allows us to simply derive useful results for elements of
H(curl, ) (respectively H (div{, 2)), via those obtained for elements of
H (curl, ) (respectively H (div, 2)).

Recall that (see Proposition 2.1.12), an element v of L?(2) belongs to H'(§2)
if, and only if, there exists Cy.qq > 0 such that,

Vg € D(£2), |[(v]divg)| < Cyraallgllr>(0)-

One can prove similar results.



February 22, 2018 89

Proposition 2.2.5 Let v € L*(12).
e v € H(curl, 2) if, and only if, there exists Ceyri > 0 such that

Vg € D(£2), |(v|curlg)| < CeurillgllLz(e)-
e v e H(div,2) if, and only if, there exists Cai, > 0 such that
Vg € D(£2), |(v|gradg)| < CaivllgllL2(0)-

One can then introduce the closures of D({2), respectively, in H (curl, £2) and
H(div, 2).

Definition 2.2.6 Consider:

e Hy(curl, 2) := closure of D(£2) in H(curl, {2) according to the norm (2.13);

e Hy(div, 2) := closure of D(£2) in H(div,2) according to the norm (2.15).

NB. It holds that Hy(curl, R™) = H (curl, R") and H(div, R™) = H(div,R™).

In the spirit of Proposition 2.2.4, one can define H(curl§, 2) and H(div g, £2).
Definition 2.2.7 Under the assumptions (2.10) on &, introduce:

Hy(curl, ) := {v e L*(2) : &w € Hy(curl, 2)};
Hy(divE, Q) := {v e L*(2) : & € Hy(div, 2)}.

Let us mention a continuation result.

Proposition 2.2.8 Let 2 be an open set of category (C2) with a bounded
boundary. Then, there exists a continuous (linear) continuation operator E
from H(curl, 2) to H(curl,R?), respectively H(div, 2) to H(div,R3), such
that, for all v € H(curl, §2), respectively v € H(div, {2), one has (Ev)| o = v.

Remark 2.2.9 If, in addition, {2 is bounded, one can choose a closed ball O
containing 2 such that for all v € H(curl, 2), respectively v € H(div, {2),
Ev is supported in O.

Before carrying on with traces, let us consider some simple, but crucial, results
about the mappings grad and curl. The proof is given hereafter, since it is a
good example of the simplicity and of the range of the theory of distributions...

Proposition 2.2.10 One has the following:

1. The mapping grad is continuous from H(2) to H(curl, §2);
2. the mapping grad is continuous from H3(£2) to Ho(curl, 2).
3. The mapping curl is continuous from H (curl, 2) to H(div, 2);
4. the mapping curl is continuous from Hy(curl, 2) to Ho(div, 2).
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Proof.

1.

3.
4.

Given v in H'(£2), let us check first that w = gradv belongs to
H (curl, 22). By definition, one has w € L*(£2). If w were smooth, then
curlw = curl(grad v) = 0 would follow. Unfortunately, this is not the
case. Nevertheless, one can consider curl w in the sense of distributions,
to reach, for all g € D(12)

(curlw, g) = (w, curlg) = (grad v, curlg) = — (v, div(curlg)) = 0.

(Above, the first equality is left to the reader.)

In other words, curlw = 0 in the sense of distributions. As a conse-
quence, since 0 belongs to L*(£2) —considered as a subspace of D’(£2) :=
(D' (£2))3!- one finds that curlw is in L*(£2). Thus, w is an element of
H (curl, ).

Also, one has

||"UHH(cur1,Q) = ||"UHL2(Q) = |U|H1(Q) < ||UHH1(Q)7

which establishes the continuity of the grad mapping from H'(§2) to
H (curl, 02).

According to item 1, given v in Hg(2) and w = gradv, one has w €
H (curl, 2). Therefore, one has only to check that w actually belongs
to Ho(curl, 2). By definition of H}(§2), there exists a sequence (vg)x of
elements of D(§2), which converges to v in || - || 1 (o)-norm. According
to item 1, (wg)x, with wy = grad vy, converges to w in || - || g(cur1,2)-
norm. Moreover, all wy, belong to D(f2), so w belongs to its closure in
| - | E (cur1,2)-norm, which is precisely equal to H(curl, §2).

The proof is similar to that of item 1.

The proof is similar to that of item 2.

We conclude this subsection with the introduction of a number of Hilbert
function spaces with curl-free or divergence-free elements.

Definition 2.2.11 Define

H(div0,?) :={v € H(div,§2) : divo =0};
H(div0,2) := H(div0,2) N Hy(div, 2);
H(curl0, ) := {v € H(curl,2) : curlv =0};
H(curl0, 2) := H(curl0, 2) N Hy(curl, £2).

Under the assumptions (2.10) on §, define

H(div 0, 2) :={v e H(div{, 2) : diviv =0};
H(div§0, 2) :== H(div {0, 2) N Hy(div§, 2);

H (curl?0, ?) := {v € H(curl{, ) : curlfv =0};
H(curl {0, 2) := H(curl{0, 2) N Hy(curl g, 12).
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2.2.2 Traces of vector fields

In order to define properly the trace on I' of elements of H(curl, {2) or of
H (div, £2), it is convenient to have integration-by-parts formulas at one’s dis-
posal. As a matter of fact, one can proceed by duality, with respect to the
spaces HI/Q(F) and H'?(I'), respectively, that is, those trace spaces that
originate from H'(£2) and H'(£2).

From now on, let {2 be a domain. As far as notations are concerned, one
notices that in a domain, which is bounded by definition, the index . (for
compact support) of the set C2°(£2) of Definition 2.1.27 can be dropped.

Let us begin with density results (cf. [118, Chapter I] and [9]).
Proposition 2.2.12 One has the following:

o C>(0) is dense in H(curl, 2);
C>(9) is dense in H(div, 2);
o fors€|0,1/2], C™(92) is dense in H _(div, 2).

With the help of Proposition 2.2.4, one easily infers other results.
Corollary 2.2.13 Under the assumptions (2.10) about €, one concludes that:

o §1C™(N) is dense in H(curl€, §2);
§1C™ () is dense in H(div§, (2).

One can define the unit outward normal vector n = nie; + noes + nzes
to its boundary, almost everywhere (cf. Proposition 2.1.25).

It is well-known that it holds that, for two functions f and g of C'(£2),

dg 0
g+f

—/fgnid[', i=1,2,3. (2.17)
r

What can be deduced from this formula?
o First, if £ belongs to C*(12),

all three (f;)i=1,2,3 belong to C1(£2); as a consequence,

/{fz J afl }d:v—/flgnzdf i=1,2,3.

Summing over ¢ yields

{f-gradg—l—divfg}dw:/f~nng. (2.18)
Q r

o Second, given two elements f and g of C*(12),
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the following formulas are satisfied:

_ 95 0oy o Dov Ogs o Don O
/Qf curlgdac—/Q{fl(aw2 8$3)+f2(8:103 6x1)+f3(6:61 8;52) dz

[ewis giz= [ {<%—%>gl+<%—%>gz+<%—%mg}dcc.
0 0

6$2 6$3 (91‘3 (91‘1 6,@1 6$2

Taking the difference yields,

_ 995  Ofr .\ O92 O
/Q{f curlg —curl f-g}dx = /Q{(fl D1y + D 93) — (f1 D + Dy 92)
dg1  Ofa g3  Ofa
+(f287+8—117391)_(f28—171+8—$193)
O0ga  Of3 g1 9fs
+(f36—xl+% 2) = (fsg—+ 591 de

= /{f1(93n2—92n3)+f2(91 n3 = g3 )
r
+f3(g2m1 — gim2)}dl’
_ _/f.(gxn)df'.
r

NB. The left-hand side is skew-symmetric with respect to (f,g): one can
therefore replace the right-hand side with

/ (f xn)-gdI.
r
As a conclusion, it follows that
/{f-curlg—curlf-g}dwz/(fxn)-gdf'. (2.19)
Q r

One can infer a first generalized integration-by-parts formula from (2.19), using
the density results of Definition 2.2.6 and Proposition 2.2.12.
Theorem 2.2.14 Let (f,g) € Hoy(curl, £2) x H(curl, 2):

(f| curlg) — (curl f|g) = 0. (2.20)

Similarly, second and third generalized integration-by-parts formulas can be
proven, again using density results (namely, the definition of H{(£2), and
Proposition 2.2.12) and (2.18).

Theorem 2.2.15 Let (f,g) € L*(2) x H}(2):
(flgrad g) + (div £, ) g1 () = 0. (2.21)
Let (f,g) € H'(2) x H}(£2):
(grad f|grad g) + (Af, 9) g1 (o) = 0. (2.22)
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Thanks to (2.18), one can prove some results concerning the normal trace of
elements of H (div, £2) (cf. [118, Chapter I]).

Remark 2.2.16 As remarked previously, the results that deal with function
spaces defined on the boundary or with trace mappings are also valid for ex-
terior domains 2 = R?\ 2y, with 2 being a domain.

Definition 2.2.17 Let f be a smooth vector function defined on 2. Its nor-
mal trace f - m . on the boundary I' is denoted by vn f, and v, is called the
normal trace mapping.

Theorem 2.2.18 The mapping v, has a unique continuous extension, from
H(div, 2) to H=Y/%(I"), which is surjective.
In addition, the following characterization holds:

Hy(div, 2) := {v e H(div,2) : v-n. =0}

Note that, according to this framework, one can define as a by-product® the
trace mapping of the normal derivative.

Definition 2.2.19 Let f be a smooth scalar function defined on £2. Its trace
of the normal derivative (&lf)\r := grad f - n|, on the boundary I is denoted

by 71f, and 1 is called the trace mapping of the normal derivative of scalar
fields.

Consider the space
E(AL*(2) :={¢p € H'(2) : Ape L*(2)},

endowed with the graph norm (see Definition 4.1.5). Given any element f
of E(A,L*(£2)), its gradient grad f belongs to H(div,{2), so its normal

trace is well-defined. Then, since it is easily proven that C°°({2) is dense
in E(A, L*(£2)), one finds that v f actually coincides with ~,(grad f). One
can finally prove...

Corollary 2.2.20 The mapping v1 has a unique continuous extension, from
E(A,L2(2)) to H-Y2(I"), which is surjective.

It is important to note that the normal traces of elements of H (div, {2) do not
belong, in general, to L?(I"), but to a larger space. This is a reversed situation,
compared to the trace of elements of H*(£2). This means that, unless otherwise
specified, the normal trace is not (locally) integrable on I'.

Remark 2.2.21 Consider § that fulfills (2.10). With respect to the norm
(2.16), the closure of €1 D(82) in H(div g, 2), Ho(div{, §2), is equal to

{ve H(dive, ©2) @ &v-n) . =0}

5 Evidently, a direct construction is also possible!
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To conclude on the normal trace, we give the result of [9] regarding elements
of H_4(div, £2).

Theorem 2.2.22 Let s €]0,1/2[. The mapping v, has a unique continuous
extension, from H _(div, 2) to H=Y?(I"), which is surjective.

Thanks to (2.19), one can now prove some results concerning the tangential
trace of elements of H (curl, 2) (cf. [118, Chapter I]).

Definition 2.2.23 Let f be a smooth vector function defined on 2. Its tan-
gential trace f X n| . on the boundary I' is denoted by v f, and vy is called
the tangential trace mapping.

Theorem 2.2.24 The mapping yT has a unique continuous extension, from
H(curl, 2) to H Y*(I").

In addition, the following characterization holds:
Ho(curl, ) := {v € H(curl,2) : v xn|,. =0}
Again, unless otherwise specified, tangential traces of elements of H (curl, {2)
are not (locally) integrable on I
Remark 2.2.25 Consider § that fulfills (2.10). With respect to the norm
(2.14), the closure of £ D(82) in H(curlg, 2), Hq(curlg, 2), is equal to
{v € H(curl§, ) : fv xn|, =0}

If one introduces I/, an open subset of I", with measp(I") > 0, such that
its boundary is a Lipschitz submanifold of I", then one can characterize [110]
the restriction to IV of the normal (respectively tangential) trace of elements
of H(div, §2) (respectively H (curl, {2)), in the same way and with the same
notations as (2.9). Indeed, one finds that:

e given f € H(div,2), f-n r belongs to ﬁ_l/Q(F’), according to

Vg e HYA('), (fn0,9) o rry = (F -1 @) ey (2.23)

——1/2
e given f € H(curl, 2), f x njr belongs to H / (I'"), according to

—1/2 N
Vg e H (FI), <f X 'I’L‘p/,g>ﬁ1/2(r,) = <f X ’I’L,g>H1/2(F) . (224)

Remark 2.2.26 Results similar to (2.23) (respectively (2.24)) hold for fields
of H(divE, $2) (respectively H(curl®, (2)), under the assumptions (2.10)
about .

Definition 2.2.27 Let 2 be a domain with boundary I'. Let I be an open
subset of I' such that its boundary is a Lipschitz submanifold of I', with
measp(I"") > 0. Introduce
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X(2):={feC>™(2) : £f=0in aneighborhood of I''}.
Then, one can define

H r/(curl, 2) := closure of C%,(2) in H(curl, 2);
H r/(div, 2) := closure of C7(2) in H(div, £2).

Furthermore, it holds that

HO,F’(Curly Q) = {f (S H(Cll]f'l7 Q) : f X ’n,lp/ = O} ;
HO,F’(diV, »Q) = {f S H(le, .Q) : f . ’I’I,IF/ = O}

As a consequence of Proposition 2.1.60, we note that if f € Ho r(curl, £2),
then f x njpv € H~Y2(1"), where I = int(I'\ I") (here, measr(I"") <
measp(I)). Similarly, if f € Ho r(div, £2), then f-n € H-/2(I").

Once the existence of the trace mappings has been established, it is possible
to consider some other generalized integration-by-parts formulas (2.18) and
(2.19). Note that those formulas are closely intertwined with the characteri-

zation of subspaces composed of trace-free elements. We recall that, according
to Proposition 2.1.44, for s €]0,1/2[, one has Hi(£2) = H*(12).

Theorem 2.2.28 Let (f,g) € H(div,2) x HY(£2):
(flgrad g) + (div flg) = (f - 7, 9) w2y (2.25)
Given s €]0,1/2[, let (f,9) € H_s(div,2) x H*(£2):
(flgrad g) + (div f, 9) s () = (F -7, 9) w2y (2.26)
Let (f,g) € H(curl,2) x H'(22):

(F|curlg) — (curl flg) = (£ X 1, 9) gr1/2(1. (2.27)

Let us conclude this study of fields of H (div €, £2) and H (curl, £2) — one has
possibly & = I3 — with results dealing with jumps of the normal and tangential
traces. We begin with the jump of normal traces.

Definition 2.2.29 Let 2 be a domain partitioned into P := (2,)p=4,—. Let
X = 0824 NOL2_ be the interface separating (24 and 2_. We use the same
notations as in Definition 2.1.67. Given f € L*(£2) with flo € H(div, 2))

for p =+, —, the normal jump of f through X is equal to

[f'nE]E = 5;('7n,+f+’7n,—f)'

Here, the normal jump is understood as a difference! Indeed, on the interface,
it holds that n_ = —n.
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Proposition 2.2.30 Let 2 be a domain partitioned into P = (£2)p=+,—,
and let X = 0024 NON2_. Under the assumptions (2.10) about €, it holds that

H(divE, 2) = {f € L*() : f|, € H(divE 2), p=+,—,
[f -ns]ls =0 in H/2(X)}.

We then consider the jump of tangential traces.

Definition 2.2.31 Let 2 be a domain partitioned into P := (2,)p=4,—. Let
X = 0824 NOL2_ be the interface separating 24 and 2_. We use the same
notations as in Definition 2.1.67. Given f € L*(£2) with f|, € H(curl,(2,)

for p =4, —, the tangential jump of f through X is equal to

[f x ng]s =05y 4 f +7.-8).
Once more, the tangential jump is understood as a difference.

Proposition 2.2.32 Let 2 be a domain partitioned into P = (£2)p=+,—,
and let X = 0024 NON_. Under the assumptions (2.10) about €, it holds that

H(curlf, 2) = {f € L*(22) : flo, € H(curl®, 2,), p=+,—,

6f x nsls =0 in H ()},

2.3 Practical function spaces in the (¢, x) variable

To solve some time-dependent problems, in particular, the time-dependent
Maxwell equations, one needs to introduce function spaces depending both
on the time variable ¢ and on the space variable . Indeed, in that case, the
unknowus, i.e., the electromagnetic fields, depend on the (¢, ) variable. Ob-
viously, one can consider distributions in space and time, that is, on R x R3.
However, one generally distinguishes between the variables t and @, since they
do not play the same role. Classically, one deals with the values of a field at
a given time t. Hence, for a function f depending on both x and t, we are
interested in @ — f(to,x), for a given t.

More precisely, let T_ € [—o0,+o0] and T4 €] — 00, +00] with T— < T’y re-
spectively denote the initial and final times, and let 2 denote the subset of R?
of interest. With respect to distributions in space and time, the corresponding
space of distributions is simply D'(]T_, Ty [x{2). A classical result that allows
one to go back and forth from distributions in the (¢, ) variable to continuous
functions of the variable ¢, with values in function spaces of the variable x, is
that

the tensor product space D(|T—, T [) ® D(£2) is dense in D(|T_, T} [x2).

Next, consider the function
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)T, T [x2 =R
(t,x) — f(t,x).

For any time ¢ €]7_, T4, one can introduce the function f(t)

f@&): 2 =R
x— f(t,x),

so that the function f can be identified with the function

T, T — {2 =R}
t = fb).

In what follows, we will define the function spaces in the (¢, ) variable, which
will be useful for the weak formulations in the subsequent chapters. For that,
it will be sufficient to define two types of function space and one class of
vector distribution. To fix ideas, consider that 7 = 0 and T} = T < +00.
Let m € N, 1 < p < o0, and let X, Y and H respectively be two Banach
spaces and a Hilbert space of the space variable . Finally, let £(X,Y") be the
space of continuous, linear mappings from X to Y (°).

Definition 2.3.1 Given an interval I of R, C™(I; X) is the set of functions
of class C™ in I, valued into X. Endowed with the norm

IFllemax =3 s G Ollx
k=0

this is a Banach space.

Definition 2.3.2 The space LP(0,T;X) is the set of Lebesgue-measurable
Sfunctions valued into X, and such that

T 1/p
Jor 1< p <oo ||fllLeorix) = {/ I (O dt <0
0
for p=o0 [ £l 0,7:x) := esssupejo rllf ()]l x < oo
Endowed with the norm || - ||y, 7;x), LP(0,T; X) is a Banach space.

In addition, if X = H and p = 2, the space L*(0,T; H) is a Hilbert space
endowed with the scalar product

(f,9) 20,1 1) 22/0 (f(t),g(t))m dt.

Remark 2.3.3 According to the Fubini theorem, one can easily verify that
L*(0,T; L*(2)) = L*(]0, T[x ).

6 See §4.1, Definition 4.1.1, for details on continuous linear mappings.
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Hence, if f belongs to L*(0,T; L*($2)), one can define its partial derivative
with respect to the variable t in the sense of distributions, in D' (]0,T[x{2),

and consider elements such that 0,f € L?(0,T;L*(12)), which allows us to
define H'(0,T; L?(£2)), and so on.

We recall a number of classical, elementary results below.
Proposition 2.3.4 Let X' be the dual space of X.
o Forall f € LY0,T;X), there exists one, and only one, F € X such that

T T
Vge X', (g,F)x :/ (g9, f(t))x dt; F is denoted by/ f(t)dt
0 0
e Forall ge L'Y(0,T;X"), there exists one, and only one, G € X' such that

T T
VfeX, <G,f>X:/O (9(t), fYx dt; G is denoted by/0 g(t)dt.

Proposition 2.3.5 Let A € L(X,Y).
e The mapping f + Af is continuous from C°([0,T]; X) to C°([0,T);Y);

° ForallfeLl(O,T;X),/OTA( (/ f(t dt)

Proposition 2.3.6 A bound and differentiation of integrals:

/OT F(t) dt

vt €]0,T7, lim <% /tt+hf(s) ds) = f(t) and

hliré1+< [ 10 ) 7(0);

. ForallfeCl([O,T];X),/O ZJ;() ds = f(T') — f(0).

T
e Foral fe L' 0.T:X), < / 17 ()] dt ;
0

X

e Forall f€C°0,T]; X),

More generally, it is necessary to introduce the distributions valued into func-
tion spaces, that is, vector-valued distributions. According to [94], one can
proceed as follows.

Definition 2.3.7 The space of X-valued distributions in |0,T[ is denoted
by D'(]0,T[; X). It is the set of linear and continuous mappings defined on
D(]0,T]) with a value in X, where continuity is considered with respect to
uniform convergence on the bounded sets of D(]0,T).
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Now, as in Definition 2.1.6, for f in D’(]0,T[; X) and for ¢ in D(]0,T), the
action of f on ¢ is written with the help of duality brackets, with an index 4
to emphasize the fact that we are considering the time variable:

<f7 ¢>t

By definition, the result of these duality brackets belongs to X.

Remark 2.3.8 Note that the spaces L?(0,T;X) and C™([0,T]; X) can be
identified with subspaces of D'(]0,T[; X).

Now, similarly to the case of standard distributions, i.e., the ones that depend

on the space variable x alone, one can introduce the notion of differentiation.

Definition 2.3.9 Let f be an element of D'(J0,T[; X). Its time derivative is
defined by
df ¢

d
av >t = _<fa E%ﬁ

Moreover, the time differentiation in the sense of distributions is internal, in
other words...

V¢ € D(10,T]), (

d
Proposition 2.3.10 Let f € D'(|0,T[; X), then d_]; belongs to D'(]0,T[; X).

Definition 2.3.11 Let A € L(X,Y) and f € D'(]0,T[; X): Af, defined by

Vo € D(J0,T]), (Af, )i := Af,0)1)
belongs to D'(]0,T[;Y).
Thus, one has...

Proposition 2.3.12 Consider the setting of the previous Definition. Then,
the mapping f — Af is linear and continuous from D' (|0, T[; X) to D'(]0, T[;Y).

From these last two definitions and related propositions, one can deduce the
(expected but) fundamental result concerning the distributions in the (¢, )
variable, which basically claims that one can invert the time and space differ-
entiations

Theorem 2.3.13 For all (f,A) € D'(]0,T[; X) x L(X,Y), we have the fol-

lowing identity:
d df
AN =4 (E) :

From a practical point of view, this theorem allows us to perform the com-
putations in a “natural” and expected way. This will be crucial for deriving
the variational formulations of the time-dependent problems. For instance, if
u € D'(]0,T[; H(curl, 2)), one knows that curlu € D'(]0,T[; L*(£2)). Ac-
cording to the above theorem,
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d d
—(curlu) = curl <d—"t‘) in D'(0, T[; L*(12)) .
These considerations will be sufficient to give a meaning to the variational

formulations of the subsequent chapters. For more details, we refer the reader
to [158], [179] or [94] chap. XVIIIL.

In the remainder of the book, we will keep the notation w(t) : x +— u(t, )
to denote the value of u at a given time ¢. We will also use primes to denote
differentiation with respect to time of w (when it has a meaning), e.g., v/, u”,
etc.. When u belongs to C™([0,T]; X), for a Banach space X, this notation
is justified. If u belongs to L?(0,T; X), u(t) is known for almost all ¢. In the
most general case, that is, if u belongs to D'(]0, T'[; X ), this is an improper
notation. Nevertheless, this “generalized” notation allows us to give a more
unified presentation of the results. Note also that it fits well into the physical
perception, i.e., the knowledge of the electromagnetic fields at a given time.
Moreover, from a mathematical point of view, this is an admissible notation,
since one can invert the time derivative and the differentiation in space (see
Theorem 2.3.13).



3

Complements of applied functional analysis

We complement the classic results of Chapter 2 in two directions. In the first
part, we review some recent results on the traces of vector fields, and especially
the tangential trace of electromagnetic-like fields. In the second part, we focus
on the extraction of potentials for curl-free and/or divergence-free fields and
consequences. In this chapter, {2 is an open subset of R? with boundary I".

3.1 Vector fields: tangential trace revisited

Below, the tangential trace of elements of H (curl, {2) is scrutinized, and re-
fined generalized integration by parts a la (2.27) is established, involving two
vector fields of H(curl, £2). Indeed, in the case of the tangential trace, the
mapping v7 from H (curl, 22) to H~Y/?(I') is not surjective. This seems obvi-
ous, since one has (vt f)-n = 0 in some sense, for instance, as soon as a point-
wise y1 f exists. But there are also more profound arguments, which allow us
to prove that, even when one considers only the set of vector fields on I" that
are orthogonal to n, the mapping is nevertheless not surjective [73, 5, 67, 68].

In order to prove this, together with a number of useful results, let us con-
sider, for simplicity, the case of a polyhedral domain, still called {2, with the
notations of Definition 2.1.54. We follow here the path chosen by A. Buffa and
the second author in [67, 68], where the case of a curved polyhedron is also ad-
dressed. Again for simplicity, we assume that its boundary I" is topologically
trivial (the notion is defined in §3.2). See [66] for a topologically non-trivial
boundary: in this case, decompositions of function spaces have to be modi-
fied, with the addition of a third — finite-dimensional — vector subspace. Along
the way, representative proofs, establishing the continuity of the mappings,
are provided. On the other hand, the results relating the surjectivity of the
mappings are stated without proof. In the more general case of a domain, the
reader is referred to [190, 70].
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Looking at the integration-by-parts formula (2.27), it is clear that the
normal component of g does not play any role in the formula. Therefore, one
can concentrate on the tangential components only.

Definition 3.1.1 Let f be a smooth vector function defined on 2. Its tan-
gential components trace n x (f x n)|1, on the boundary I' is denoted by mt f,
and w1 18 called the tangential components trace mapping.

In order to define the actual range of 71, starting from H™ (£2), let us introduce
some spaces of vector fields, defined on I'.

Definition 3.1.2 Let Lf(F) be the space of tangential, square integrable vec-
tor fields:
LX) :={veLl*I) : v-n=0}

Let H£/2(F) be the space:

HY*(I) = LX) n HY*(I)3.

Let Hﬁm(F) be the space:

H\/*()={ve H*(I) : v 7y Loy, i, V6, 5) € N}

The graph norm (]| - ||H1/2(F) plus matching conditions - o V(i,J) expressed

as in Definition 2.1.55) on Hﬁﬂ(F) is denoted by || - ||H1/2(F).
I

NB. The elements of L7(I") are considered as two-dimensional vector fields.

It is then straightforward to see that H ﬁ/ *(I') is a Hilbert space. According

to Corollary 2.1.57, one finds that the range of w1 from H'(2), 7+ (H"(£2)),

is a subset of H ﬁ/ 2(F ). In addition, one can prove that the mapping 7 is
surjective.

Theorem 3.1.3 The mapping mt has a unique continuous extension, from
H'(9) to Hﬁ/z (I'), which is surjective.

In the same way, one can define the Hilbert space H i/ 2(1" ), with ad hoc com-
patibility conditions (see below), and prove that the mapping v is surjective,

from H'(£2) to Hi/z(f').
Definition 3.1.4 Let H1/2(F) be the space:

HYX (D) = {v e HYX(D) : v;-7,(j) Lo 1(), Y(i,j) € N}

The graph norm on HIL/Q(F) is denoted by || - ||H1/2(F).
4
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Theorem 3.1.5 The mapping vyt has a unique continuous extension, from
H'(0) to Hi_/2(F), which is surjective.

The next step is to introduce the dual space of H ﬁ/ 2(F ) (respectively of

Hi/Q(F)), with LZ(I") as the pivot space, called H[l/z(f') (respectively

Hil/Q (I")) hereafter, and endowed with the dual norm || - ||H71/2(F) (respec-
I

tively || - . As a consequence of Theorem 3.1.3, one has. ..

lerzar)
Corollary 3.1.6 The mapping T is continuous from H (curl, 2) to Hﬁl/Q ().

Proof. First, let A be in Hﬁ/Q(I’): 77 is linear and surjective from H'(£2) to

H ﬁ/ 2 (I') (two Banach spaces), so it has a continuous right-inverse, according

to the open mapping theorem 4.1.4. In other words, there exists g € H'(12)
such that

wrg = and lglen o) < CallN g

Above, the constant C is independent of A.
Second, given an element f of H(curl, {2), one can apply the integration-
by-parts formula (2.27) to (f,g):

<'7Tf77TTg>H1/2(F) = (f[curlg) — (curl f|g).

As a consequence of the above, one finds that

sup <7Tfa >‘>H1/2(1‘) < ﬁcﬂ’”fHH(curl,.Q)H>‘||H1/2(F)'
XeH /(D) I

SO, 'YT.f belongs to Hﬁ1/2([‘)7 with HFYTfHHil/Q(F) < ﬁcﬁ“f”H(curl,Q)- u

The duality product of formula (2.27) can be replaced, to reach, for all (f,g) €
H(curl, ) x H*(12),

(fleurlg) — (curl flg) = (47 F, 718) /2 - (3.1)

Also, one can reverse the roles of f and g, to find, for all (g, f) € H(curl, 2) x
H'(02),
(curlg|f) — (gl curl £) = (w1977 )y /o .

It is possible to determine precisely the range in H [1/ 2(F ) (respectively in

H11/2 (IN) of y7 (respectively mT) from H (curl, £2). This can be achieved
through a simple, yet slightly technical, procedure. It is interesting to consider
it in detail, since it includes a definition of first-order differential operators
on the boundary, such as the tangential gradient, divergence and curls. As a
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matter of fact, these operators are quite useful for studying Maxwell’s equa-
tions and related topics, for instance, when surface currents or charges occur.

Definition 3.1.7 The tangential gradient operator, grad -, defined by grad v =
nr(gradv), is a linear continuous mapping from H?*(§2) to Hﬁ/Q(I’).

The tangential vector curl operator, curly, defined by curlp v = yr(grad v),

is a linear continuous mapping from H?($2) to Hi_/2(F).

In order to rigorously define these operators on the boundary I", one intro-

duces the ad hoc trace space, which extends Definition 2.1.52 to the case
s=3/2.

Definition 3.1.8 Let H%/?(T") be the space
H32(D) o= {v,. + ve HQ)}.

Endowed with || f|| zrs/2(ry = infoen(0), v, =1 IVllH2(0), it is a Hilbert space.
The dual space of H3/?(I") is called H=3/%(T).

In the same spirit as Definition 2.1.53, one can define H3/2 Sobolev spaces on
a part of the boundary.

Definition 3.1.9 Let I denote an open subset of I, with measr(I"") > 0,
such that its boundary is a piecewise smooth submanifold of I'. The space
H3/2(I") is composed of elements of H3/?(I"") such that their continuation by
zero belongs to H3/2(I'). Its dual space is denoted by H=3/2(I").

It is clear that grad (respectively curly), can be considered as a purely

surface operator, from H3/2(I") to Hﬁ/Q(I’) (respectively Hi_/Q(I’)). Alter-

nate (and equivalent!) definitions of H3/2(I") are possible. To that aim, it
is convenient to introduce the space H'(I'). Actually, since H'-regularity is
preserved by (bi)-Lipschitz-continuous mappings, it is possible to define the
space H'(I') and its dual as follows, with a plain, face-by-face definition of
the tangential gradient, which coincides with Definition 3.1.7 for the smoother
fields of H3/2(T").

Definition 3.1.10 Let H(I") be the space
HYI):={feL*I) :grad, f € L}(I")}. (3.2)

Endowed with the graph norm || - || g1 (ry, it is a Hilbert space.
Its dual space is called H=1(I').

NB. One can substitute curlp for grad in the definition (3.2).

Proposition 3.1.11 The following orthogonal decomposition holds:

L2(T) = grad, (H'(T)) & curl (H(I").
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A third variant of the tangential gradient and tangential vector curl operators,
from H'/2(I"), will be introduced later on.
Then, one can establish a new characterization of H3/2(I"). At first glance,

one expects that it is made of fields of H*(I"), the surface gradient of which

belongs to H ﬁ/ 2(1" ). This is true! Nevertheless, one can derive an a priori

weaker, but nonetheless equivalent, characterization.

Theorem 3.1.12 It holds that
H¥2(I')={f € HY(I') : grad, f € H/*(I)}.

An equivalent norm on H3/?(I') is
1/2

fr ||f||§11(p)+ Z Hfj||§13/2(rj)

1<j<Nr

Since the mapping — grad, from H3/2(I") to Hﬁ/2(f’), is continuous, one

can introduce its dual operator, from H[1/2 (I to H-3/2 ().

Definition 3.1.13 The tangential divergence operator, divr, from H[1/2(F)
to H=3/2(I"), is defined by the duality brackets identity (3.3), for all (f,g) €
H () < H¥Y(D),

(divr £, 9) msr2(ry = —(f,gradp 9>Hi/2(p)- (3.3)

From these Definitions, it is possible to prove that, given a vector field v of
H (curl, 2), the tangential divergence of ytv belongs to H~/2(I"). This is
achieved through the lines below, which are excerpts from [67]. This proof is
detailed, since it consists of a “dense” summary of the main techniques, which
can be used to establish many trace results in H—*(I")-type Sobolev spaces.

Definition 3.1.14 Let Hﬁlﬂ(divlﬂ, I') be the space:

H Y (dive, 1) i= {f € HYA0) 5 dive f e H7VAD)}

Theorem 3.1.15 The mapping y1 is continuous from H (curl, £2) to Hﬁ1/2(divlﬂ, .

Proof. Let us consider an element v of H(curl, £2). On the other hand, since
the duality brackets of formula (3.3) involve fields of H3/2(I"), let us consider
an element g of H?(§2). Then, let us apply the integration-by-parts formula
(3.1) to the couple (v, grad g):

(curlwv|grad g) = —(yTv,grad g)Hﬁp(F) = (divr(yTv),7%09) gr3/2(r)-
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Now, A = 799 belongs to H'/?(£2). Recall that o is surjective from H'({2)
to H'/2(I'), so it has a continuous right-inverse. In other words, there exists
g’ € HY(£2), such that

Y09" = X and ||| zr1(2) < CollMg1/2(r)-

Above, the constant, Cy is independent of A.

Next, ¢ = g — ¢’ belongs to Hg(£2), so that grad g” is in Hg(curl, 2) (cf.
Proposition 2.2.10). According to Theorem 2.2.14, curlwv is orthogonal to
grad g’ in L*(£2), hence it follows that

(divp(y1v), A) ga/2(ry = (curlv|grad ¢’), and
[(divr(y70), N /2 ()| < Collvll eurt. @) M 1172 (ry-

Then, by a density argument, divy(y7v) belongs to H~/2(I"). Indeed, one
remarks that, since H?(§2) is dense in H'(§2), vo(H?(£2)) = H3/?(I") is dense
in yo(H(£2)) = HY?(I"). Finally, we can write

[ dive(yro)l[g-1/2(ry < Collvl H(cur1,0)-
This concludes the proof. [ |

An identity relating traces can then be established.

Corollary 3.1.16 Let v € H(curl, (2), then
divp(v x ny ) = curlv - n| . in HY2(D).
Proof. One has (see the previous proof), for all (v, g) € H(curl, 2) x H' (),
(divp(y1v),7%9) m1/2(ry = (curlv| grad g).
Integrating by parts once more (cf. (2.25)), the right-hand side is equal to
(curlv| grad g) = (y,(curl v), 70g) g1/2 1.
|

NB. As a particular case, one recovers that curlwv - n r =20 for v in
H(curl, 2), i.e., one result of Proposition 2.2.10.

One can then substitute, respectively, 7 for v+, curlp for —grad, and
curly for divp. This is achieved by...

Definition 3.1.17 The tangential curl operator, curlp, from Hll/z(f') to
H=3/2(I'), is defined by the duality brackets identity (8.4), for all (f,g) €

H ') x H¥2(I),

(curlp £, 9) gs/2(ry = (f, curlp g>Hi/2(F). (3.4)
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Let H11/2(cur1p, I') be the space:
H [ P(cwrlp, I = {f e H"*(I) : curlp f € HV/*(I)}.
And according to the result below, whose proof is a simple transposition...

Theorem 3.1.18 The mapping 7T is continuous from H (curl, 2) to Hll/Q(curlp, r).

The last step consists in establishing that Hﬁl/Q (divp, I') and Hll/Q(curlp, )
are dual spaces. Consequently, a new version of the curl-curl integration-by-
parts formula can be justified, which involves two fields of H(curl, {2). To
that aim, one introduces a third variant of the tangential gradient operator,
from H'Y/?(I') to H11/2(F). As a starting point, consider

C(02):={f€C>®(2) : f=0in aneighborhood of U jeny €ij}-

Proposition 3.1.19 The space C°(§2) is dense in H'(£2).

This density result is proven in [161] or [90]. Then, together with the “plain”,
face-by-face definition of the tangential gradient, one checks that grad A can
be defined, for A € HY?(I') = ~vo(H'(£2)), and the following holds:

Ve HY(92), grad,(f|.) = mr(grad f).
Recall that, according to Theorem 3.1.18, 71 (grad f) belongs to H11/2 ().
So, one concludes with the results below concerning the third tangential gra-
dient operator.

Proposition 3.1.20 The mapping gradp is continuous from Hl/Q(I’) to
H (D). Let f € HY(Q): grad(f) ) = nr(grad f) in H /(D).

This third tangential gradient operator coincides with the other two, respec-
tively, from H'(I") and from H?/?(I"). Again, one can similarly introduce the

curl operator curly from H'Y?(I') to Hﬁl/Q(F).

Proposition 3.1.21 The mapping curly is continuous from H/?(I") to

H (D). Let f € H'(2): curlp(f,) = (grad f x n) . in H} V(D).

NB. As a particular case of both Propositions, one recovers that 7+ (grad f) =
0 and (grad f x n),,, = 0, for f in H'(£2) with f|,. = 0, i.e., one result of
Proposition 2.2.10.

The dual operators of —grad and curly, operating from Hl/Q(I’), are,
respectively,

curlp : HY*(I') = H-Y2(I)

{divr . HY*(I) — H-V2(I)
H
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To properly define the duality between H[1/2 (divp, I') and H11/2(CUI‘1]‘, I,
one needs a final tool, namely decompositions of elements of those two function
spaces. Let the Laplace-Beltrami operator be defined as

Vfe HYI'), Arf:=divp(grady f):= —curlp(curly f),
together with the related function space below:
H(D) = {f € HL,,(I') : Apf e H (D)},
Theorem 3.1.22 The following decompositions hold:

Hﬁ1/2(diVF7F) = CurlF(H1/2(F)) —i—Hi/Q(F)

H [ '*(cwrlp, I') = grad .(HY(I')) + H,"*(I).
Moreover, the following direct decompositions hold:

H, Y*(divp, T) = curl o (HY2 (I) & grad - (H(T")).

[ zmu
H11/2(CUI‘1]‘,F) = grad(HY?(I")) @ curl(H(I)).
As a side-product, one can prove the important surjectivity results below.
Corollary 3.1.23 The mapping v is surjective from H (curl, 2) to Hﬁlm (divp, I).
The mapping mT is surjective from H(curl, 2) to Hll/z(curlp, ).

Since curlr f; and grad fo are “orthogonal”! for f1, fo € H'/2(I"), one can
introduce a duality product between Hﬁlm(divlﬂ,F) and H11/2(CUI‘1]‘,F),

which is the scalar product of L?(I") when the elements are smooth enough.

Definition 3.1.24 Let (u,up) € H,"/*(divp, ) x H | '?(curlp, I') be de-

composed as

w; =curlp fi +v, fie HY*(I), v, e Hi/2(F),
uy = grad, fo + vy, fo€ HY*(I), vy € Hﬁ/z(f').
Then, the duality product of wy and us is equal to:
V<1.l,1, ’u,2>ﬂ- = <CU_I‘1F fl, ’U2>Hﬁ/2(F) + <gradp fg, v1>Hi/2(F) + (1)1, vg)Lz(p).
! This is a generalized orthogonality property, in the sense that, given fi,f» €
H*Y?(I"), there exist two sequences of elements of H*(I"), respectively (f£), and
(fé‘)]€7 such that ff — f; in Hl/Q(F) for i = 1,2, and one has

Vk, ¢, (curlp f,grady f5)p2(m = 0.
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Theorem 3.1.25 One has the following duality identity:
!/
(Hf/Q(divF,F)) = H [ Y*(culp, ).

In addition, one has a generalized integration-by-parts formula, for all (f,g) €
H (curl, ) x H(curl, 2):

(f|curlg) — (curl flg) = (y7 f,77G)x- (3.5)

Most results carry out to fields defined on a part of the boundary only (and
equal to 0 elsewhere). We refer the reader to [67, 68] for the details. Briefly,
let us consider an open, topologically trivial subset? of I', called I/, with
0 < measp(I'") < measr(I'), such that its boundary OI"” is a piecewise
smooth submanifold of I', and let I = int(I" \ I"'). Let v/ be the unit
outward normal vector to I, and let 7/ be a unit tangent vector to OI".
One first defines

/()= v e B + 5 e H(D).

Above, v is the continuation of v by 0 to I'. Then, one introduces
=—1/2 1/2 . ~_
H '“(divp, Iy = {f e H '"(I") : divp f € H-V2(I")},

— —1/2
where divy maps elements of H 12 (I'") (the dual space of HH/ (I')) to

H~3/2(I"). Similarly, one can introduce

H,ewlr 1) o= (f € B, () el g € BT,

Theorem 3.1.26 The mapping vt : f — f X n| ., is linear, continuous

——1/2
and surjective from H(curl, 2) to H | / (divp, I').
The mapping 71+ = f+— n X (f x n)|,, is linear, continuous and surjective

—~—1/2
from H (curl, 2) to H | / (curlp, I').
Next, define
Ho rr(curl, 2) :={f € H(curl, ) : fxmn,, =0},

Fal

which is a closed subspace of H(curl, 2). To build the ad hoc space of tan-
gential traces on I" for elements of H r(curl, £2), one needs to consider

1o (dive, Ty = {f € H P (dive, ')« (f) = 0},

where t,.(f) = f - u’|8F, is defined in a weak sense.
Introduce the function space:

Hy ( ) - {fe zm'u(F/) : AFfEHil/Q(F/)a tl/'(gradff):o}'

2 We assume here that 8" N I # §. Indeed, it is simple to check that the
preceeding study carries over to the case when OI" N oI = ().

H
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Proposition 3.1.27 The following direct decomposition holds:

H| /*(divp, I') = curlp(H/*(I'")) @ grad (M, (I")).
Similarly, for the space of tangential components traces on I for elements of
Hy, v (curl, £2), we consider

H \P(cwlp, I") = {f € H*(cwrlp, I") © t(f) =0},

where t./(f) = f - T/‘al,, is defined in a weak sense. Note that one can also

derive a direct decomposition of H 110/ 2(cur1p,f" ), in the same spirit as in

Proposition 3.1.27.

Theorem 3.1.28 The mapping ¥, : f — f x n| ., s linear, continuous

and surjective from Ho v (curl, 2) to Hﬁ)ﬂ(divlﬂ, .

The mapping 7%, : f — n x (f x n)|,., is linear, continuous and surjective

I
from Hg v (curl, 2) to HI}O/Q(CU.YIF, ).

One finally obtains extensions of the duality results and new integration-by-
parts formulas.

Theorem 3.1.29 One has the following duality identities:

I ——1)2
(H[é/z(divnf’)) — 7, (ewrly, 1),

——1/2 ! _
<H” (lep,F’)) = HL}O/Q(CUI‘lp,FI).

In addition, one has generalized integration-by-parts formulas, for all (f,g) €

Hy r(curl, 2) x H(curl, 2):

(f|curlg) — (curl flg) = ,, (13, f.7rg)nr: or,
(f|curlg) — (curl £lg) = — (/9. 7% f)rs-

3.2 Scalar and vector potentials: the analyst’s and
topologist’s points of view

We discuss two different mathematical points of view, namely the analyst’s
and topologist’s, concerning the existence of potentials for curl-free fields. We
then reconcile these two points of view and define a general framework.

For the analyst [125], the main issue is the regularity of the boundary. Ac-
cordingly, the analyst’s hypothesis on (2 is:
(Ana) “2 is an open set of R® with a Lipschitz boundary”.
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For the topologist [127, 128], the main issue is (co)homology and, of particular
interest for our purpose, the existence of single-valued potentials to curl-free
smooth fields. In other words, given a vector field v defined on (2 such that
curlv = 0 in 2, does there exist a continuous single-valued function p such
that v = grad p? The answer to this question can be found in (co)homology
theory, which results in the topologist’s dual hypothesis:

cither (Top)r—o  “given any vector field v € C*(§2) such that curlv = 0
in §2, there exists p € C°(£2) such that v = gradp on 27;

or (Top) ;=0  “there exist I non-intersecting manifolds, Xy, ..., X1, with
boundaries d5; C I such that, if we let 2 = 2\ Ule X, given any vector
field v € CY(2) such that curlv = 0 in 2, there exists p € C°(§2) such that
v =gradp on 2.

Here, I is equal to the minimal number of required cuts (X;);. Mathematically,
I is equal to 81({2), the first Betti number. Note that according to the above,
I = 0 is an admissible value, in which case the existence of continuous single-
valued potentials is guaranteed on (2, whereas I > 0 corresponds to the case
when cuts must be introduced. This is the reason why we use the notations
(Top)1—¢ and (Top) =o to discriminate the two cases. When I = 0, the set
2 is said to be topologically trivial.

Remark 3.2.1 Recall that, according to homotopy theory, a connected set is
simply connected if every closed curve can be contracted to a point via con-
tinuous transformations. It is often assumed that each connected component
of £2 must be simply connected to guarantee the existence of the continuous
single-valued potential: in other words, one usually states in (Top)r—g (re-
spectively (Top)rso) that 2 (respectively §2) is simply connected. However,
this property is only a sufficient condition and, from a topologist’s point of
view [127], the correct assumption is of a (co)homological nature, cf. (Top)
as stated above.

As far as the regularity of the manifolds (X}); is concerned, let us first assume
a topologist’s point of view. Finding cuts to enforce (Top) o is inexpensive
in terms of algorithmic complexity (see [128, Chapter 6] for details). Compu-
tationally speaking, one can build cuts that are piecewise plane, starting from
a tetrahedral mesh that constitutes a coarse approximation of the set. So, the
regularity issue simply involves the ability to deliver piecewise plane cuts.

In general, cuts leave a connected set connected, so, to fix ideas, we assume
that (2 has the same number of connected components as 2. This ensures
that scalar fields with vanishing gradients in {2 are equal to constant fields on
each connected component. On the other hand, from the analyst’s point of
view, one is content with a set 2 with a pseudo-Lipschitz boundary, cf. [10].

Definition 3.2.2 Let O be an open subset of R™. Its boundary 0O is pseudo-
Lipschitz if, at each point x of 0O, there exist an integer r(x) equal to 1 or 2
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and a strictly positive real number By such that for all real numbers 8 €]0, Bo|,
the intersection of O with the ball centered at x of radius B possesses r(x)
connected components, each one with a Lipschitz boundary.

Fortunately, the two notions are compatible! As a matter of fact, an open
subset of R® with a piecewise plane boundary is Lipschitz (except for very
pathological cases, see one illustration in Figure 2.1). So, whenever needed,
either assumption (Top);—¢ is fulfilled or assumption (Top);s¢ is fulfilled
with, in the latter case, existence of piecewise plane cuts (X;)1<i<r such that
the resulting 2 = 2 \ Ule Y; is pseudo-Lipschitz.> We denote by n (no
index) a unit normal vector field to (X;)1<i<s, and jumps are defined as in
Definition 2.1.67. Given v € L?(£2) (respectively v € L?*(£2)), we denote by
¥ (respectively ) its continuation to L?(£2) (respectively L*(£2)). On the
other hand, given v € L?(£2) (respectively v € L?(£2)), its restriction to {2
is simply written as v (respectively v), and likewise for subspaces of L?(2)
(respectively L%(2)).

Generically, we denote constant fields by the symbol cst, and by P(Q), the
subspace of H'(£2):

P(2):={qe HY(2) : [q]s, =cst;, 1 <i<T}.

Above, for i # j, cst; and cst; can be different.

Finally, when the boundary I' is not connected, we let (Ik)o<k<i be its
(maximal) connected components, I'y being the boundary of the unbounded
component of the exterior open set R\ £2. We let Iy = I if the boundary is
connected. We introduce the subspace H},(£2) of H'(£2):

Hé_o(!?) = {qEHl(Q) © qr, =0, qr, = csti, 1<k <K}

Above, for k # k', cst, and cstys can be different.

At some point, we also use a (spherical) domain O such that 2 C O, and
denote by (£2x)o<k<rk the connected components of O \ 2 with boundary
Iy for k > 0, and Iy U QO for k = 0. According to the Alexander duality
theory [128], it holds that (51(£2) = 51(O \ £2), i.e., the (minimal) number of
“inside cuts” is always equal to the (minimal) number of “outside cuts”.

A few existence results are stated without proof. In this case, the proof can be
found in the accompanying bibliographical references. For completeness, note
that we provide footnotes to check the well-posedness of the auxiliary problems
we introduce. Let us mention that for the ease of exposition in §§3.3-3.5,
results have been grouped by category, namely “scalar” or “vector” potentials,
and in the latter case, “with” or “without” vanishing normal trace. However,
the logical sequence of the main mathematical results can be summarized as
follows:

Step 1: the scalar theorems 3.3.1-3.3.2 and the vector theorem 3.4.1;

Step 2: the scalar theorem 3.3.9 uses the vector theorem 3.4.1;

3 One has meas(£2) = meas(£2).
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Step 3: the first Weber inequality theorem 3.4.3 and the related compact
imbedding result of theorem 3.4.4 use Steps 1-2 and their by-products;

Step 4: the second Weber inequality theorem 3.5.3 and the related compact
imbedding result of theorem 3.5.4 use Step 3 and its by-products.

3.3 Extraction of scalar potentials and consequences

We consider first the case of curl-free fields of L*(£2). Let us begin with the
fundamental result proven? in [118, Chapter I] and in [165, Chapter 3].

Theorem 3.3.1 Let §2 be either a domain, or a bounded, open and connected
set with a pseudo-Lipschitz boundary. Assume that §2 is topologically trivial.
Then, given v € L*(£2), it holds that

curlv =0 in 2 < Ipec H (), v=gradp.

The scalar potential p is unique up to a constant, and |p|m (o) = ||v|lL2(0)-

Next, we have the more general result below, proven in [10] for smooth cuts.
We provide the main steps of the proof, which is slightly different than the
one proposed in [10], according to the assumptions we made on the regularity
of the cuts.

Theorem 3.3.2 Let {2 be a domain such that (Top)rso is fulfilled. Then,
given v € L*(£), it holds that

curlv =0 in 2 < dJp e P({2), v=gradp.

The scalar potential p is unique up to a constant, and |p|H1(Q) = |lvllz()-

Proof. We remark that, if there exists p € P({2) such that v = grad p, then
obviously curlv = 0 in 2. One can then prove that curlv = 0 in 2 by
using the tangential gradient grad of Proposition 3.1.20, which leads easily
to [rrv]y, = grad ([p]s,) = 0, for 1 < ¢ < I, plus Proposition 2.2.32 to
conclude.

Conversely, one first uses Theorem 3.3.1 in {2 to find p € H'(§2) such that v =
grad p in £2. Then, as v belongs to H (curl, £2), it follows that [rTv]s, = 0,
for all 7. Using again the tangential gradient as defined in Proposition 3.1.20,

* This (very technical) result is proven in two steps:

1. One introduces a sequence of nested topologically trivial domains ({2,), such
that 2, C 2 for all p, Up$2, = £2. The curl-free field is regularized by convolution
over R®, so that its restriction belongs to C*(§2,), with vanishing curl in £2,. One
may then apply the classical Stokes’ Theorem in (2, to this smooth field and write
it as gradient there, with a scalar potential that belongs to CQ(Q,,).

2. One then goes to the limit (p — co) to derive the existence of a scalar potential
in £2 that belongs to H'(£2), with the help of the Lions’ Lemma (Theorem 2.1.34).
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we find that grad ([p]s,) is zero, for all i. In other words, one has [p| s, = cst;,
for 1 <i<1I, ie. pe P(R).

Finally, we note that the uniqueness of p (up to a constant) follows from the
fact that £2 is connected. [ |

Let us mention an elementary direct decomposition of P(£2).

Proposition 3.3.3 For 1 < j < I, let 7; € P({2) be such that [;]x, = 0i;,

for 1 <1 <I. Then, (7j)i<j<1 is a free family in P({2), and moreover,

P(£2) = H'(2) @ span, < ;< ().

Proof. If . ¢;7; = 0 in P(£2), then 0 = [}, ¢;7j]s, = ¢; for all 4. Hence,
(75)1<j<1 1s a free family. Along the same lines, H'(2)Nspan, ;< (7;) = {0}.

Finally, given p € P(§2), note that p — > [Pz, 75 belongs to H(0). [

Remark 3.3.4 Obuiously, the functions (v;); exist. Given j, 7; can be built
by considering a neighborhood 2s; of X in 2 such that 25 N Q=0TunN"
with domains 27 and 27 chosen as in Definition 2.1.67, not intersecting with
any other cut. Taking 7j|o+ = 1 and 7j)o- = 0 and making a (continuous)
continuation to 2\ s, one obtains the requested ;.

To handle scalar fields of H'(£2), we state a (useful) integration-by-parts for-
mula. See [10] for the proof. In the spirit of Proposition 2.1.60, observe that
given v € Hy(div £2), its trace v - n|x, belongs to H~/2(X;) for all 4.

Proposition 3.3.5 Let 2 be a domain such that (Top)rso is fulfilled. Let
g€ HY(N) and v € Ho(div 2):

('v,grad Cj)LQ(Q) + (diV’U, q)L2(Q) — Z <’U ‘n, [q]21>21 (36)

1<i<I

Above, the duality brackets over X; are understood in (-,-) g/2(x,)-

Interestingly, the addition of a homogeneous boundary condition allows one
to recover potentials that automatically belong to H'(£2), instead of P(£2).
Before showing this important property, we begin with elementary results re-
garding solutions to the Poisson equation with vanishing or piecewise constant
trace.

Proposition 3.3.6 Let 2 be a domain. Then, given v € L*(12), the varia-
tional formulation

: 1
{Flnd q € Hy(12) such that (3.7)

Vq' € Hy (1), (gradg|gradq’) = (v|gradq’) °

is well-posed. Furthermore, its solution q € H'(§2) is characterized by Aq =
divw in 2 and qp = 0.
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Proof. One checks that the variational formulation (3.7) is well-posed with
the help of the Lax-Milgram Theorem 4.2.8, and the Poincaré inequality of
Theorem 2.1.35 in H}(£2). Note that, with the help of the Cauchy-Schwarz
inequality, choosing ¢’ = ¢ yields the bound || grad ql|z2(0) < [[v] L2 (0)-
Now, assume that ¢ solves (3.7) and take ¢’ € D(£2). Using differentiation in
the sense of distributions yields

(Aq,q') = —(grad ¢, grad ¢') = —(grad ¢ grad ¢') = —(v| grad ¢')
— (v, gradq)) = {divo,q).
Hence, Ag = divw in D'(£2) and, obviously, ¢ € H*(£2) with ¢, = 0.

Conversely, ¢ € H}(£2). Moreover, by definition, given ¢’ € H}({2), there
exists (q),)m € D(2)N such that lim,, e |¢" — @}, || m1(2) = 0. It follows that

(grad q|grad¢') = lim (gradg|gradq),) = lim (gradq,gradq],)
m—0o0 m—0o0
= — lim (Aq,¢,,) =— lim (divwv,q,,)
m—0o0 m—0o0

(v,gradq),) = lim (v|gradg,) = (v|gradq’).

lim
m—r oo
In other words, ¢ solves the variational formulation (3.7). ]

Proposition 3.3.7 Let 2 be a domain. For all 1 < ¢ < K, there exists one,
and only one, qp € H(£2) such that Agq, = 0 in 2 and qr,, = Oem for
0<m<K.

Proof. Since vy is surjective from H'(£2) to H'/?(I"), it has a continuous
right-inverse, so one can consider a preimage )y of the function equal to 1
on Iy, and 0 on I" \ I}, and set v, = grad Q, € L*(£2). According to Propo-
sition 3.3.6, there exists one, and only one, ¢y that solves the variational
formulation (3.7) with data v,. Then, ¢ = Q; — ¢? € H'(§2) is such that
Aqp = divoy — Aq§J =01in 2, with q¢|1,, = Qe|r,, = dem, for 0 <m < K.

This proves existence. Uniqueness is obtained as follows: let qél), §2) be two

fields that fulfill the required conditions, and set dq, = q§1) —q§2). By construc-
tion, dg, € H}(£2) solves the variational formulation (3.7) with zero data, so

it is itself equal to zero and q§1) = q§2). [ |

For later use, we introduce the finite-dimensional vector space and a related
K x K matrix, the so-called capacitance matrix

QN($2) == span; <y (qr), Com = (gradgn|gradq,), 1 <{,m < K.

On Qn(£2), all norms are equivalent and, according to the Poincaré inequality
of Proposition 2.1.66, one may use || grad -|| 2((), since all elements of Q n (£2)
vanish on I5.

Corollary 3.3.8 Let 2 be a domain. The family (qe)1<i<i is free, so the
dimension of the vector space Qn(2) is equal to K. In addition, the matriz
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C is real-valued, symmetric positive-definite. Finally, given a¢ = (am)1<m<k
the vector field defined by va = Y1 <, < Om grad ¢y, is such that

<va-n,1>H1/2(n): Z Comaum, for1 <t < K.

1<m<K

Proof. First, (q;)1<¢<x is a free family: indeed, >, )« 5 ¢¢qe = 0 in 2 implies
0= (EISKK ceqe)|r, = cm for 1 <m < K.

Next, the functions (g¢)i1<e<rk are all real-valued. Indeed, given ¢, one has
@ € H'Y(2), Agz = 0in 2, @7 = 0¢yy, on I, ¥, s0 @ = q¢ by uniqueness. So
are their gradients (grad q¢)1<¢<x, and likewise for the matrix C.

The matrix C is Hermitian, hence symmetric, by definition.

Let a = (Ozz)lgggl(, then

(Cala) =Y Comamaz = (grad(D _ omgm)| grad (> aeqr))
l,m m 4

= gradq||2Lz(m >0, where ¢ = Zagqg.
¢

But g € Qn(£2), so (Ca|a) = 0 if, and only if, ¢ = 0, that is, &« = 0. The

matrix C is positive-definite.

For 1 < ¢ < K, the last result is obtained by integrating by parts (cf. (2.25):
<va ‘n, 1>H1/2(Fe) = <'Ua -n, qg>H1/2(p)

> amlgrad gm - n,q0) g

1<m<K
= Z am(grad g, | grad ¢) = Z ComOtm,
1<m<K 1<m<K
which concludes the proof. [ |

We are now in a position to prove our claim.

Theorem 3.3.9 Let 2 be a domain. Then, given v € L*(£2), it holds that

curlv =0 in 2,

1 —
v xnr=0 } <= dp € Hy,(2), v=gradp.

Moreover, the scalar potential p is unique, and |p|g (o) = [|v||L2(02)-

Proof. The result is obtained in three steps:

1. According to Proposition 3.3.6, there exists one, and only one, ¢ € H}(£2)
such that Ag = divw in £2: the field v’ = v — grad q of L*(£2) is such that
curlv’ = 0 and dive’ = 0 in {2, and v’ x njr = 0 (the last property is a
consequence of Proposition 2.2.10).

2. Define the column vector 3 with entries 8y = (v’ - n, Dz, 1 << K.
Then, let v/ = v — 3, -, omgradg,, where a = (@) solves the
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linear system Ca = 3. The field v” of L*(£2) is such that curlv” = 0 and
dive” =0 in £, and v” x n;r = 0 (again, the last property is a consequence
of Proposition 2.2.10, applied either to g, — 1 in a neighborhood of I, or
to gm elsewhere). Due to Corollary 3.3.8, one finds (v" - n,1) g1/2(r,) = 0 for
1<?¢<K.

3. Thanks to Theorem 3.4.1 below, there exists w € H'(2) such that v =
curlw in 2. Hence, integrating by parts (2.20) one last time, one finds

0" 32 = (0 curlw) =0.

So, v = 0, that is, v = gradp with p := ¢+ 3°, ., < x WmGm € H'(£2) and
p‘pk = g, Vk.
The proof of the converse assertion is obvious. [ |

Above, we exhibited vector fields that are curl- and divergence-free, with van-
ishing tangential trace: grad g, for ¢ € QN (£2).

Let us check now that span;. . (gradgqy) is exactly the set of curl- and
divergence-free L?(£2) vector fields, with vanishing tangential trace. Introduce

ZN(2) := Hy(curl0,2) N H(div0, 2).

Proposition 3.3.10 Let 2 be a domain. One has Zn(2) = grad[Qn(£2)].
As a consequence, an element v of Zn(2) is characterized by the fluzes ({v -
7, 1) g2 () )i<e<k

Proof. One has grad ¢ C Zy(12) for all ¢ € Qn(£2).

Let v € Zy(2): according to Theorem 3.3.9, there exists p € HJ,(§2) such
that v = gradp in 2. If welet ¢ = p — >, -k (D1 )@m, it holds that
q € H(£2) and Ag = 0 in £2. From Proposition 3.3.6, we find that ¢ = 0,
hence v € grad[Qn(£2)].

The last result is a straightforward consequence of Corollary 3.3.8. [ |

In the same spirit, one can look for L*(§2) vector fields which are curl- and
divergence-free, with vanishing normal trace:

Z7(2) := H(curl0,2) N Hy(div 0, £2).

Consider first the case of a topologically trivial domain.
Proposition 3.3.11 Let 2 be a topologically trivial domain: Zr(£2) = {0}.

Proof. Let v € Z1(£2). From Theorem 3.3.1, there exists p € H'(£2) such
that v = grad p in 2. In addition, v € Hy(div, £2) with divew = 0 in {2, so the
integration-by-parts formula (2.25) yields Hv”%ﬂ(n) = (v|grad p) = 0, which
concludes the proof. [ |

On the other hand, if the domain is topologically non-trivial, it turns out that

the relevant space of scalar potentials is, in this case, P({2). As a matter of



118 (©Assous-Ciarlet-Labrunie 2017

fact, the fields are curl-free, but not with a vanishing tangential trace, so the
extraction of potentials stems from Theorem 3.3.2. More precisely, introduce

Pomo(2) = {G € P(O) : / Gdz = 0} one has P(2) = Punu(£2) & C.
2

Proposition 3.3.12 Let 2 be a domain such that (Top)rso is fulfilled.
Gien 1 < j <1, let p; be defined as the unique solution to

{ Find f; € Pemo(£2) such that 35)

Vg € Popo(£2), (gradp;,grad ) peg = [dls;

Then, v; = g;;d??j € L*() is such that
curlv; =0,dive; =01 2, v; - n=0on I, and (v;-n,1l)s, = J;, Vi

Proof. There exists one, and only one, solution to the variational formula-
tion (3.8)(°). Furthermore, we remark that it holds that (grad p;, grad cst)pa (o) =

0 = [cst]x, for constant fields in 2. Hence, p; solves the variational formula-
tion for all ¢ € P(£2).

Let v; = grad p; € L*(£2). Due to Theorem 3.3.2, one knows that curlv; = 0
in 2. Then, given g € D(12),

(3.8)

(divv;,g) = —(vj|gradg) = —(vj,grad g) () = 0.

It follows that divw; = 0 in {2, and v; € H(div, 2). Next, given g € H'({2),
one finds by integration by parts (cf. (2.25))
. (3.8)
(v - N, 9) /2y = (divwv,lg) + (vj|gradg) =" 0.
By the surjectivity of the trace mapping, we obtain that v; - mr = 0 in
H~Y2(I). In particular, v; € Ho(div, £2), and one can use the integration-

by-parts formula (3.6) with v; and 7; for 1 < ¢ < I, where (7;); is defined as
in Proposition 3.3.3. This leads to

. . . (3-8)
<’Uj ‘N, 1>21 = (le’l}j,Ti)L2(Q) + (vj,gradri)L2(Q) = 5”

Let us introduce the space of scalar potentials

QT(Q) = Spanlgjgf(?j)-

5 According to the Lax-Milgram Theorem 4.2.8 and to the Poincaré-Wirtinger in-

equality of Theorem 2.1.37 in P, (£2), the variational formulation (3.8) is well-
posed.
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Proposition 3.3.13 Let 2 be a domain such that (Top)rso is fulfilled.
Then, the dimension of the vector space Zr(§2) is equal to I. Furthermore, a

basis for Z7(2) is the set of functions (grad ¢;)1<;<r, where each ¢; € Qr(£2)
is such that [¢;]s, = di;, for 1 <i<1I.

Proof. For 1 < j <1, let v; = g;z:d??j € H(div, £2). According to Proposi-
tion 3.3.12, it holds that span;(v;) C Z7({2). Moreover, (v;); is a free family:
indeed, >, cjv; = 0in 2 implies 0 = (3_, ¢jv; - n, 1) 5, = ¢; for all i.

Let v € Zp($2): thanks to Theorem 3.3.2, there exists p € P({2) such that
v=gradpin 2. If welet ¢ =p— Zj<v -m, 1) s,p;, it holds that ¢ € P(0),
with g?a:a/q' € Hy(div, 2), and (grad¢-n,1)s, = 0 for all 7. In particular,

one can use the integration-by-parts formula (3.6) with grad ¢ and ¢ to find

||grad(j||iz(9) = (grad ¢, grad Q)L2(Q) = Z(gradq' n,[d]z,) s,

K2

= [z, (gradg - n, 1)z, =0,

So, we conclude that v =} (v -n,1)s,v; belongs to span; (vj)
Finally, we prove that we can build an alternate basis for Q(£2), namely (¢;);
such that [¢;]x, = d;j, for all ¢, j. For that, we introduce the mapping

QT(Q) — CI

Jump : { q+ ([d]z)1<i<s

and prove it is a bijection, by checking that its kernel is reduced to {0}. If
we let ¢ € ker(Jump), we compute that ngadQHiz(Q) = 0 (cf. the above
integration by parts), so ¢ = 0 and the characterization by jumps is shown. B

For later use, we introduce the so-called inductance matrix
L;j = (gradq'j,gradq'l-)p(m, 1<i,57<1.
Corollary 3.3.14 The matriz L is real-valued, symmetric positive-definite.

Proof. The functions (p;)i<;<r are all real-valued: given j, E € szv(!?)
solves the variational formulation (3.8), so p; = p; by uniqueness. Then, given
i, writing ¢; as the linear combination ¢; = > ; Cibj with complex coefficients
(¢j); and using the characterization of ¢; via its jumps, one obtains

vi', ch D)z, = diir-
J

This is an invertible linear system in the coefficients (c;);, with real-valued
matrix ([p;]x,, )j# and real-valued right-hand side. Therefore, the coefficients
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are real, and as consequence, ¢; is a real-valued function.
So are their gradients (grad ¢;)i1<;<r, and likewise for the matrix L.

The matrix L is symmetric by definition.
Let oo = (ai)lgigj, then

(Lala) = | gradq'||iQ(Q) >0, where ¢ = Z G-

K2

According to Proposition 3.3.13, (grad ¢;)1<;<7 is a free family, so (La|a) = 0
if, and only if, @ = 0. The matrix L is positive-definite. [ |

Let us conclude this section with a study of the regularity of curl-free and
divergence-free vector fields with a vanishing trace.

Theorem 3.3.15 Let 2 be a domain, then Zy(2) C HY?(12).
Assume, moreover, that (Top)r=o is fulfilled in 2, then Z(2) ¢ HY?(1).

Proof. Let v € Zx(£2): according to Proposition 3.3.10, there exists p €
QN (£2) such that v = grad p. By construction, Ap = 0 in {2, and moreover,
pir € HY(I'). Thanks to [144], one has p € H3/2(£2), hence v = gradp €
H'?(2). This proves the first part of the claim.

Let v € Zp(§2): we know from Proposition 3.3.13 that there exists p €

QT(Q) such that v = grad p. However, p € H'(£2) (use Propositions 3.3.3
and 3.3.11), except if v = 0.

One may address this difficulty by using a partition of unity. Let (x;)i<i<r
be such that for all i: x; € C*(£2,0,1]) with connected support, x; = 1 in
a neighborhood of X;, and supp(x;/) N X; = 0 for i’ # i. One may further
define connected, open subsets (O;)1<i<r of £2 with Lipschitz boundary such
that supp(x;) N2 C O; and Oy N X; =0, for i # . Each subset is split into
two parts, O; and O, according to the orientation of the normal vector to
X, so that [z]x, = Zgo+ ~ oo - By defining xo =1 — >, -, Xi, one gets
a partition of unity (x,)o<,<r on £2.

Next, let p, = x.p for all s by construction, py € H(£2), whereas p; € P(£2)
for 1 < i < I. Introduce, for 1 < i < I, p; € L?(0;) defined as p; = p; in
O; and p; = p; — [pily, in OF. As [pi]s, = 0, it holds that p; € H(0;),
and in addition, Ap; € L?*(O;) and Onpijpo; € L?(00;). So, we obtain that
pi € H32(0;), cf. [144, 88], which implies g;;(i/pi = gradp; € H/*(0,). It
follows that g;:;i/pi belongs to H Y 2(£2), because g?;&/pi vanishes in a neigh-
borhood of 0; N2 (and grad p; = 0 in 2\ O;). Likewise, grad po = gradeO
belongs to H Y 2(£2). Using the definition of the partition of unity, one con-

cludes that v = g/r_z;d/p € Hl/Q(Q). This proves the second part of the claim.
|
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3.4 Extraction of vector potentials

We consider now the case of divergence-free fields of L?(£2), for which one can
prove the fundamental result below.

Theorem 3.4.1 Let 2 be a domain. Then, given v € L*(£2), it holds that

divo =0 in 2, Jwe H.,, (92), v = curlw. (3.9)
<’U"I’L,1>H1/2(Fk) :O, Vk CliV’l,UZO7 a ' '

Furthermore, there exists C' > 0 such that for all v, one may choose a vector
potential w that fulfills

lwll i (2) < Cllvlizz (o)

Remark 3.4.2 Assuming that v writes v = curlw with w € H(curl, £2),
let us briefly comment on the conditions (v-n,1)g1/2(p,y =0, for 0 <k < K.
For k > 0, define q. € H*(2) such that gy is a basis function of Qn(£2).
Then, one obtains by integrating by parts twice:

(v-n, 1) g2y = (V- N, qk) g2y = (v]grad gx) = (curlw|grad g) = 0,

because grad q;, € Ho(curl, 2). On the other hand, for k =0, one has simply

<v.n71>H1/2(1—b) = — Z <'v.n,1>H1/2(Fk) :O
1<k<K

Proof. We use the notations of §3.2. The result is obtained in four steps:
1. Deﬁneﬁ (QK)OSKSK by:

-qo € HL,,,(£20) s.t. Ago =0 in 2, g0 = v -m on Iy, dpqo = 0 on 9O ;
-qe € HL,, (92¢) st. Age =0 in 2, Opqe = v -m on Iy, for £ > 0.

By construction, the function @ € L?(R?) defined by

Vo=v, Vg =gradg for 0<l(<K, Ugsp=0

6 Given £, the problem is equivalent to the variational formulation

{ Find qo € Hipmy(£20) such that
VQ S Hzlmv(*QZ)7 (grad QZ| grad Q) = <’U - n, q>H1/2(1"e) '

This variational formulation is well-posed, cf. the Lax-Milgram Theorem 4.2.8
and the Poincaré-Wirtinger inequality of Theorem 2.1.37 in H2Z,,,(2;). Due to
the continuity of the trace mapping o (Theorem 2.1.62), choosing ¢ = ¢¢ yields
llgrad qe|L2(a,) < Cellv - n|y-1/2(,) with C¢ > 0 independent of v. Finally,
using the continuity of the normal trace mapping (Theorem 2.2.18), one gets the
bound
| grad qel|z2(0,) < Ctllv|lmHaiv,2),

with C; > 0 independent of v.
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belongs to H (div,R?) (see Proposition 2.2.30), and it is divergence-free.

2. Let © be the Fourier transform of ©. Writing the equations (3.9) in R?® for
v with w as the vector potential, and then performing the Fourier transform,
one sees that the Fourier transform w of w is governed by

(k) =1k x w(k), 1k -w(k) =0, Yk € R%.
Solving this linear system in wy,, p = 1,2, 3, yields the solution

. kotg — kgda kst — kit k1o — kotq

w1 227“‘:'2 5 wag 217“‘:'2 5 ws 227|k|2

In particular, applying the inverse Fourier transform to w and denoting by
w™ its restriction to {2, it holds that v = curlw™ and divw™ = 0 in (2.

3. Let us study the regularity of @ and w™. For that, introduce a cut-off
function x € D(R) equal to 1 in a neighborhood of 0, and split w as

w(k) = x(|k)w(k) + (1 = x(|k])w (k).

Note that k — x(|k|)w(k) has a compact support, so its inverse Fourier
transform is analytic (cf. [187, p. 272]), and in particular, its restriction to 2
belongs to L*(£2). On the other hand, k — (1 — x(|k|))@w(k) vanishes in a
neighborhood of 0. Thanks to its characterization elsewhere (as a function of
), it belongs to L*(R?), and so does its inverse Fourier transform. Therefore,
w~ € L*(N).

By direct computations, one now finds |k, w,| < % max,, |0p|, form,p=1,2,3.
Hence, ki, belongs to L?(R?) with ||k iyl 2rs) < 2[9]lp2(re), and so
Omw,, is in L*(£2), for m,p = 1,2,3. We conclude that w™ € H'(0).

4. Remark that one can add to w~ any constant field est € R?, and still have
v = curl(w™ + est) and div(w™ 4 est) = 0 in 2. Therefore, one can choose
a vector potential — now called w — so that all the conditions (3.9) hold.

Let us now bound the H'(£2) semi-norm of the vector potential. According to
the previous bounds on (K, Wp)m p=1,2,3, we have that |w| g1 (o) < C[|9]| p2(gs)
for some constant C' > 0 independent of ¥. In addition, one has ||| p2(gs) =
(27‘1’)_3/2H’l_)||L2(|R3) and, by definition of v:

- I19l|L2 ) = vllL2(a) 3

- |9l 20,y = llgrad gl L2(2,) < Cp vl H@@iv,2), 0 < €< K

- 19l L2 gs\) = 0

Recalling that dive = 0 in §2, we obtain that |w|g1 (o) < O [|v]|L2(g), for
some constant ¢’ > 0 independent of v. Since we chose the potential vector
win H! (1), one can use the Poincaré-Wirtinger inequality one last time

zZmuv

to conclude that it actually holds that

|wll g1 (2) < C" [V L2y,

for some constant C” > 0 independent of v, which concludes the proof. [ |
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With the result of Theorem 3.4.1, we are now in a position to exhibit some
useful properties of the function space

X n(2):= Hy(curl, 2) N H(div, ).

The first one is an inequality that allows one to bound the L?*(£2)-norm of
elements of X y({2), similar to the Poincaré inequalities. The second one is the
compact imbedding of X 5 (£2) in L*(£2). Both results were first discovered
by Weber [206].

Theorem 3.4.3 (First Weber inequality) Let {2 be a domain. There ex-
ists Cy > 0 such that

Vy S XN(Q),

yllz2(0) < Cwdllcurly|pzco) + [ divyllae) + D - n, gz}
1<k<K

Proof. Let us proceed by contradiction: if the claim is not true, then

I(y,,)m € Xn(2)N such that Vm, lYmllzzo) =1,
| curly,, || L2 (@) + 1 div ymllz2(2) + X1 < (Ym0 D] < 5t

The contradiction is reached in three steps:
1. Let ¢%, € Hj(£2) be the unique solution to

{Find ¢ € H}(Q2) such that
Vq € Hy (1), (gradqp,|gradq) = (y,,|gradq) °

Because y,, belongs to H(div, £2), taking ¢ = ¢°, above, one gets, by inte-
grating by parts and using the Cauchy-Schwarz inequality,

lgrad gy, 17200y = (Yl gradap,) = —(divy,lon,) < | divy,, [ L2o)llan | 222)-

Using the Poincaré inequality, one gets that

| grad gy, llr2(0) < Clldivy,, 120,

with C' > 0 independent of y,,. Hence, limy,— o0 [|¢5, || 1 (2) = 0.
2. Let ¢, € Qn(£2) be the unique” solution to

{ Find q¢f, € Qn(£2) such that
Vg € Qn(2), (gradgy,|gradq) = (y,,|gradq) -

Since ¢!, belongs to Qn(£2), it is determined by its (constant) values on I}
for 1 < ¢ < K:let us write ¢}, = >, - (¢} 1,)qe- Choosing ¢ = ¢f, and
integrating by parts, one finds o

" The well-posedness of the variational formulation in Qx (£2) follows from the Lax-
Milgram Theorem 4.2.8 and from the Poincaré inequality of Proposition 2.1.66.
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| grad gh,ll720) = —(div Y, lan) + o, - 1 a0) 52

= —(divy,,|g,) + Z EW (Y "1 qe) 1721
1<U<K

= _(divymhb];z) + Z qvl;z|Fz <ym "n, 1>H1/2(F;z)'
1<t<K

On the finite-dimensional vector space @ ({2), all norms are equivalent, and

among them, ¢ — |lql[z2(0), ¢ = | gradqllrz(o) and ¢ = |(qr,)1<e<Klp;
1 < p < o0. Using the Cauchy-Schwarz inequality, one gets that

Il grad gy, || 120y < C{| divy,,|lr20) + Z (Y -1 1) vy |}
1<k<K

with C' > 0 independent of y,,,. Hence, lim,,,_, » ||q,’1;LHH1(Q) =0.

3. Setting now z,, = vy, — grad(¢®, + ¢.) € Hy(curl, 2), one has, by
construction, curlz,, = curly,, and divz,, = 0 in {2, and in addition,
(zm - m, 1)H1/2(pk) =0 for 1 < k < K. For the latter, given 1 < k < K, noting
that (grad ¢)),| grad gx) = 0 because Ag, = 0 in 2 and ¢, = 0, it follows
from the definition of ¢/, and integration by parts that:

0 = (y,,| grad ) — (grad ¢}, | grad q.) = (2| grad q;)

= <Zm 'n, (Jk>H1/2(p) = <Zm 'n, 1>H1/2(Fk)'

According to Theorem 3.4.1, there exists w,, € H! () such that z,, =
curlw,, in 2, with [[wn| gi0) < CllzmllL2(e) for C > 0 independent of

Zm. From the integration by parts
1zm |22 () = (2m| curlwy,) = (curl 2y [wi,) < || eurly,, || L2 llwml L2 o),

it follows that ||z z2(0) < C |l curly,,||L2(0) and limy, o [[2m || L2(0) = 0.
One concludes that lim,, o0 || 2m + grad(q), + ¢},)llz2(0) = 0, whereas by
definition, y,, = 2, +grad (¢S, +¢Z,), which contradicts the initial assumption
that [|y,,[/r2(2) = 1 for all m. [ |

A consequence of the first Weber inequality is that
(w, w') — (curl w| curlw’) + (div w| divw’)

+ Z (w ‘n, 1>H1/2(Fk) (w’ ‘n, 1>H1/2(Fk)
1<k<K

defines a scalar product on X y(f2), denoted by (-,-)x ,(¢), its associated
norm | - || x y () being equivalent to the H (curl, £2) N H(div, £2)-norm.

Theorem 3.4.4 In a domain 2, it holds that X n(£2) C. L*(£2).

Remark 3.4.5 Albeit the proof below is direct, its structure is similar to that
one of the proof of the first Weber inequality.
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Proof. Consider (y,,,)m a bounded sequence of X x(£2). Following the proof of
Theorem 3.4.3 and using the same notations, we build three sequences (¢2, ),
(¢L)m and (w,,)m such that y,, = curlw,, + grad(q¢®, + ¢.,) for all m, with
scalar potentials ¢°, and ¢/, defined as the solution to variational formulations
respectively set in Hg(£2) and Qn(£2), and w,, as a vector potential that
belongs to HZ,  (£2). Since one has

Zmuv

| grad g, |[2(0) < C' || divy,,[l22(0)
| grad ¢}, || L2(0) < C'{Ildivy,, llL2@) + Yichar [ Ym -7 Dempl},
lwm |l g o) < C'eurly,, |20

with ¢’ > 0 independent of m, the boundedness of the sequence (y,,)m im-
plies that the three sequences of potentials are bounded in H!(§2)-norm. Ob-
serve first that the potentials (¢l ),, belong to the finite-dimensional vec-
tor space Qn(£2), so one can extract a subsequence, still denoted by (g ),
that converges in H!(§2)-norm. Thanks to Proposition 2.1.43, one can extract
subsequences (with the same indices), still denoted by (i), and (w.,)m,
that converge in L?(£2) for the scalar potential, respectively in L?(£2) for the
vector potential. Let us prove now that both subsequences (grad ¢2,),, and
(curlw,y,),, converge in L*(12).

Going back to the definition of the scalar potentials (¢),)m and denoting
Yom = Y — Uns Qoun = q% — q°, one has, in particular,

Vg € Hy(2), (gradqy,,|gradq) = (y,,,|grad ) = —(divy,,,|9).
therefore, by taking ¢ = ¢2,,,, it follows that
lgrad gy, [ 720y < 11 div Ypmnllz2 () gmnllzz o)
< 2sup([| div y, [ 22 (2)) lgmnll 22 (2)-
So, (grad ¢,),, is a Cauchy sequence in L?(£2), and it converges in this space.

Note that curlw,, € Hy(curl,{?) with curl curlw,, = curly,,. Finally,
denoting w,y, = w,, — w,, we find, by integration by parts, that

| curlw,32i0) = (curly,, w.) < 2sup(]| curly,, || z2(0)) w22 o).

Then, (curlw,y,),, is a Cauchy, hence converging, sequence in L?(£2).
Recall that y,, = curlw,, + grad(q, + ¢l.), so we conclude that the subse-
quence (y,,)m converges in L*(12). [

3.5 Extraction of vector potentials — Vanishing normal
trace

We consider now the case of divergence-free fields of L*(£2) with vanishing
normal trace. As we already saw in §3.3 for elements of Z1({2), if the domain
{2 is not topologically trivial, one has to take cuts into account explicitly.
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Theorem 3.5.1 Let 2 be a domain such that (Top);—g or (Top)r=o is ful-
filled. Then, given v € L*(£2), it holds that

dive =0 in 12, Jw € Hy(curl, §2),
v-nr =0, — (divw =0, v =curlw. (3.10)
(v-m,1)x, =0, Vi (w-n,1)gi/2p,) =0, Vk

Moreover, w is unique, and there exists C' > 0 independent of v such that

”wHH(curl,Q) < c HUHLz(Q)-

Remark 3.5.2 Assuming that v writes v = curlw with w € Ho(curl, £2),
one has v € Ho(div, 2) according to Proposition 2.2.10. Now, using the func-
tions (7;)1<i<s as they are defined in Proposition 3.3.3, one obtains, by inte-
grating by parts twice ((3.6), then (2.20)), for each i,

(v-m,1)s, = Z(” “n, [Fils;) 5,

J

= (curlw, grad 7"1')L2(Q) = (curlwlgrad ;) = 0.

In the case when (Top)r—o is fulfilled, Z7(§2) = {0}, and there are no van-
ishing fluz conditions for the field v on the cuts.

Proof. We note that the vector potential w, if it exists, is unique. Indeed, if w,
and ws both fulfill all the conditions (3.10), then dw = wy — wy € X n(£2),
curléw = 0 and divéw = 0 in 2, with (0w - n,1) g1/2(p,) = 0, for all k.
Hence, dw = 0, so uniqueness follows.

Next, introducing the (closed) subspace of X y(2):

XN(Q)={feXn®2) : (f n,Vpgip) =0, 1 <k<K},
one can solve the variational formulation®

Find w € X% (2) such that
vw' € X4 (), (curlw|curlw’) + (divw|divw’) = (v| curl w’) *

By construction, one has (w-n, 1>H1/2(pk) =0, for 1 <k < K. For k=0, the
property is checked below.

Let us prove now that divw = 0 in £2. Given g € L?({2), there is one, and only
one, ¢ € H}(£2) such that Ag = g in §2. Define w~ = grad ¢ € Hy(curl, 2)
(cf. Proposition 2.2.10), with curlw™ = 0 in £2: one has divw™ = g € L*(§2),
so w~ € X n(£2). Then, proceeding as in the proof of Theorem 3.3.9, define
the column vector 8 with entries 8y = (w™ - n, 1>H1/2(1“e), 1< /¢ < K, and set

8 Noting that (w,w’) — (curlw|curlw’) + (divw|divaw’) is equal to the scalar
product (-, ) x y () on X5 (02), well-posedness simply stems from the Riesz The-
orem 4.2.1.
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w =w" =) .,k 0mgrad ¢y, where a = (@, ), solves the linear system
with the capacitance matrix Cae = 3. By construction, the field w’ belongs
to X§ (), with curlw’ = 0, divew’ = g in £2. Using this test function in
the variational formulation, one gets that (divw|g) = 0. This is true for all
g € L?(02), so that divw =0 in 2.

In particular, it follows that (w - n, 1) g1/2(p,y = (divw|1) = 0.

Let us prove next that curlw = v in (2. Because v-nr =0, f := curlw —v
belongs to Ho(div, £2) (cf. Proposition 2.2.10) and since divo = 0 in {2 by
assumption, one has div f =0 in 2.

Remark that D(£2) is a subset of X4 (£2), so one can take w’ € D(£2) and
use it as a test function in the variational formulation:

(curl f,w') = (f| curlw’) = (curl w| curlw’) — (v| curlw’) = 0.

Hence, curl f =0, and so f € Z1(£2). By assumption, one has (v-n, 1)y, =0
for all ¢ and, according to Remark 3.5.2, likewise for curl w, so it holds for f
too. Due to Proposition 3.3.13, we have f =0, i.e., curlw = v in (2.

Finally, using the first Weber inequality, we have [|w||2(o) < Cw || curlw||2(g),
so we conclude that

|wllzz(o) + [ curlwl| g2 (o) < (1 4+ Cw) [[v]L2(0)-
]

Thanks to the result of Theorem 3.5.1 regarding the extraction of vector
potentials for fields with vanishing normal trace, we can now derive interesting
properties of the function space

X7(2) := H(curl, 2) N Hy(div, 2).

The first property allows one to bound the L?(£2)-norm of elements of X 7(2),
similar to the Poincaré inequalities, and the second one is the compact imbed-
ding of X 7(£2) in L*(£2). Both results were first discovered by Weber [206].

Theorem 3.5.3 (Second Weber inequality) Let {2 be a domain such that
(Top)r=o or (Top)r>o is fulfilled. There exists Cyy, > 0 such that

Vy S XT(Q),

lyllz2(2) < Ci{ll curlylr2 o) + || divyl| L2 o) + Z {y -n,1)x,|}.
1<i<I

Proof. Let us proceed by contradiction: if the claim is not true, then

3(y,,)m € X7(2)N such that ¥Ym, 1Ymllzzo) =1,
H Curlym||L2(Q) + H leym||L2(Q) + Zlgig[ |<ym 'n, 1>E¢| < #4—1

Similarly to the proof of the first Weber inequality, we shall reach the contra-
diction in three steps:
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1. Let ¢, € H}

L »(£2) be the unique solution® to

Lo (§2) such that

{ Find ¢0, € H!
Vq € Hzlmv(ﬂ), (grad q9n| grad q) = (y,,| grad q)

Recall that y,, € Ho(div, £2). Taking ¢ = ¢°, above, one gets, by integrating
by parts and using the Cauchy-Schwarz inequality,

| grad gp, |72 < 1 divy,, |22 gl L22)-
Using the Poincaré-Wirtinger inequality, one gets that
| grad gn,llL2(2) < Clldivy, | 20),

with C' > 0 independent of y,,,. Hence, lim, oo || grad ¢p, || z2(0) = 0.
2. Let g2 € Qr(£2) be the unique solution to

Find ¢ € Qr(82) such that
Vi€ Qr(2), (gradd,,gradq)pe ) = (Y, gradq)pa o)

Choosing ¢ = ¢ and using the integration-by-parts formula (3.6), one finds
” grad q:z”i?(_q) = _(divymv qu)LQ(.Q) + Z <ym ‘n, [qi]21>21
1<i<T

—(divym,(j,i)Lz(g) + Z [ﬁ]ﬂl <ym "n, 1>E'L'
1<i<I

On the finite-dimensional vector space Q7 (£2), all norms are equivalent, and
among them, ¢ — [dll oy 4~ || graddllpee and 4 o |(dls )<<y,
1 < p < oo (see Proposition 3.3.13 for the last one). Using the Cauchy-
Schwarz inequality, one finds that

| graddZll o) < OV Y, 2o + S g -1 Ds )

1<i<I

with C' > 0 independent of y,,,. Hence, lim,, . [|grad ¢;; [ >(2) = 0.

3. Setting now z,, := y,, — grad ¢, — grad = € X r({2), one has, by con-
struction, curl z,, = curly,, and divz,, =0in 2, 2, -n =0 on I', and in
addition, (z,, -n, 1)y, =0 for 1 <4 < I. Indeed, for the basis functions (¢;);

9 Due to the Lax-Milgram Theorem 4.2.8 and to the Poincaré-Wirtinger inequal-
ity of Theorem 2.1.37 in H zlmv(Q), the variational formulation is well-posed. In
addition, one can obviously add the case of constant test functions ¢ = cst in the
variational formulation: (grad ¢, | grad cst) = 0 = (y,,| grad cst). It follows that
all test functions q € HI(Q) can be used, and hence one finds that A¢%, = div Yon
in Qandanq?n:ym-n:OonF.
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of Qr(£2), one has (grad q%g?gl\ciji) = 0, because div(g;;(iji) =01in {2 and

On(grad ¢;) = 0 on I'. On the other hand, it follows from the definition of ¢
and integration by parts (3.6) that, for 1 <i < I,

0= (ym7grad qi)L2(Q) - (grad (j,i,grad Qi)lﬂ(g) = (Zmagrad qi)L2(Q)

= Z (Zm -n,[Gi]z;) 2, = (Zm -1, 1) 5,
1<5<I

According to Theorem 3.5.1, there exists w,, € X n({2) such that z,, =
curlw,, in 2, with |[wn| Heur,2) < CllzmlL2(e) for C > 0 independent
of z,,. By integration by parts and with the help of the Cauchy-Schwarz in-
equality, one now finds that ||Zm||2Lz(Q) < |l curly,, |2 (o) lwml L2(2)- Thus,

[zmll2(0) < Cllcurly,, | 12(2) and limp, e [[2m||L2(0) = 0.

One concludes that limy, -« ||2m +grad ¢5), + grad ;|| £2() = 0, which con-
tradicts the assumption that [|y,,[/z2(2) = 1 for all m. [

A by-product of the second Weber inequality is that

(w,w") — (curlw| curlw’) + (divw|divw’) + Z (w-n, ), (w - n,1)s,
1<i<I

defines a scalar product on X 7(£2), denoted by (-, -) x ,.(2), its associated norm
| - lx;(02) being equivalent to the H (curl, 2) N H(div, 2)-norm.

Theorem 3.5.4 Let 2 be a domain such that (Top)r—o or (Top)r=o is ful-
filled. Tt holds that X () C. L*(£).

Proof. Let (y,,)m be a bounded sequence of X 7(£2). As in the proof of The-
orem 3.5.3, and using the same notations, we build sequences (¢2,), (42 )m

and (w,,)m, such that y,, = curlw,, + grad ¢®, + grad ¢ for all m, with
scalar potentials ¢¥, and ¢ defined as the solution to variational formula-
tions respectively set in H! () and QT(Q), and w,, as a vector potential
that belongs to X n(£2). Moreover, the boundedness of (y,, ) implies that
all three sequences are bounded in those function spaces.

The potentials (§2;), belong to the finite-dimensional vector space Qr(12),
so one can extract a subsequence, still denoted by (q.; )., that converges in
H'(£2)-norm. Next, thanks to Proposition 2.1.43, one can extract a subse-
quence, denoted by (g2, )., that converges in L?(§2). According to the com-
pact imbedding of X y(£2) in L*(£2) (Theorem 3.4.4), one can finally extract
a subsequence, denoted by (W, )m, that converges in L*(£2).

Let us prove now that the subsequences (grad ¢9,),, and (curl w,,),, converge
in L*(£2). Denoting y,,,,, == Y,, — Y,,, ¢°, = ¢°, — ¢°, one has

Vg€ H.,,(92), (gradq),,|gradq) = —(divy,,,q).

By taking ¢ = ¢¥,,,, it follows that
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' grad g, 1720y < 2sup(]| divy, | 22(2) [gmnll22(2)-

So, (grad ¢°,),, is a Cauchy sequence in L?(£2), and it converges in this space.
Recall that curl curlw,, = curly,, € LQ(Q), so denoting w,, = Wy, — Wy,
we find, by one last integration by parts, that

| Curlwmn”%ﬂ(n) = (curly,,, |wma,) < 2sup(|| curl ymHL2((2)) ||'wmn||L2(Q)'

Then, (curlw,y,),, is a Cauchy, hence converging, sequence in L?(£2).

As y,, = curlw,, + grad ¢%, + grad ¢2;, we conclude that the subsequence
(y,,)m converges in L*(£2). [ |

3.6 Extraction of vector potentials — Complements

In the proofs of the results of §83.3-3.5, we remark that the fundamental re-
sults (extraction of scalar potentials at Theorem 3.3.1, respectively of vector
potentials at Theorem 3.4.1) are obtained by continuation to R?, and direct
estimates of the norms. On the other hand, all the other proofs rely on solving
(well-posed) variational formulations, for which norm estimates are simply a
consequence of the Lax-Milgram Theorem 4.2.8.

To obtain the compact imbedding results, the proofs — d la Weber [206] — that
we proposed are obtained via the extraction of scalar and vector potentials.
In Chapter 6, we propose another, indirect proof, which relies on the continu-
ous imbeddings of X y(£2) (§6.1.6) and X 7(£2) (§6.2.6) into fractional-order
Sobolev spaces H*({2), for some s > 0 that depends only on the geometry
of the domain (2. The additional knowledge on the regularity of elements of
X n(£2) and X (£2) will be used there. The compact imbedding results are
then consequences of Proposition 2.1.43.

If one is looking for a vector potential that does not necessarily belong
to H'(£2) for divergence-free fields, one has the result below, which “sym-
metrizes” the roles of X7 (£2) and X v (£2).

Theorem 3.6.1 Let 2 be a domain such that (Top);—g or (Top)rso is ful-
filled. Then, given v € L*(£2), it holds that

divo =0 in 2 Fw € Ho(div, 2),
(v-1,1) 1,2 S Vk} = § divw =0, v =curlw. (3.11)
» L/ HY/2(I,) ) ('w-n,1>2i:0, Vi

Moreover, w is unique, and there ezists C' > 0 independent of v such that

”wHH(curl,Q) < c H’UHLz(Q).
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Remark 3.6.2 In the case when (Top)r—o is fulfilled, the result holds without
the vanishing flux conditions on the cuts for the vector potential! In this case,

we recall that Zp(§2) is reduced to {0} (Proposition 3.3.11).

Proof. The uniqueness of the vector potential w, if it exists, follows from the
second Weber inequality. Indeed, if w; and ws, both fulfill all the conditions
(3.11), then dw := wy — w2 € X (), curldw = 0 and divdw = 0 in (2,
with (dw - n,1)s, =0, for all . Hence, w = 0, so uniqueness follows.

Next, introducing the (closed) subspace of X1 (£2):

X7(2)={feXr(2) : (f-n1)5,=0,1<i<I},

one can solve the variational formulation'®

Find w € X7.(£2) such that
V' € X7(92), (curlw|curlw’) + (divw| divw’) = (v|curlw’)

By construction, one has (w-n,1)s, =0, for 1 <i<T.

Let us prove now that divaw = 0 in {2, which amounts to (divw|g) = 0 for
all g € L?(£2). First, as w - n;p = 0, we have (divw|l) = 0. Next, given
g € L2, ,(£2), there is one, and only one, ¢ € H.,,, (£2) such that'’ Ag =g
in 2 with d,qr = 0. Define w™ = grad q € X1 (2), with curlw™ = 0 and
divw™ =g € L*(£2). Then, set w' =w~ — >, ., ., (w™ - n,1)x,gradp;. By
construction, the field w’ belongs to X%(Q), with curlw’ =0, divw’ = g in
§2. Using it in the variational formulation, one gets that (divw|g) = 0.

Let us prove next that curlw = v in 2. By assumption, dive = 0 in {2, so
the vector field f := curlw — v belongs to H (div, 2) with div f =0 in (2.
Remark that D(f2) is a subset of X7(£2) but not of X7 (). However,
as above, one can take w~ € D(f2) and build w' = w™ — Y7, . (w™ -

n, 1)y, grad p; with the same divergence and curl and use it as a test func-
tion:

(curl f,w™) = (f| curlw’) = (curl w| curlw’) — (v| curlw’) = 0.

Hence, curl f = 0 in {2 and, in particular, f € H(curl, 2).
To prove that f € Hy(curl, £2), that is f x n = 0 in H~*/2(I") (see Theo-
rem 2.2.24), one has to check that (f x n,g)g/2) =0 for all g € H'(0).

19 The form (w,w’) ~ (curl w| curl w’)+(div w| divw’) is equal to the scalar prod-
uct (-, *)x,(2) on X7 (£2), so well-posedness stems from the Riesz Theorem 4.2.1.
1 The problem is equivalent to the variational formulation

{ Find q € H.,,,(82) such that
Vq' € H.pmy(£2), (gradq|gradq’) = —(gl¢)

This variational formulation is well-posed, cf. the Lax-Milgram Theorem 4.2.8

and the Poincaré-Wirtinger inequality of Theorem 2.1.37 in H1,,,(§2¢).
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With the help of the integration-by-parts formula (2.27) and bearing in mind
that curl f = 0 in (2, this amounts to checking that (f|curlg) = 0 for all
g € H'(Q). For that, let ¢ € H.,,, (£2) be the solution to the variational
formulation

Find g € HL,,,(£2) such that
vq' € H.,,,(52), (grad g|gradq') = (g|gradq’) -

By construction, the field w~ := g — grad ¢ € L*({2), with curlw~ = curlg
and divw™ =0 in Q,ﬂl\c_i/w’ -m = 0 on I'. Once again, the field w’ = w™ —
Y oi<icr(w™ -m, 1) 5, grad p; can be used as a test function in the variational
formulation to find

(f|curlg) = (f| curlw’) = (curlw| curl w’) — (v| curlw’) = 0.

Hence, f belongs to Zx(£2). But we know from Remark 3.4.2 that (curl w -
1, 1) iy = 0, forall k, so (f-n, 1) g/2( ) = 0 follows again for all k by the
assumption on v. Due to Proposition 3.3.10, we have f =0, i.e., curlw = v
in £2.

Lastly, we know that [lwl|2(p) < Cyy || curlw|[gz2(p) by using the second
Weber inequality, so we conclude that

[wllz2(0) + [ curlw||p20) < (1+ Ciy) vl L2(0)-
|

On the other hand, one can prove a more precise result about the existence
of H'(£2) vector potentials. Namely, that one can choose them with vanish-
ing normal trace. For that, we introduce a new family of domains, defined
by Birman and Solomyak [50]. As particular cases, smooth domains, curved
polyhedra and axisymmetric domains all belong to this new family.

Definition 3.6.3 The domain {2 is said to be of the A-type if, for any x €
012, there exists a neighbourhood V of = in R®, and C? diffeomorphism that
transforms 20V into one of the following types, where (x1,x2,3) denote the
Cartesian coordinates and (p,w) € RT x S? the spherical coordinates in R3:

1. [x1 > 0], d.e., @ is a regular point;

2. [x1 >0, xo > 0], i.e., x is a point on a salient (outward) edge;

3. R3\ [x1 >0, w3 > 0], i.e., © is a point on a reentrant (inward) edge;

4.p >0, w e f?], where 2 C 82 is a topologically trivial domain. In
particular, if 92 is smooth, x is a conical vertex; if 02 is made of arcs

of great circles, x is a polyhedral vertex.

In a domain of the A-type, one can match the normal traces of H'(£2) vector
fields with the traces of the normal derivative of H?(£2) scalar fields [50].

Lemma 3.6.4 Let 2 be a domain of the A-type. For any w € H' (), there
exists ¢ € H*(82) such that
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dq

gyt =w nr and gz e) < Cllwlle o),

where C' > 0 is independent of w.

Theorem 3.6.5 Let 2 be a domain of the A-type. Then, given v € L*(12),
it holds that

divvo =0 in .Q, E|’LU€H1(Q), B
<v'n51>H1/2(Fk) :Ov Vk} = {’U]TI,IF :O, ’l)—curl'w. (312)

Furthermore, there exists C > 0 independent of v such that
w2y < ClvlL2o)-

Proof. Assume v = curl w, with w € Hl(Q), and w-nr = 0. Then, dive =
0, and it is proven as before that (v - n,1)g1/2(p,) =0, for 0 <k < K.
Conversely, we know from Theorem 3.4.1 that there exists y € H"(£2) such
that v = curly. Then, according to Lemma 3.6.4, one can build ¢ € H?(2)
such that 0,,¢ = y-n on I'. Therefore, w = y—grad ¢ is a vector potential that
belongs to H' (£2), with w-n|r = 0. Moreover, the bound on the H(£2)-norm
of w stems from the bounds on ||yl g1 () and [|q|| z2(2)-

If we assume that {2 is topologically trivial, then, for divergence-free fields

with vanishing normal trace, one can propose vector potentials that belong to
H(92).

Theorem 3.6.6 Let (2 be a topologically trivial domain. Then, given v €
L?(02), it holds that

dive =0 i Q;} = Jwe Hé(g% v = curl w.
v-nr=0

Furthermore, there exists C > 0 independent of v such that

lwllgr(2) < Cllvlizz (o)

Proof. Let v be an element of H(div, {2) such that dive =0 in £2.

Define v as its continuation by zero to O. Then, according to Proposition
2.2.30, one has v € H(div,O), and moreover divo = 0 in O. Now, according
to Theorem 3.4.1, there exists a vector potential § € H'(O) such that & =
curly in O and ||y[| g1 (o) < C|v]|p2(y) with C' > 0 independent of v.

Next, we further define ¢’ as the restriction of g to O\ £2: one has curly’ = 0.
By assumption, {2, and as a consequence, O \ §2, are topologically trivial.
Therefore, thanks to Theorem 3.3.1 applied to each connected subset (2,
0 <k < K,of O\ £, there exists a scalar potential ¢’ in H(O\ {2) such that
y' =gradq in O\ 2. B