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Abstract: Weighting the p-values is a well-established strategy that improves the power of
multiple testing procedures while dealing with heterogeneous data. However, how to achieve
this task in an optimal way is rarely considered in the literature. This paper contributes to
fill the gap in the case of group-structured null hypotheses, by introducing a new class of
procedures named ADDOW (for Adaptive Data Driven Optimal Weighting) that adapts both
to the alternative distribution and to the proportion of true null hypotheses. We prove the
asymptotical FDR control and power optimality among all weighted procedures of ADDOW,
which shows that it dominates all existing procedures in that framework. Some numerical
experiments show that the proposed method preserves its optimal properties in the finite
sample setting when the number of tests is moderately large.
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1. Introduction

Recent high-throughput technologies bring to the statistical community new type of data being
increasingly large, heterogeneous and complex. Addressing significance in such context is partic-
ularly challenging because of the number of questions that could naturally come up. A popular
statistical method is to adjust for multiplicity by controlling the False Discovery Rate (FDR),
which is defined as the expected proportion of errors among the items declared as significant.
Once the amount of possible false discoveries is controlled, the question of increasing the power,
that is the amount of true discoveries, arises naturally. In the literature, it is well-known that the
power can be increased by clustering the null hypotheses into homogeneous groups. The latter can
be derived in several ways:

• sample size: a first example is the well-studied data set of the Adequate Yearly Progress
(AYP) study (Rogosa, 2005), which compares the results in mathematics tests between
socioeconomically advantaged and disadvantaged students in Californian high school. As
studied by Cai and Sun (2009), ignoring the sizes of the schools tends to favor large schools
among the detections, simply because large schools have more students and not because the
effect is stronger. By grouping the schools in small, medium, and large schools, more rejec-
tions are allowed among the small schools, which increases the overall detection capability.
This phenomenon also appears in more large-scale studies, as in GWAS (Genome-Wide As-
sociation Studies) by grouping hypotheses according to allelic frequencies, (Sun et al., 2006)
or in microarrays experiments by grouping the genes according to the DNA copy number
status (Roquain and van de Wiel, 2009). Common practice is generally used to build the
groups from this type of covariate.

• spatial structure: some data sets naturally involve a spatial (or temporal) structure into
groups. A typical example is neuroimaging: in Schwartzman, Dougherty and Taylor (2005),
a study compares diffusion tensor imaging brain scans on 15443 voxels of 6 normal and 6
dyslexic children. By estimating the densities under the null of the voxels of the front and
back halves of the brain, some authors highlight a noteworthy difference which suggests that
analysing the data by making two groups of hypotheses seems more appropriate, see Efron
(2008) and Cai and Sun (2009).

• hierarchical relation: groups can be derived from previous knowledge on hierarchical struc-
ture, like pathways for genetic studies, based for example on known ontologies (see e.g.
The Gene Ontology Consortium (2000)). Similarly, in clinical trials, the tests are usually
grouped in primary and secondary endpoints, see Dmitrienko, Offen and Westfall (2003).

In these examples, while ignoring the group structure can lead to overly conservative procedures,
this knowledge can easily be incorporated by using weights. This method can be traced back to
Holm (1979) who presented a sequentially rejective Bonferroni procedure that controls the Family-
Wise Error Rate (FWER) and added weights to the p-values. Weights can also be added to the
type-I error criterion instead of the p-values, as presented in Benjamini and Hochberg (1997) with
the so-called weighted FDR. Blanchard and Roquain (2008) generalized the two approaches by
weighting the p-values and the criterion, with a finite positive measure to weigh the criterion (see
also Ramdas et al. (2017) for recent further generalizations). Genovese, Roeder and Wasserman
(2006) introduced the p-value weighted BH procedure (WBH) which has been extensively used
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afterwards with different choices for the weights. Roeder et al. (2006); Roeder and Wasserman
(2009) have built the weights upon genomic linkage, to favor regions of the genome with strong
linkage. Hu, Zhao and Zhou (2010) calibrated the weights by estimating the proportion of true
nulls inside each group (procedure named HZZ here). Zhao and Zhang (2014) went one step further
by improving HZZ and BH with weights that maximize the number of rejections at a threshold
computed from HZZ and BH. They proposed two procedures Pro1 and Pro2 shown to control the
FDR asymptotically and to have a better power than BH and HZZ.

However, the problem of finding optimal weights (in the sense of achieving maximal averaged
number of rejected false nulls) has been only scarcely considered in the literature. For FWER
control and Gaussian test statistics, Wasserman and Roeder (2006) designed oracle and data-
driven optimal weights, while Dobriban et al. (2015) considered a Gaussian prior on the signal. For
FDR control, Roquain and van de Wiel (2009) and Habiger (2014) designed oracle optimal weights
by using the knowledge of the distribution under the alternative of the hypotheses. Unfortunately,
this knowledge is not reachable in practice. This leads to the natural idea of estimating the oracle
optimal weights by maximizing the number of rejections. This idea has been followed by Ignatiadis
et al. (2016) with a procedure called IHW. While they proved that IHW controls asymptotically
the FDR, its power properties have not been considered. In particular, it is unclear whether
maximizing the overall number of rejections is appropriate in order to maximize power. Other
recent works (Li and Barber, 2016; Ignatiadis and Huber, 2017; Lei and Fithian, 2018) suggest
weighting methods (with additional steps or different threshold computing rules) but they don’t
address the power question theoretically either.

In this paper, we present a general solution to the problem of optimal data-driven weighting of
BH procedure in the case of grouped null hypotheses. The new class of procedures is called AD-
DOW (for Adaptive Data-Driven Optimal Weighting). It relies on the computation of weights that
maximize the number of detections at any rejection threshold, combined with the application of a
step-up procedure with those weights. This is similar to IHW, however, by taking a larger weight
space thanks to the use of estimators of true null proportion in each group, we allow for larger
weights, hence more detections. With mild assumptions, we show that ADDOW asymptotically
controls the FDR and has optimal power among all weighted step-up procedures. Interestingly, our
study shows that the heterogeneity with respect to the proportion of true nulls should be taken
into account in order to attain optimality. This fact seems to have been ignored so far: for instance
we show that IHW has optimality properties when the true nulls are evenly distributed across
groups but we also show that its performance can quickly deteriorate otherwise with a numerical
counterexample.

In Section 2, we present the mathematical model and assumptions. In Section 3, we define what
is a weighting step-up procedure and discuss some procedures of the literature. In Section 4, we
introduce ADDOW. Section 5 provides our main theoretical results. Our numerical simulations are
presented in Section 6, while the overfitting problem is discussed in Section 7 with the introduction
of a variant of ADDOW. We conclude in Section 8 with a discussion. The proofs of the two main
theorems are given in Section 9 and more technical results are deferred to appendix. Let us
underline that an effort has been made to make the proofs as short and concise as possible, while
keeping them as clear as possible.

In all the paper, the probabilistic space is denoted (Ω,A,P). The notations
a.s.−→ and

P−→ stand
for the convergence almost surely and in probability.

2. Setting

2.1. Model

We consider the following stylized grouped p-value modeling: let G ≥ 2 be the number of groups.
Let us emphasize that G is kept fixed throughout the paper. Because our study will be asymptotic
in the number of tests m, for each m we assume that we test mg hypotheses in group g ∈
{1, . . . , G}, where the mg are non-decreasing integer sequences depending on m (the dependence
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is not written for conciseness) and such that
∑G
g=1mg = m. In each group g ∈ {1, . . . , G}, let(

Hg,1, . . . ,Hg,mg

)
be some binary variables corresponding to the null hypotheses to be tested in

this group, with Hg,i = 0 if it is true and Hg,i = 1 otherwise. Consider in addition
(
pg,1, . . . , pg,mg

)
some random variables in [0, 1] where each pg,i corresponds to the p-value testing Hg,i. Note also
mg,1 =

∑mg
i=1Hg,i the number of false nulls and mg,0 = mg − mg,1 the number of true nulls in

group g.
We make the following marginal distributional assumptions for pg,i.

Assumption 2.1. If Hg,i = 0, pg,i follows a uniform distribution on [0, 1].

We denote by U : x 7→ 1{x>0} ×min(x, 1) its cumulative distribution function (c.d.f.).

Assumption 2.2. If Hg,i = 1, pg,i follows a common distribution corresponding to c.d.f. Fg,
which is strictly concave on [0, 1].

In particular, note that the p-values are assumed to have the same alternative distribution
within each group. Note that the concavity assumption is mild (and implies continuity on R as

proven in Lemma A.1 for completeness). Furthermore, by concavity, x 7→ Fg(x)−Fg(0)
x−0 has a right

limit in 0 that we denote by fg(0
+) ∈ [0,∞], and x 7→ Fg(x)−Fg(1)

x−1 has a left limit in 1 that we

denote by fg(1
−) ∈ [0,∞).

Assumption 2.3. There exists πg > 0 and πg,0 > 0 such that for all g, mg/m → πg and
mg,0/mg → πg,0 when m→∞. Additionally, for each g, πg,1 = 1− πg,0 > 0.

The above assumption means that, asymptotically, no group, and no proportion of signal or
sparsity, is vanishing. We denote π0 =

∑
g πgπg,0 the mean of the πg,0’s and denote the particular

case where the nulls are evenly distributed in each group by (ED):

πg,0 = π0, 1 ≤ g ≤ G. (ED)

Let us finally specify assumptions on the joint distribution of the p-values.

Assumption 2.4. The p-values are weakly dependent within each group:

1

mg,0

mg∑
i=1

1{pg,i≤t,Hg,i=0}
P−→ U(t), t ≥ 0, (2.1)

and
1

mg,1

mg∑
i=1

1{pg,i≤t,Hg,i=1}
P−→ Fg(t), t ≥ 0. (2.2)

This assumption is mild and classical, see Storey, Taylor and Siegmund (2004). Note that weak
dependence is trivially achieved if the p-values are independent, and that no assumption on the
p-value dependence accross groups is made. Finally note that there is a hidden dependence in m
in the joint distribution of the p-values (pg,i) 1≤g≤G

1≤i≤mg
but that does not impact the remaining of

the paper as long as (2.1) and (2.2) are satisfied.

2.2. πg,0 estimation

Assumption 2.5. For each g, we have at hand an (over-)estimator π̂g,0 ∈ (0, 1] of mg,0/mg such

that π̂g,0
P−→ π̄g,0 for some π̄g,0 ≥ πg,0.

Let also π̄0 =
∑
g πgπ̄g,0. In the model of Section 2.1, this assumption can be fulfilled by using

the estimators introduced in Storey, Taylor and Siegmund (2004):

π̂g,0(λ) =
1− 1

mg

∑mg
i=1 1{pg,i≤λ} + 1

m

1− λ
, (2.3)
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for a given parameter λ ∈ (0, 1) let arbitrary (the 1
m is here just to ensure π̂g,0(λ) > 0). It is easy

to deduce from (2.1) and (2.2) that 1
mg

∑mg
i=1 1{pg,i≤λ}

P−→ πg,0λ+ πg,1Fg(λ), which provides our

condition:

π̂g,0(λ)
P−→ πg,0 + πg,1

1− Fg(λ)

1− λ
≥ πg,0.

While (π̄g,0)g is let arbitrary in our setting, some particular cases will be of interest in the
sequel. First is the Evenly Estimation case (EE) one where

π̄g,0 = π̄0, 1 ≤ g ≤ G. (EE)

In that case, our estimators all share the same limit, and doing so they do not take in account
the heterogeneity with respect to the proportion of true nulls. Case (EE) is relevant when the
proportion of true nulls is homogeneous across groups, that is, when (ED) holds. A particular
subcase of (EE) is the Non Estimation case (NE) where:

π̂g,0 = 1 which implies π̄g,0 = 1, 1 ≤ g ≤ G. (NE)

Case (NE) is basically the case where no estimation is intended, and the estimators are simply
taken equal to 1.

Let us also introduce the Consistent Estimation case (CE) for which the estimators π̂g,0 are
assumed to be all consistent:

π̄g,0 = πg,0, 1 ≤ g ≤ G. (CE)

While this corresponds to a favorable situation, this assumption can be met in classical situations,
where fg(1

−) = 0 and λ = λm tends to 1 slowly enough in definition (2.3), see Lemma A.2 in
Section A. The condition fg(1

−) = 0 is called ”purity” in the literature. It has been introduced in
Genovese and Wasserman (2004) and then deeply studied, along with the convergence of Storey
estimators, in Neuvial (2013).

Finally, the main case of interest is the Multiplicative Estimation case (ME) defined as the
following:

∃C ≥ 1, π̄g,0 = Cπg,0, 1 ≤ g ≤ G. (ME)

Note that the constant C above cannot depend on g. Interestingly, the (ME) case covers the (CE)
case (in this respect, C = 1) and also the case where (ED) and (EE) both hold (in this respect,
C = π̄0

π0
). So the (ME) case can be viewed as a generalization of previous cases.

2.3. Criticality

Depending on the choice of α, multiple testing procedures may make no rejection at all when m
tends to ∞. This case is not interesting and we should focus on the other case. To this end, Chi
(2007) introduced the notion of criticality: they defined some critical alpha level, denoted α∗, for
which BH procedure has no asymptotic power if α < α∗. Neuvial (2013) generalized this notion
for any multiple testing procedure (see Section 2.5 therein) and also established a link between
criticality and purity.

In Section A, Definition A.1, we define α∗ in our heterogeneous setting and will focus in our
results on the supercritical case.

Assumption 2.6. The target level α lies in (α∗, 1).

Lemma A.3 states that α∗ < 1 so such an α always exists. While the formal definition of α∗ is
reported to the appendix for the sake of clarity, let us emphasize that it depends on the parameters
of the model, that are (Fg)g, (πg)g and (πg,0)g, and on the parameters of the chosen estimators,
that are (π̄g,0)g.
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2.4. Leading example

While our framework allows a general choice for Fg, a canonical example that we have in mind is
the Gaussian one-sided framework where the p-values are derived from Gaussian test statistics.

Formally, we assume that pg,i = Φ̄(Xg,i), where Φ̄(z) = P (Z ≥ z) for Z ∼ N (0, 1), and

X = (X1,1, . . . , X1,m1
, . . . , Xg,1, . . . , Xg,mg )

is a Gaussian vector with distribution N (µ,Σ). Here,

µ = (µ1,1, . . . , µ1,m1 , . . . , µG,1, . . . , µG,mG),

with µg,i = 0 if Hg,i = 0 and µg,i = µg if Hg,i = 1, and we assume that Σj,j = 1 for all 1 ≥ j ≥ m.
Hence Xg,i ∼ N (0, 1) under the null, and Xg,i ∼ N (µg, 1) under the alternative.

In this case, Assumption 2.1 is fulfilled, and

Fg(·) = Φ̄
(
Φ̄−1(·)− µg

)
,

with derivative
fg(·) = exp

(
µg

(
Φ̄−1(·)− µg

2

))
> 0,

hence Fg is strictly concave and Assumption 2.2 is also fulfilled. Furthermore we easily check that
fg(0

+) =∞, so α∗ = 0 and fg(1
−) = 0 which means that this framework is supercritical (α∗ = 0,

see Definition A.1) with purity and then can achieve consistent estimation (CE) with additional
independence assumptions.

Two particular subcases of interest arise when Σ has a particular form and can be written as
Σ(1) 0 . . . . . . . . . . . . 0
0 Σ(2) 0 . . . 0
...

...
. . .

...
...

0 . . . 0 Σ(G−1) 0
0 . . . . . . . . . 0 Σ(G)

 ,

where Σ(g) is a square matrix of size mg. The first subcase is when Σ(g) is the identity matrix.
In this case, the p-values are all independent and Assumption 2.4 is fulfilled by the law of strong
numbers. The second subcase is when Σ(g) is a Toeplitz matrix with

(
Σ(g)

)
j,k

= 1
|j−k|+1 . In

this case, Assumption 2.4 is also fulfilled (see e.g. Delattre and Roquain, 2016, Proposition 2.1,
Equation (LLN-dep) and Theorem 3.1).

2.5. Criterion

The set of indices corresponding to true nulls is denoted by H0, that is (g, i) ∈ H0 if and only if
Hg,i = 0, and we also denote H1 = H0

c.
In this paper, we define a multiple testing procedure R as a set of indices that are rejected:

pg,i is rejected if and only if (g, i) ∈ R. The False Discovery Proportion (FDP) of R, denoted by
FDP(R), is defined as the number of false discoveries divided by the number of rejections if there
are any, and 0 otherwise:

FDP(R) =
|R ∩H0|
|R| ∨ 1

.

We denote FDR(R) = E [FDP(R)] the FDR of R. Its power, denoted Pow(R), is defined as the
mean number of true positives divided by m:

Pow(R) = m−1E [|R ∩H1|] .

Note that our power definition is slightly different than the usual one for which the number of
true discoveries is divided by m1 =

∑
gmg,1 instead of m. This simplifies our expressions (see
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Section 9.1) and does not have any repercussion because the two definitions differ only by a
multiplicative factor converging to 1− π0 ∈ (0, 1) when m→∞.

Finally, let us emphasize that the power is the (rescaled) number of good rejections, that is,
the number of rejected hypotheses that are false. The power is different from the number of total
rejections, this distinction is fundamental and will be discussed all along this paper (like, for
example, when discussing Heuristic 3.1, or in the simulations of Section 6.4).

3. Weighting

3.1. Weighting the BH procedure

Say we want to control the FDR at level α. Assume that the p-values are arranged in increasing

order p(1) ≤ . . . ≤ p(m) with p(0) = 0, the classic BH procedure consists in rejecting all pg,i ≤ α k̂
m

where k̂ = max
{
k ≥ 0 : p(k) ≤ α k

m

}
.

Take a nondecreasing function h defined on [0, 1] such that h(0) = 0 and h(1) ≤ 1, we de-
note I(h) = sup {u ∈ [0, 1] : h(u) ≥ u} . Some properties of the functional I(·) are gathered in
Lemma A.4, in particular h (I(h)) = I(h). We now reformulate BH with the use of I(·), because
it is more convenient when dealing with asymptotics. Doing so, we follow the formalism notably
used in Roquain and van de Wiel (2009) and Neuvial (2013). Define the empirical function

Ĝ : u 7→ m−1
G∑
g=1

mg∑
i=1

1{pg,i≤αu},

then k̂ = m×I(Ĝ). This is a particular case of Lemma A.5. Note that Ĝ(u) is simply the number
of p-values that are less than or equal to αu, divided by m.

The graphical representation of the two points of view for BH is depicted in Figure 1 with
m = 10. The p-values are plotted on the right part of the figure along with the function k 7→ αk/m

and we see that the last p-value under the line is the sixth one. On the left, the function Ĝ
corresponding to these p-values is displayed alongside the identity function, with the last crossing
point being located between the sixth and seventh jumps, thus I(Ĝ) = 6/m and 6 p-values are
rejected.

The weighted BH (WBH) with weight vector w ∈ RG+ is defined by computing

Ĝw : u 7→ m−1
G∑
g=1

mg∑
i=1

1{pg,i≤αuwg}

and rejecting all pg,i ≤ αI (Gw)wg. We denote it WBH(w). Note that w is authorized to be
random, hence it can be computed from the p-values. In particular, BH = WBH(1) where 1 =
(1, . . . , 1) ∈ RG+.

Following Roquain and van de Wiel (2009), to deal with optimal weighting, we need to further
generalize WBH into a multi-weighted BH (MWBH) procedure by introducing a weight function
W : [0, 1]→ RG+, which can be random, such that the following function:

ĜW : u 7→ m−1
G∑
g=1

mg∑
i=1

1{pg,i≤αuWg(u)}, (3.1)

is nondecreasing. The resulting procedure rejects all the p-values such that pg,i ≤ αûWWg(ûW )
and is denoted MWBH(W ) where, for the rest of the paper, we denote

ûW = I
(
ĜW

)
, (3.2)

and name it the step-up threshold. One different weight vector W (u) is associated to each u, hence
the ”multi”-weighting. Note that the class of MWBH procedures is a straightforward generalization

imsart-generic ver. 2014/10/16 file: Durand2018v2.tex date: March 12, 2019



G. Durand/Adaptive p-value weighting with power optimality 8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fig 1: The BH procedure applied to a set of 10 p-values. Right plot: the p-values and the function k → αk/m.

Left plot: identity function and Ĝ. Each plot shows that 6 p-values are rejected.

of the class of WBH procedures because for any weight vector w, w can be seen as a constant
weight function u 7→ w and Ĝw is nondecreasing.

Note that, there is a simple way to compute ûW . For each r between 1 and m denote the

W (r/m)-weighted p-values p
[r]
g,i = pg,i/Wg(r/m) (with the convention pg,i/0 = ∞), order them

p
[r]
(1) ≤ . . . ≤ p

[r]
(m) and note p

[r]
(0) = 0. Then ûW = m−1 max

{
r ≥ 0 : p

[r]
(r) ≤ α

r
m

}
(this is Lemma A.5).

As in previous works (see e.g. Genovese, Roeder and Wasserman, 2006 or Zhao and Zhang,
2014), in order to achieve a valid FDR control, these procedures should be used with weights that
satisfy some specific constraints. The following weight spaces will be used in the following of the
paper:

K̂ =

{
w ∈ RG+ :

∑
g

mg

m
π̂g,0wg ≤ 1

}
, (3.3)

K̂NE =

{
w ∈ RG+ :

∑
g

mg

m
wg ≤ 1

}
. (3.4)

Note that K̂ may appear unusual because it depends on the estimators π̂g,0, however it is com-

pletely known and usable in practice. Some intuition about the choice of K̂ is given in next section.
Note also that K̂ = K̂NE in the (NE) case.

Finally, for a weight function W and a rejection threshold u ∈ [0, 1], we denote by Ru,W the
double indexed procedure rejecting the p-values less than or equal to αuWg(u), that is Ru,W =

{(g, i) : pg,i ≤ αuWg(u)}. By (3.1), note that ĜW (u) = m−1 |Ru,W | (which means that ĜW (u)
is the number of rejections of Ru,W , divided by m) and that MWBH(W ) can also be written as
RûW ,W .
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3.2. Choosing the weights

Take W and u, and let P
(m)
W (u) = Pow (Ru,W ). We have

P
(m)
W (u) = m−1E

[
G∑
g=1

mg∑
i=1

1{pg,i≤αuWg(u),Hg,i=1}

]

=

G∑
g=1

mg,1

m
Fg (αuWg(u)) .

Note that these relations are valid only if W and u are deterministic. In particular, they are not
valid when used a posteriori with a data-driven weighting and u = ûW .

In Roquain and van de Wiel (2009), the authors define the oracle optimal weight function W ∗or
as:

W ∗or(u) = arg max
w∈K̂NE

P (m)
w (u). (3.5)

Note that they defined W ∗or only in case (NE), but their definition easily extends to the general
case as above, by replacing K̂NE by K̂. They proved the existence and uniqueness of W ∗or when
both (ED) and (NE) hold and that, asymptotically, MWBH(W ∗or) controls the FDR at level π0α
and has a better power than every MWBH(w(m)) for w(m) ∈ K̂NE some deterministic weight
vectors satisfying a convergence criterion.

However, computing W ∗or requires the knowledge of the Fg, not available in practice, so the

idea is to estimate W ∗or with a data driven weight function Ŵ ∗ and then apply MWBH with this
random weight function. For this, consider the functional defined by, for any (deterministic) weight
function W and u ∈ [0, 1]:

G
(m)
W (u) = E

[
ĜW (u)

]
=

G∑
g=1

(mg,0

m
U(αuWg(u)) +

mg,1

m
Fg(αuWg(u))

)
= P

(m)
W (u) +H

(m)
W (u), (3.6)

where

H
(m)
W (u) =

G∑
g=1

mg,0

m
U(αuWg(u)).

G
(m)
W (u) is the mean ratio of rejections for the procedure rejecting each pg,i ≤ αuWg(u). P

(m)
W (u) is

the rescaled mean of the number of true positives (i.e. the power) of this procedure while H
(m)
W (u)

is the rescaled mean of the number of its false positives.

Heuristic 3.1. Maximizing G
(m)
W (u) should be close to maximizing P

(m)
W (u).

Indeed, consider weight functions W such that
∑
g
mg,0
m Wg(u) = 1 and then replace U(x) by x

for all x ∈ R+ (whereas U(x) = x only holds for x ≤ 1), thenH
(m)
W (u) becomes αu

∑
g
mg,0
m Wg(u) =

αu and it does not depend on the weights. So P
(m)
W (u) is the only term depending on W in (3.6)

and maximizing P
(m)
W (u) or G

(m)
W (u) is the same.

Now, we can evaluate the constraint we just put on W by estimating
mg,0
m =

mg
m

mg,0
mg

by
mg
m π̂g,0

(which leads to the weight space K̂ defined in equation (3.3)), and G
(m)
w (u) can be easily estimated

by the (unbiased) estimator Ĝw(u). As a result, maximizing the latter in w should lead to good
weights, not too far from W ∗or(u).

Zhao and Zhang (2014) followed Heuristic 3.1 by applying a two-stage approach to derive two
procedures, named Pro1 and Pro2. Precisely, in the first stage they use the weight vectors ŵ(1) =

( 1
π̂0
, . . . , 1

π̂0
), where π̂0 =

∑
g
mg
m π̂g,0, and ŵ(2) defined by ŵ

(2)
g =

π̂g,1
π̂g,0(1−π̂0) , where π̂g,1 = 1− π̂g,0,
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and let ûM = max(ûŵ(1) , ûŵ(2)). In the second stage, they maximize Ĝw(ûM ) over K̂, which gives

rise to the weight vector Ŵ ∗(ûM ) according to our notation. Then they define their procedures as
the following:

Pro 1 = R
ûM ,Ŵ∗(ûM )

,

and
Pro 2 = WBH

(
Ŵ ∗(ûM )

)
.

Pro 2 comes from an additional step-up step compared to Pro 1, hence its rejection threshold,
û
Ŵ∗(ûM )

, is larger than ûM and allows for more detections. The caveat of this approach is that

the initial thresholding, that is the definition of ûM , seems somewhat arbitrary, which will result
in sub-optimal procedures, see Corollary 5.3. As a side remark, ŵ(1) and ŵ(2) are involved in other
procedures of the literature. The HZZ procedure of Hu, Zhao and Zhou (2010) is WBH(ŵ(2)),
and WBH(ŵ(1)) is the classical Adaptive BH procedure (see e.g. Lemma 2 of Storey, Taylor and
Siegmund (2004)) denoted here as ABH.

Ignatiadis et al. (2016) actually used Heuristic 3.1 with multi-weighting (while their formulation

differs from ours) which consists in maximizing Ĝw(u) in w for each u. However, their choice of the
weight space is only suitable for the case (NE) and can make Heuristic 3.1 break down, because

in general H
(m)
W (u) can still depend on w, see remark 3.1 below. In the next section, we take

the best of the two approaches to attain power optimality with data-driven weighting. Let us
already mention that the crucial point is Lemma B.3, that fully justifies Heuristic 3.1, but only in
case (ME). When (ME) does not hold, we must take care that Heuristic 3.1 can fail for the same
reason that it can fail with IHW. Thereby, in general, more detections do not necessarily imply
more power.

Remark 3.1. In particular, we can compute numerical counterexamples where BH has larger
asymptotic power than IHW. For example, if we break (ED) by taking a small π1,0 (almost
pure signal) and a large π2,0 (sparse signal), along with a small group and a large one (π1 much
smaller than π2) and strong signal in both groups, we can achieve a larger power with BH than
with IHW. Our interpretation is that, in that case, IHW slightly favors group 2 because of its size,
whereas the oracle optimal favors group 1 thanks to the knowledge of the true parameters. BH,
by weighting uniformly, does not favor any group, which allows its power to end up between the
power of the oracle and the power of IHW. This example is studied in Section 6.4 and illustrated
in Figures 8 and 7.

3.3. Recent weighting methods

Besides IHW, there are several recent methods putting weights on p-values. We briefly discuss
three of them. The first is a variation of IHW by the same authors, IHWc (Ignatiadis and Huber,
2017), where the letter ’c’ stands for ’censoring’. The method bring two innovations to IHW. First,
the use of cross-weighting thanks to a subdivision of the hypotheses into folds: the weights of the
p-values of a fold are computed by only using the p-values of the other folds. This approach reduces
overfitting since, during the step-up procedure, the information brought by a given p-value is used
only once instead of twice. The second innovation is the censoring, where a threshold τ is fixed
and only p-values larger than τ are used to compute the weights, while only p-values lesser than
τ can be rejected during the step-up. Together, these innovations allow IHWc to control the FDR
in finite sample at level α if the p-values associated to true nulls are independent. However, using
only large p-values to compute the weights seems somehow counterintuitive: large p-values are
likely to be associated to true nulls and to be uniform, so they won’t allow the weights to properly
discriminate the groups and to increase the power compared to BH. We will verify this intuition in
Section 6.3. Finally, it is worth noting that IHWc allows for a kind of πg,0 estimation à la Storey,
with a variant called IHWc-Storey.

The censoring idea originates from the Structure Adaptive BH Algorithm (SABHA, Li and
Barber, 2016), which has a group structured version with an FDR bounded by αC for a known
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constant C > 1 when the p-values are independent. Hence, applying the group structured SABHA
at level α/C gives FDR control at level α, but using a target level < α can induce conservatism,
especially since computing the weights only with the large p-values involve the same risks that we
highlighted when discussing of IHWc.

Lastly, AdaPT (Lei and Fithian, 2018) introduces threshold surfaces st(x) that can be con-
sidered as weights and adapted to group setting. AdaPT is not a WBH procedure, its whole
philosophy is totally different and relies on symmetry properties of the true null distribution of
the p-values by using an estimator of the FDP, different than the one implicitly used in BH-like
methods, which also relies on symmetry and allow to mask p-values during the procedure (see also
Barber et al., 2015 and Arias-Castro et al., 2017 for more details on this pioneering paradigm).
We won’t further consider AdaPT because of its fundamental differences with WBH procedures
and because we are mainly interested by optimality among said WBH procedures.

For more discussion about IHW, IHWc, SABHA and AdaPT, see Ignatiadis and Huber (2017,
Section 6.2) and Lei and Fithian (2018, Section 1.4) .

4. New procedure: ADDOW

We exploit Heuristic 3.1 and propose to estimate the oracle optimal weights W ∗or by maximizing

in w ∈ K̂ the empirical counterpart to G
(m)
w (u), that is Ĝw(u).

Definition 4.1. We call an adaptive data-driven optimal weight function a random function
Ŵ ∗ : [0, 1]→ K̂ such that for all u ∈ [0, 1]:

Ĝ
Ŵ∗

(u) = max
w∈K̂

Ĝw(u).

Such maximum is guaranteed to exist because
{
Ĝw(u), w ∈ K̂

}
is a finite set. Indeed, it is a

subset of
{
k
m , k ∈ J0,mK

}
. However, for a given u, Ŵ ∗(u) may not be uniquely defined, hence there

is no unique optimal weight function Ŵ ∗ in general. So, in all the following, we fix a certain Ŵ ∗,
and our results do not depend on the choice of Ŵ ∗. An important fact is that Ĝ

Ŵ∗
is nondecreasing

(see Lemma A.6) so û
Ŵ∗

exists and the corresponding MWBH procedure is well-defined:

Definition 4.2. The ADDOW procedure is the MWBH procedure using Ŵ ∗ as the weight func-

tion, that is, ADDOW = MWBH
(
Ŵ ∗
)

.

One shall note that ADDOW is in fact a class of procedures depending on the estimators π̂g,0
through K̂. Its rationale is similar to IHW in that we intend to maximize the number of rejections,
but incorporating the estimators π̂g,0 allows for larger weights and more detections. Finally, note
that, in the (NE) case, ADDOW reduces to IHW.

Remark 4.1. It turns out that ADDOW is equal to a certain WBH procedure. It comes from
part 2 of the proof of Theorem 5.2 and Remark 9.2. Moreover, to every MWBH procedure, corre-
sponds a WBH procedure with power higher or equal. This fact does not limit the interest of the
MWBH class, because computing the dominating WBH procedure of a given MWBH(Ŵ ) proce-
dure requires the knowledge of the step-up threshold û

Ŵ
which is known by actually computing

MWBH(Ŵ ).

5. Results

5.1. Main results

Now we present the two main theorems of this paper. The two are asymptotical and justify the use
of ADDOW when m is large. The first is the control of the FDR at level at most α. The second
shows that ADDOW has maximum power over all MWBH procedures in the (ME) case. The two
are proven in Section 9.
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Theorem 5.1. Let us assume that Assumptions 2.1 to 2.6 are fulfilled. We have

lim
m→∞

FDR (ADDOW) ≤ α. (5.1)

Moreover, if α ≤ π̄0 and (ME) holds,

lim
m→∞

FDR (ADDOW) =
α

C
. (5.2)

Remark 5.1. Equation (5.2) means that in the (CE) case (where C = 1), exact asymptotic control
is achieved.

Theorem 5.2. Let us assume that Assumptions 2.1 to 2.6 are fulfilled, with the additional as-
sumption that (ME) holds. For any sequence of random weight functions (Ŵ )m≥1, such that

Ŵ : [0, 1]→ K̂ and Ĝ
Ŵ

is nondecreasing, we have

lim
m→∞

Pow (ADDOW) ≥ lim sup
m→∞

Pow
(

MWBH
(
Ŵ
))

.

5.2. Relation to IHW

Recall that IHW reduces ADDOW in the (NE) case, that (NE) is a subcase of (EE), and that
when both (EE) and (ED) hold then (ME) is achieved. Hence, as a byproduct, we deduce from
Theorems 5.1 and 5.2 the following result on IHW.

Corollary 5.1. Let us assume that Assumptions 2.1 to 2.6 are fulfilled, with the additional as-
sumption that (ED) holds. Then

lim
m→∞

FDR (IHW) = π0α, (5.3)

and for any sequence of random weight functions (Ŵ )m≥1 such that Ŵ : [0, 1]→ K̂NE and Ĝ
Ŵ

is
nondecreasing, we have

lim
m→∞

Pow (IHW) ≥ lim sup
m→∞

Pow
(

MWBH
(
Ŵ
))

. (5.4)

While equation (5.1) of Theorem 5.1 covers Theorem 4 of the supplementary material of Igna-
tiadis et al. (2016) (with slightly stronger assumption on the smoothness of the Fgs), the FDR
controlling result of Corollary 5.1 gives a slightly sharper bound (π0α instead of α) in (ED) case.

The power optimality stated in Corollary 5.1 is new and was not shown in Ignatiadis et al.
(2016). It thus supports the fact that IHW should be used under the assumption (ED) and when
π0 is close to 1 or not estimated.

5.3. Comparison to other existing procedures

For any estimators π̂g,0 ∈ [0, 1], any weighting satisfying
∑
g
mg
m wg ≤ 1 also satisfies

∑
g
mg
m π̂g,0wg ≤

1, that is K̂NE ⊂ K̂. Hence, any MWBH procedure estimating
mg,0
mg

by 1 uses a weight function

valued in K̂. This immediately yields the following corollary.

Corollary 5.2. Let us assume that Assumptions 2.1 to 2.6 are fulfilled, with the additional as-
sumption that (ME) holds. Then

lim
m→∞

Pow (ADDOW) ≥ lim sup
m→∞

Pow (R) ,

for any R ∈ {BH, IHW}.

imsart-generic ver. 2014/10/16 file: Durand2018v2.tex date: March 12, 2019



G. Durand/Adaptive p-value weighting with power optimality 13

The next corollary simply states that ADDOW outperforms many procedures of the ”weighting
with π0 adaptation” literature.

Corollary 5.3. Let us assume that Assumptions 2.1 to 2.6 are fulfilled, with the additional as-
sumption that (ME) holds. Then

lim
m→∞

Pow (ADDOW) ≥ lim sup
m→∞

Pow (R) ,

for any R ∈ {Pro 1,Pro 2,HZZ,ABH}.

The results for Pro2, HZZ and ABH follow directly from Theorem 5.2 because these are MWBH
procedures. The proof for Pro1 (which is not of the MWBH type) can be found in Section D.

6. Numerical experiments

6.1. Simulation setting

FDR analysis and power analysis from Sections 6.2 and 6.3 are conducted using simulations which
setting we describe here. Section 6.4 presents a counter-example using its own setting.

We consider the one-sided Gaussian framework described in Section 2.4 for G = 2 groups. We
set α = 0.05, m1 = m2 = 4000 (hence m = 8000), m1,0 = 2800 and m2,0 = 3200, such that
π1,0 = 0.7 and π2,0 = 0.8. The values of µ1 and µ2 are defined according to a varying parameter
µ̄, which values are in {0.1, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3}.

Our experiments have been performed by using the four following scenarios Each simulation of
each scenario is replicated 1000 times.

• Scenario 1: µ1 = µ̄ and µ2 = 2µ̄ and the p-values are independent.
• Scenario 2: µ1 = µ̄ and µ2 = 2µ̄ and the dependence follows the Toeplitz pattern described

in the end of Section 2.4.
• Scenario 3: µ1 = µ̄ and µ2 = 0.01 and the p-values are independent.
• Scenario 4: µ1 = µ̄ and µ2 = 0.01 and the dependence follows the Toeplitz pattern described

in the end of Section 2.4.

In each scenario, three groups of procedures are compared. The difference between the three
groups lies in the way π0 is estimated. Group 1 corresponds to the (NE) case: π̂g,0 = 1. Group
2 corresponds to the (CE) case, with an oracle estimator: π̂g,0 = πg,0. Groups 3 use the Storey
estimator π̂g,0(1/2) defined in Equation (2.3). We choose λ = 1/2 as it is a standard value (see
e.g. Storey, 2002).The compared procedures are the following:

• ABH as defined in section 3.2 (which is BH in Group 1),
• HZZ as defined in section 3.2 (except in Group 1 where it is not defined),
• Pro2 as defined in section 3.2 (for Group 1, we only use the BH threshold),
• ADDOW (which is equal to IHW in Group 1),
• An oracle ADDOW wich is the MWBH procedure using the oracle weights W ∗or given by

equation 3.5 (only in Groups 1 and 2),
• IHWc (only in Groups 1 and 3). The version of IHWc used in Group 3 is IHWc-Storey.

For IHWc, the censoring level chosen is the default of the IHW R package, that is α.
In the following, only plots of scenarios 1 and 3 are shown, as the situation with Toeplitz

dependence is found to be similar to the independent case, up to a slight increase of the FDR of
most of the procedures.

6.2. FDR control

The FDR of all above procedures are compared in Figure 2 and Figure 3.
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Fig 2: FDR against µ̄ in scenario 1. Group 1 in black; Group 2 in red; Group 3 in green. The type of procedure
depends on the shape: Oracle ADDOW (triangles and solid line); ADDOW (triangles and dashed line); Pro2 (disks);
HZZ (diamonds) and finally BH/ABH (crosses). IHWc and IHWc-Storey are in blue, respectively with black and
green points. Horizontal lines: α and π0α levels. See Section 6.1.
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Fig 3: FDR against µ̄ in scenario 3. Same legend as in Figure 2.
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In scenario 1, we can distinguish two different regimes depending on the signal strength. For
µ ≥ 1 the signal strength is not weak in both groups (from µ1 = µ̄ and µ2 = 2µ̄) and the FDR
is controlled at level α for all procedures of Groups 2 & 3 except ADDOW and Pro2, the two
procedures using the data-driven weights, that is Ŵ ∗. In particular, Oracle ADDOW in Group
2 controls the FDR at level α. As the data driven weights converge to the oracle weights (see
Lemma C.4), we get an illustration of Theorem 5.1 in the (CE) case. The situation is similar for
Group 1 and level π0α, except for Oracle ADDOW which controls the FDR only for µ ≥ 2.

The situation get more confused when the signal is weak (µ < 1). The FDR of ADDOW (in each
group) is largely inflated. The FDR control at level α also fails sometimes for Oracle ADDOW,
Pro2, ABH and HZZ (only in Group 2).

In scenario 3, one group has always weak signal. The FDR inflation of ADDOW (in each group)
and Group 2 is worse for small µ̄, whereas, for large µ̄, the situation is similar to scenario 1, up
to one exception: the FDR of ABH and IHWc in Group 3 does not reach α as it did in scenario
1, which suggests some sort of conservatism.

In both scenarios, procedures of Group 2 have a larger FDR than their equivalent in Group 3,
which in turn have larger FDR than in Group 1.

As a side note, in both scenarios, and both Groups 1 and 3, the FDR plots of IHWc and ABH
are nearly indistinguishable.

In both settings regarding µ̄ (large or small), procedures based on Ŵ ∗ suffer from some sort
of overfitting causing a loss of FDR control. This is discussed in Section 7 with an attempt to
stabilize the weights. Let us underline that this does not contradict Theorem 5.1 because a small
µg might imply a smaller convergence rate while m stays < 104 in our setting.

6.3. Power analysis

Now that the FDR control has been studied, let us compare the procedures in terms of power.
First, to better emphasize the benefit of adaptation, the power is rescaled in the following way:
we define the normalized difference of power with respect to BH, or DiffPow, by

DiffPow(R) =
m

m1
(Pow(R)− Pow(BH)) ,

for any procedure R.
Figures 4 and 5 display the power of all the procedures defined in Section 6.1. Figures 6a and 6b

display only a subset of them in Scenario 1, for clarity. We can make several observations:

• In both scenarios, procedures of Group 2 are more powerful than their equivalent in Group
3, which are better than in Group 1 (up to one exception, see next point), see e.g. Figure 6a.
In particular, the difference between Group 2 and Group 1 is huge. This illustrates the
importance of incorporating the knowledge of π0 to improve power.

• In scenario 2, HZZ is largely better in Group 3 than in Group 2. Our interpretation is that
the signal is so weak in the second group of p-values that the estimator π̂2,0(1/2) is close to

one, while π̂1,0(1/2) stays close to π1,0. Hence ŵ
(2)
1 in Group 3 is larger than ŵ

(2)
1 in Group

2 which allows for more good discoveries. The drawback of having ŵ
(2)
2 in Group 3 smaller

than ŵ
(2)
2 in Group 2 is not a real one since the signal is so small that it is impossible to

detect no matter the weight. Recall that ŵ(2) is defined in Section 3.2.
• In every Group (that is for any choice of π̂g,0), and for both scenarios, ADDOW achieves

the best power (see e.g. Figure 6b), which supports Theorem 5.2. Additionnaly, maybe
surprisingly, Pro2 behaves quite well, with a power close to the one of ADDOW (sometimes
larger than Oracle ADDOW) and despite its theoretical sub-optimality.

• Inside Group 2 or Group 3, and for both scenarios, comparing ABH and HZZ to ADDOW
and Pro2 shows the benefit of adding the Fg adaptation to the π0 adaptation: the ADDOW
and Pro2 have better power than ABH and HZZ for all signals (see e.g. Figure 6b). In
scenario 1, for Groups 2 and 3, we can see a zone of moderate signal (around µ̄ = 1.5) where
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Fig 4: DiffPow against µ̄ in scenario 1. Same legend as Figure 2.
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Fig 5: DiffPow against µ̄ in scenario 3. Same legend as Figure 2.
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(a) ADDOW in the four Groups
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(b) Procedures of Group 2

Fig 6: Details of Figure 4 where only a subset of procedures is plotted.

the two categories of procedures are close. That is the same zone where HZZ becomes better
than ABH. We deduce that in that zone the optimal weighting is the same as the uniform
ŵ(1) weighting of ABH.

• The comparison of the DiffPow between, on the one hand, IHW and, on the other hand,
ABH or HZZ from Group 2, in Figure 4, shows the difference between adapting only to the
Fg’s versus adapting only to π0. No method is generally better than the other: as we see in
the plot, it depends on the signal strength. We also see that neither ABH nor HZZ is better
than the other.

• In scenario 1, for all signals, methods of Group 3 are close to their equivalent of Group
2, which indicates that using λ = 1/2 gives a good estimate of πg,0 in practice (see e.g.
Figure 6a). Furthermore, the larger the signal is, the more methods of Group 3 get closer to
Group 2.

• In both scenarios, once again IHWc and ABH are nearly indistinguishable, which confirms
the intuition given in Section 3.3 that IHWc performs badly in terms of power due to using
only large p-values to compute the weights. See in particular how the power of IHW is larger
than the power of IHWc (and even than the power of IHWc-Storey) in Figure 4.

6.4. Importance of (ME) for optimality results

We provide here a setting and a simulation where Corollary 5.1 fails because (ED) does not hold,
to illustrate the importance of (ME) in Theorem 5.2 and in Theorem 5.1 (to get (5.2)). The setting
is chosen according to what we sketched in Remark 3.1 and is the following.

We consider again the one-sided Gaussian framework described in Section 2.4 for G = 2 groups
and independent p-values. The parameters are the same as in Section 6.1 and each simulation of
each scenario is replicated 1000 times. We choose a large value for α (α = 0.7) which is unlikely
to appear in practice but allows us to get our counterexample. We set m1 = 1000 and m2 = 9000,
m1,0/m1 = 0.05 and m2,0/m2 = 0.85. So group 1 is small and has a lot of signal, while group
2 is large but has not much signal. The signal strength is given by µ1 = 2 and µ2 = µ̄, and
µ̄ ∈ {1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3}, so the signal is strong and almost equal in both groups.

We compare only BH, ADDOW in the (CE) case (with π̂g,0 = πg,0) and ADDOW in the (NE)
case (that is, IHW, with π̂g,0 = 1). The simulation is illustrated with an FDR plot in Figure 7 and
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Fig 7: FDR of ADDOW and BH against µ̄ in the simulation of Section 6.4. The two solid lines are the α and π0α
levels, the FDR of BH is confounded with the π0α level. ADDOW in the (NE) case is given by the black triangles
and ADDOW in the (CE) case is given by the red triangles.

a DiffPow plot in Figure 8.
In Figure 7, the FDR of BH is π0α as expected, and we see that the FDR of IHW is above that

level, hence Equation (5.3) is violated. On a side note, we see that, thanks to a large m (104) and a
rather strong signal, ADDOW in (CE) does not overfit and we get an illustration of Equation (5.2)
with C = 1.

Figure 8 is rather unequivocal and shows that our parameter choice implies that IHW has a
power smaller than BH (ADDOW in (CE) case stays better as expected), hence Equation (5.4) is
violated. Let us recall our interpretation proposed in Remark 3.1: IHW favors the large and sparse
second group of hypotheses whereas the optimal power is achieved by favoring the small first group
of hypotheses which contains almost only signal. As a WBH procedure with weights (1,1), BH
does not favor any group. Figure 8 demonstrates the limitation of Heuristic 3.1 by providing a
direct counterexample, and underlines the necessity of estimating the πg,0 when nothing lets us
think that (ED) may be met.

7. Stabilization for overfitting

7.1. Overfitting phenomena

Since ADDOW uses the data both through the p-values and the weights, it suffers from an over-
fitting phenomena where the FDR in finite samples is above the target level α, as we saw in
Section 6.2. In our setting, if the signal is strong enough, this drawback is proved to vanish when
m is large enough, see the simulations and Theorem 5.1. However, the latter is not true for weak
signal: if the data are close to be random noise, making the weight optimization leads ADDOW
to assign its weighting budget at random, and giving large weights to the wrong groups increases
the FDP.
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Fig 8: DiffPow of ADDOW against µ̄ in the simulation of Section 6.4. ADDOW in the (NE) case is given by the
black triangles and ADDOW in the (CE) case is given by the red triangles.

As said before, our intuition is that the overfitting is at least partly due to using each p-value
twice in the step-up procedure of ADDOW: in the expression 1{pg,i≤αuŴ∗g (u)}, pg,i appears in

both sides of the inequality because it is used to compute Ŵ ∗g (u). Following this, we propose a
variation of ADDOW that uses the same cross-weighting trick as IHWc.

7.2. The crADDOW variant

The main idea is to split the p-values into F folds, where F is some fixed integer ≥ 2, and to use
only p-values of the remaining F − 1 folds to compute the weights assigned to the p-values of a
given fold. The resulting procedure can be seen as a WBH procedure using F ×G groups.

Formally, for each m we have a random function Fm : (g, i) 7→ Fm(g, i) ∈ {1, . . . , F} such that,
for each f ∈ {1, . . . , F} and each g ∈ {1, . . . , G}, |{1 ≤ i ≤ mg : Fm(g, i) = f}| ≥ bmgF c, which
simply means that the p-values of each group g are evenly distributed between the F folds. Some
dependence assumptions are required:

Assumption 7.1. The σ-algebra generated by (Fm)m and the σ-algebra generated by
(
(pg,i)(g,i)

)
m

are independent.

Assumption 7.2. Conditionally to (Fm)m, we have weak dependence (as in Assumption 2.4)
inside each fold.

For each fold f ∈ {1, . . . , F}, we compute ADDOW−f , that is ADDOW but using only p-values
for the folds in {1, . . . , F} \ {f}. This is done by constructing the empirical function

Ĝ−fw : u 7→ |{(g, i) : Fm(g, i) 6= f}|−1
∑
(g,i):

Fm(g,i)6=f

1{pg,i≤αuwg},
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and then maximizing it in w ∈ K̂−f for each u ∈ [0, 1], where:

K̂−f =

{
w ∈ RG+ :

∑
g

|{1 ≤ i ≤ mg : Fm(g, i) 6= f}|
|{(g, i) : Fm(g, i) 6= f}|

π̂g,0wg ≤ 1

}
.

While this expression seems complicated, note that if F divides each mg, then |{1 ≤ i ≤ mg :

Fm(g, i) = f}| =
mg
F and K̂−f = K̂. The maximization provides a weight function Ŵ ∗−f and

the MWBH procedure provides a step-up threshold û
Ŵ∗−f

= I
(
Ĝ−f
Ŵ∗−f

)
. To lighten notation, let

w∗g,f = Ŵ ∗−f (û
Ŵ∗−f

).
Our ADDOW variant, named crADDOW for cross-ADDOW, is the WBH procedure which

assigns the weight w∗g,f to all p-values pg,i such that Fm(g, i) = f . Now, in 1{pg,i≤αuw∗g,f}, pg,i
is only used once. While we don’t have a finite-sample result about crADDOW, we expect it to
have a lesser FDR than ADDOW, especially for weak signal. We expect crADDOW to act like a
stabilization of ADDOW and to not lose the good performances of ADDOW when the signal is
not weak. Those intuitions are verified in the simulations of Section 7.3. Still, crADDOW has the
nice property of being asymptotically equivalent to ADDOW.

Theorem 7.1. Let us assume that Assumptions 2.1 to 2.6, 7.1 and 7.2 are fulfilled. Assume also
that α ≤ π̄0. We have

lim
m→∞

FDR (crADDOW) = lim
m→∞

FDR (ADDOW) , (7.1)

and
lim
m→∞

Pow (crADDOW) = lim
m→∞

Pow (ADDOW) . (7.2)

This Theorem is proved in Section E.

7.3. Simulations with crADDOW

The simulations presented here are the same as the simulations depicted in Section 6.1, with the
addition of crADDOW in each Group.

From the FDR plots, we see that the FDR is hugely deflated and is now controlled at level α
for weak µ̄ in each scenario, while for large µ̄ we are still slightly above the target level but with a
small improvement over ADDOW. In scenario 1 there is a small window between large and small
µ̄, around µ̄ = 0.75, where crADDOW in Group 2 overfits more than for really large µ̄, but even
there we see a large improvement over ADDOW.

As for the power, we see that crADDOW is less powerful than ADDOW, as expected since we
reject less hypotheses, but we see that in most Groups and scenarios the loss of power is almost
negligible and crADDOW remains even as powerful as Oracle ADDOW (with the exception of
Group 1 in scenario 1). The difference of power between crADDOW and Pro2 is even smaller and
crADDOW is better in most configurations, with the exception of Groups 2 and 3 around µ̄ = 1.5,
which is the zone that we identified in Section 6.3 as the zone where the optimal weights are given
by the uniform ŵ(1) weighting of ABH.

The simulations hence confirm our intuitions about the stabilization properties of crADDOW
especially for weak signal where ADDOW was totally unreliable. Studying the finite sample prop-
erties of crADDOW, especially its FDR, is an interesting direction for future works.

8. Concluding remarks

In this paper we presented a new class of data-driven step-up procedures, ADDOW, that gener-
alizes IHW by incorporating πg,0 estimators in each group. We showed that while this procedure
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Fig 9: FDR against µ̄ in scenario 1. Same legend as in Figure 9, with the addition of crADDOW (yellow lines).
The color of the points (black, red, green) indicates the Group (respectively, 1, 2 and 3).
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Fig 10: FDR against µ̄ in scenario 3. Same legend as in Figure 9.
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Fig 11: DiffPow against µ̄ in scenario 1. Same legend as Figure 9.
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Fig 12: DiffPow against µ̄ in scenario 3. Same legend as Figure 9.
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asymptotically controls the FDR at the targeted level, it has the best power among all MWBH
procedures when the π0 estimation can be made consistently. In particular it dominates all the
existing procedures of the weighting literature and solves the p-values weighting issue in a group-
structured multiple testing problem. As a by-product, our work established the optimality of IHW
in the case of homogeneous π0 structure. Finally we proposed a stabilization variant designed to
deal with the case where only few discoveries can be made (very small signal strength or spar-
sity). Some numerical simulations illustrated that our properties are also valid in a finite sample
framework, provided that the number of tests and the signal strength are large enough. We also
introduced crADDOW, a variant of ADDOW that uses cross-weighting to reduce the overfitting
while having the exact same asymptotic properties.

Assumptions Our assumptions are rather mild: basically we only added the concavity of the Fg
to the assumptions of Ignatiadis et al. (2016). Notably we dropped the other regularity assumptions
on Fg that were made in Roquain and van de Wiel (2009) while keeping all the useful properties
on W ∗ in the (NE) case. Note that the criticality assumption is often made in the literature, see
Ignatiadis et al. (2016) (assumption 5 of the supplementary material), Zhao and Zhang (2014)
(assumption A.1), or the assumption of Theorem 4 in Hu, Zhao and Zhou (2010). Finally, the
weak dependence assumption is extensively used in our paper. An interesting direction could be
to extend our result to some strong dependent cases, for instance by assuming the PRDS (positive
regression dependence), as some previous work already studied properties of MWBH procedures
under that assumption, see Roquain and Van De Wiel (2008).

Computational aspects The actual maximization problem of ADDOW is difficult, it involves
a mixed integer linear programming that may take a long time to resolve. Some regularization
variant may be needed for applications. To this end, we can think to use the least concave majorant
(LCM) instead of the empirical c.d.f. in equation (3.1) (as proposed in modification (E1) of IHW
in Ignatiadis et al., 2016). As we show in Section 9, ADDOW can be extended to that case (see
especially Section 9.1) and our results are still valid for this new regularized version of ADDOW.

Toward nonasymptotic results Interesting direction for future research can be to investigate
the convergence rate in our asymptotic results. One possible direction can be to use the work of
Neuvial (2008). However, it would require to compute the Hadamard derivative of the functional
involved in our analysis, which might be very challenging. Finally, another interesting future work
could be to develop other versions of ADDOW that ensure finite sample FDR control property:
this certainly requires to use a different optimization process, which will make the power optimality
difficult to maintain. A possible such variation is crADDOW, whose FDR in finite sample has yet
to be investigated.

9. Proofs of Theorems 5.1 and 5.2

9.1. Further generalization

Define, for any u and W ,

ĤW (u) = m−1 |Ru,W ∩H0| = m−1
G∑
g=1

mg∑
i=1

1{pg,i≤αuWg(u),Hg,i=0},

and
P̂W (u) = m−1 |Ru,W ∩H1| = ĜW (u)− ĤW (u),

so that FDP (Ru,W ) = ĤW (u)

ĜW (u)∨m−1
and Pow (Ru,W ) = E

[
P̂W (u)

]
(recall that MWBH (W ) is

RûW ,W ). Also define D̂g(t) = m−1
g

∑mg
i=1 1{pg,i≤t} so that ĜW (u) =

∑
g
mg
m D̂g(αuWg(u)).
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For the sake of generality D̂g is not the only estimator of Dg (defined in equation (B.1)) that

we will use to prove our results (for example, we can use the LCM of D̂g, denoted LCM(D̂g),

see Section 8). So let us increase slightly the scope of the MWBH class by defining G̃W (u) =∑
g
mg
m D̃g(αuWg(u)) for any estimator D̃g such that D̃g is nondecreasing, D̃g(0) = 0, D̃g(1) = 1

and
∥∥∥D̃g −Dg

∥∥∥ P−→ 0, where ‖ · ‖ is the sup norm for the bounded functions on their definition

domain. Note that at least (Dg)g, (D̂g)g (by Lemma C.1), and
(

LCM(D̂g)
)
g

(by Lemma C.6) are

eligible.
If W is such that G̃W is nondecreasing, we then define the generalized MWBH as

GMWBH
(

(D̃g)g,W
)

= RũW ,W where ũW = I
(
G̃W

)
.

If (D̃g)g is such that we can define, for all u ∈ [0, 1],

W̃ ∗(u) ∈ arg max
w∈K̂

G̃w(u), (9.1)

we define the generalized ADDOW by

GADDOW
(

(D̃g)g

)
= GMWBH

(
(D̃g)g, W̃

∗
)
,

the latter being well defined because G̃
W̃∗

is nondecreasing (by a proof similar to the one of

Lemma A.6). Note that for any continuous D̃g, such as LCM(D̂g) or Dg itself, the arg max
in (9.1) is non empty and GADDOW can then be defined.

What we show below are more general theorems, valid for any GADDOW
(

(D̃g)g

)
. Our proofs

combined several technical lemmas deferred to Sections B and C, which are based on the previous
work of Roquain and van de Wiel (2009); Hu, Zhao and Zhou (2010); Zhao and Zhang (2014).

Remark 9.1. GADDOW
(

(D̃g)g

)
when D̃g = LCM(D̂g) and π̂g,0 = 1 is exactly the same as

IHW with modification (E1) defined in the supplementary material of Ignatiadis et al. (2016). In

our notation, the latter is WBH
(
W̃ ∗

(
ũ
W̃∗

))
, which is the same as GADDOW

(
(D̃g)g

)
because

ũ
W̃∗

= ũ
W̃∗(ũW̃∗)

(same proof as in Remark 9.2).

9.2. Proof of Theorem 5.1

We have

FDP

(
GMWBH

((
D̃g

)
g
, W̃ ∗

))
=

Ĥ
W̃∗

(ũ)

Ĝ
W̃∗

(ũ) ∨m−1
∈ [0, 1],

where ũ is defined as in (C.6) so by Lemma C.5 we deduce that

FDP
(

GADDOW
(

(D̃g)g

))
P−→

m→∞

H∞W∗(u
∗)

G∞W∗(u
∗)

=
H∞W∗(u

∗)

u∗
,

and then
lim
m→∞

FDR
(

GADDOW
(

(D̃g)g

))
= u∗−1H∞W∗(u

∗),

where G∞W∗ , H
∞
W∗ and u∗ are defined in Section B.

If α ≥ π̄0, u∗ = 1 by Lemma B.2 and αu∗W ∗g (u∗) ≥ 1 by Lemma B.1 so u∗−1H∞W∗(u
∗) = π0 ≤

π̄0 ≤ α.
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If α ≤ π̄0, αu∗W ∗g (u∗) ≤ 1 by Lemma B.1 so U(αu∗W ∗g (u∗)) = αu∗W ∗g (u∗) for all g and then

u∗−1H∞W∗(u
∗) = α

∑
g

πgπg,0W
∗
g (u∗)

≤ α
∑
g

πgπ̄g,0W
∗
g (u∗) = α. (9.2)

Moreover if (ME) holds (that is, there exists C ≥ 1 such that π̄g,0 = Cπg,0 for all g), we write

u∗−1H∞W∗(u
∗) = α

∑
g

πgπg,0W
∗
g (u∗)

=
α

C

∑
g

πgπ̄g,0W
∗
g (u∗) =

α

C
. (9.3)

The equalities in (9.2) and (9.3) are due to
∑
g πgπ̄g,0W

∗
g (u∗) = 1 (by Lemma B.1).

9.3. Proof of Theorem 5.2

First, in any case,

P̂
W̃∗

(ũ) = Ĝ
W̃∗

(ũ)− Ĥ
W̃∗

(ũ)
a.s.−→ G∞W∗(u

∗)−H∞W∗(u∗) = P∞W∗(u
∗)

by Lemma C.5, where P∞W∗ is defined in Section B. Hence:

lim
m→∞

Pow
(

GADDOW
(

(D̃g)g

))
= P∞W∗(u

∗).

For the rest of the proof, we assume we are in case (ME), which implies by Lemma B.3 that
W ∗(u) ∈ arg maxw∈K∞ P

∞
w (u) for all u, and that P∞W∗ is nondecreasing. We also split the proof in

two parts. For the first part we assume that for all m, Ŵ is a weight vector ŵ ∈ K̂ therefore not
depending on u. In the second part we will conclude with a general sequence of weight functions.

Part 1 Ŵ = ŵ ∈ K̂ for all m. Let ` = lim sup Pow (MWBH (ŵ)). Up to extracting a subsequence,

we can assume that ` = limE
[
P̂ŵ(ûŵ)

]
, π̂g,0

a.s.−→ π̄g,0 for all g, and that the convergences of

Lemma C.1 are almost surely.. Define the event

Ω̃ =


∀g, π̂g,0 −→ π̄g,0

supw∈RG+

∥∥∥P̂w − P∞w ∥∥∥ −→ 0

supw∈RG+

∥∥∥Ĝw −G∞w ∥∥∥ −→ 0


then P

(
Ω̃
)

= 1, ` = limE
[
P̂ŵ(ûŵ)1Ω̃

]
and by reverse Fatou Lemma ` ≤ E

[
lim sup P̂ŵ(ûŵ)1Ω̃

]
.

Now consider that Ω̃ occurs and fix a realization of it, the following of this part 1 is deterministic.

Let `′ = lim sup P̂ŵ(ûŵ). The sequences
(

m
mgπ̂g,0

)
are converging and then bounded, hence the

sequence (ŵ) is also bounded. By compacity, once again up to extracting a subsequence, we can

assume that `′ = lim P̂ŵ(ûŵ) and that ŵ converges to a given wcv. By taking m → ∞ in the

relation
∑ mg

m π̂g,0ŵg ≤ 1, it appears that wcv belongs to K∞. ‖Ĝŵ−G∞wcv‖ ≤ supw ‖Ĝw−G∞w ‖+
‖G∞ŵ −G∞wcv‖ → 0 so by Remark B.2 ûŵ → u∞wcv and finally∣∣∣P̂ŵ(ûŵ)− P∞wcv (u∞wcv )

∣∣∣ ≤ sup
w∈RG+

∥∥∥P̂w − P∞w ∥∥∥+ |P∞ŵ (ûŵ)− P∞wcv (u∞wcv )|

−→ 0,

by continuity of Fg and because Ω̃ is realized. So `′ = P∞wcv (u∞wcv ) ≤ P∞W∗(u
∞
wcv ) by maximality.

Note also that G∞wcv (·) ≤ G∞W∗(·) which implies that u∞wcv ≤ u∞W∗ = u∗ so `′ ≤ P∞W∗(u
∗) because

P∞W∗ is nondecreasing. Finally lim sup P̂ŵ(ûŵ)1Ω̃ ≤ P
∞
W∗(u

∗) for any realization of Ω, by integrating
we get that ` ≤ P∞W∗(u∗) which concludes that part 1.
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Part 2 Now consider the case where Ŵ is a weight function u 7→ Ŵ (u). Observe that

û
Ŵ

= Ĝ
Ŵ

(û
Ŵ

) = Ĝ
Ŵ (û

Ŵ
)
(û
Ŵ

),

so by definition of I(·), û
Ŵ
≤ û

Ŵ (û
Ŵ

)
, and then

P̂
Ŵ

(û
Ŵ

) = P̂
Ŵ (û

Ŵ
)
(û
Ŵ

) ≤ P̂
Ŵ (û

Ŵ
)

(
û
Ŵ (û

Ŵ
)

)
.

As a consequence, Pow
(

MWBH
(
Ŵ
))
≤ Pow

(
WBH

(
Ŵ (û

Ŵ
)
))

. Finally, apply part 1 to the

weight vector sequence
(
Ŵ (û

Ŵ
)
)

to conclude.

Remark 9.2. We just showed that for every MWBH procedure, there is a corresponding WBH
procedure with better power. In particular, by defining û = u

Ŵ∗
the ADDOW threshold, we

showed that û ≤ û
Ŵ∗(û)

. But Ĝ
Ŵ∗
≥ Ĝŵ and then û ≥ uŵ for any ŵ. Hence û = û

Ŵ∗(û)
and

ADDOW is equal to the WBH procedure associated to the weight vector Ŵ ∗(û).

Remark 9.3. We actually proved a stronger result, as we can replace the statement Ŵ : [0, 1]→ K̂

by Ŵ : [0, 1] → K̂alt where K̂alt =
{
w ∈ RG+ :

∑
g
mg
m π̂alt

g,0wg ≤ 1
}

and the π̂alt
g,0 are such that

π̂alt
g,0

P−→ π̄alt
g,0 for some π̄alt

g,0 ≥ π̄g,0. That is, the weight space Ŵ belongs to does not have to be
the same weight space where we apply ADDOW, as long as it uses over-estimators of the limits
of the over-estimators used in K̂.
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Appendix A: Lemmas and proofs of Section 2

Lemma A.1. For all g, Fg is continuous.

Proof. Fg is concave so it is continuous over R \ {0, 1}. Fg is continuous in 0 because it is càdlàg.
Fg is continuous in 1 by concavity and monotonicity.

Lemma A.2. Take a real valued sequence (λm) with λm ∈ (0, 1), converging to 1, such that
1√
m

= o(1 − λm) and
mg,0
mg

= πg,0 + o(1 − λm) for all g. If fg(1
−) = 0 for all g and the p-values

inside each group are mutually independent, then

∀g ∈ {1, . . . , G}, π̂g,0(λm)
P−→ πg,0.

Proof. First note that
mg,1
mg
− πg,1 = πg,0 − mg,0

mg
= o(1− λm).

Thus we have

|π̂g,0(λm)− πg,0| =

∣∣∣∣∣1−
1
mg

∑
i 1{pg,i≤λm} + 1

m

1− λm
− πg,0

∣∣∣∣∣
≤
λm

∣∣∣πg,0 − mg,0
mg

∣∣∣+
mg,0
mg

∣∣∣λm − 1
mg,0

∑
i 1{pg,i≤λm,Hg,i=0}

∣∣∣
1− λm

+

∣∣∣πg,1 − mg,1
mg

∣∣∣+
mg,1
mg

∣∣∣Fg(λm)− 1
mg,1

∑
i 1{pg,i≤λm,Hg,i=1}

∣∣∣
1− λm

+
mg,1

mg

1− Fg(λm)

1− λm
+

1

m(1− λm)

≤ mg,0

mg

supx∈[0,1]

∣∣∣x− 1
mg,0

∑
i 1{pg,i≤x,Hg,i=0}

∣∣∣
1− λm

+
mg,1

mg

supx∈[0,1]

∣∣∣Fg(x)− 1
mg,1

∑
i 1{pg,i≤x,Hg,i=1}

∣∣∣
1− λm

+ o(1).

The two suprema of the last display, when multiplied by
√
m, converge in distribution (by

Kolmogorov-Smirnov’s theorem). So when divided by 1 − λm they converge to 0 in distribution
and then in probability (because 1

1−λm = o(
√
m)).

Definition A.1. The critical alpha value is

α∗ = inf
w∈K∞

1∑
g πgwg (πg,0 + πg,1fg(0+))

,

where K∞ = {w ∈ RG+ :
∑
g πgπ̄g,0wg ≤ 1}.

Lemma A.3. α∗ always satisfies α∗ < 1.
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Proof. We only need to show that for one w ∈ K∞, we have∑
g

πgwg
(
πg,0 + πg,1fg(0

+)
)
> 1.

Let us show that this is true for every w ∈ K∞ such that
∑
g πgπ̄g,0wg = 1, e.g. the w defined by

wg = 1
π̄g,0

for all g. We use the fact that fg(0
+) >

Fg(1)−Fg(0)
1−0 = 1 by the strict concavity of Fg.

Then πg,0 + πg,1fg(0
+) > 1 and∑
g

πgwg
(
πg,0 + πg,1fg(0

+)
)
>
∑
g

πgwg ≥
∑
g

πgπ̄g,0wg = 1.

Recall that I(·) is defined as I(h) = sup {u ∈ [0, 1] : h(u) ≥ u} on the function space:

F = {h : [0, 1]→ [0, 1] : h(0) = 0, h is nondecreasing} (A.1)

which has the natural order h1 ≤ h2 ⇐⇒ h1(u) ≤ h2(u)∀u ∈ [0, 1]. F is also normed with the
sup norm ‖ · ‖.

Lemma A.4. For all h ∈ F , I(h) is a maximum and h (I(h)) = I(h). Moreover, I(·), seen
as a map on F , is nondecreasing and continous on each continuous h0 ∈ F such that either
u 7→ h0(u)/u is decreasing over (0, 1], or I(h0) = 0.

Proof. I(h) is a maximum because there exists εn → 0 such that

h (I(h)) ≥ h (I(h)− εn) ≥ I(h)− εn → I(h).

So h (I(h)) ≥ I(h). Then h (h (I(h))) ≥ h (I(h)) thus h (I(h)) ≤ I(h) by the definition of I(h)
as a supremum.

Next, if h1 ≤ h2, I(h1) = h1 (I(h1)) ≤ h2 (I(h1)) so I(h1) ≤ I(h2) by defintion of I(h2).
Now take a continuous h0 ∈ F such that either u 7→ h0(u)/u is decreasing or I(h0) = 0, and

h any element of F . Let γ > 0, let u− = I(h0) − γ and u+ = I(h0) + γ. We want to prove that
there exists an ηγ such that ‖h− h0‖ ≤ ηγ implies u− ≤ I(h) ≤ u+.

If u+ > 1 then obviously I(h) ≤ u+. If not, let sγ = max
u′∈[u+,1]

(h0(u′)− u′). It is a maximum by

continuity over a compact and is such that sγ < 0, because sγ ≥ 0 would contradict the maximality
of I(h0).

Then, for all u′ ∈ [u+, 1],

h(u′)− u′ ≤ h0(u′)− u′ + ‖h− h0‖ ,

and then
sup

u′∈[u+,1]

(h(u′)− u′) ≤ sγ + ‖h− h0‖ .

Hence, as soon as ‖h− h0‖ ≤ 1
2 |sγ |, supu′∈[u+,1] (h(u′)− u′) < 0 and I(h) < u+.

If u− ≤ 0, which is always the case if I(h0) = 0, then I(h) ≥ u−. If u− > 0, u 7→ h0(u)/u is
decreasing and

h0(u−)

u−
>
h0 (I(h0))

I(h0)
= 1,

so h0(u−) > u−. We can then write the following:

h(u−)− u− ≥ h0(u−)− u− − ‖h− h0‖ > 0,

as soon as ‖h− h0‖ ≤ 1
2 (h0(u−)− u−). This implies I(h) > u−. Taking

ηγ =
1

2
min

(
|sγ |1{u+≤1} + 1{u+>1}, (h0(u−)− u−)1{u−>0} + 1{u−≤0}

)
completes the proof.
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Lemma A.5. Let a weight function W : [0, 1] → RG+. For each r between 1 and m denote the

W (r/m)-weighted p-values p
[r]
g,i = pg,i/Wg(r/m) (with the convention pg,i/0 = ∞), order them

p
[r]
(1) ≤ . . . ≤ p

[r]
(m) and note p

[r]
(0) = 0.

Then ûW = m−1 max
{
r ≥ 0 : p

[r]
(r) ≤ α

r
m

}
.

Proof. Let us denote r̂ = max
{
r ≥ 0 : p

[r]
(r) ≤ α

r
m

}
and show ûW = r̂/m by double inequality.

First, we have

ĜW

(
r̂

m

)
= m−1

G∑
g=1

mg∑
i=1

1{pg,i≤α r̂
mWg( r̂m )}

= m−1
G∑
g=1

mg∑
i=1

1{
p
[r̂]
g,i≤α

r̂
m

}

= m−1
m∑
r=1

1{
p
[r̂]

(r)
≤α r̂

m

} ≥ r̂/m,

because p
[r̂]
(1), . . . , p

[r̂]
(r̂) ≤ α

r̂
m . Then r̂/m ≤ ûW by definition of ûW . Second, we know that ûW can

be written as κ̂/m because ûW = ĜW (ûW ), so we want to show that κ̂ ≤ r̂ which is implied by r̂,

p
[κ̂]
(κ̂) ≤ α

κ̂
m . The latter is true because

m∑
r=1

1{
p
[κ̂]

(r)
≤α κ̂

m

} = mĜW

(
κ̂

m

)
= mĜW (ûW ) ≥ κ̂.

Lemma A.6. Ĝ
Ŵ∗

is nondecreasing.

Proof. Let u ≤ u′. Ĝ
Ŵ∗

(u′) = max
w∈K̂

Ĝw(u′) so by denoting w = Ŵ ∗(u) we have Ĝ
Ŵ∗

(u′) ≥ Ĝw(u′).

Furthermore,

Ĝw(u′) =
1

m

G∑
g=1

mg∑
i=1

1{pg,i≤αu′wg} ≥
1

m

G∑
g=1

mg∑
i=1

1{pg,i≤αuwg} = Ĝ
Ŵ∗

(u),

which entails Ĝ
Ŵ∗

(u′) ≥ Ĝ
Ŵ∗

(u).

Appendix B: Asymptotical weighting

Define, for a weight function W : [0, 1]→ RG+, possibly random,

P∞W : u 7→
G∑
g=1

πgπg,1Fg (αuWg(u)) ;

G∞W : u 7→
G∑
g=1

πgDg (αuWg(u)) ;

and
H∞W (u) = G∞W (u)− P∞W (u),

where
Dg : t 7→ πg,0U(t) + πg,1Fg(t) (B.1)
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is strictly concave on [0, 1] because Fg is and πg,1 > 0. Note that, if W is a fixed deterministic

weight function, P∞W and G∞W are the uniform limits of P
(m)
W and G

(m)
W when m → ∞. If W is

such that G∞W is nondecreasing, we also define

u∞W = I (G∞W ) . (B.2)

Recall that K∞ = {w ∈ RG+ :
∑
g πgπ̄g,0wg ≤ 1}. It is the asymptotic version of K̂. We now

define oracle optimal weights over K∞ for G∞· (u) and P∞· (u), for all u > 0.

Lemma B.1. Fix an u ∈ [0, 1]. Then arg maxw∈K∞ G
∞
w (u) is non empty.

If 0 < αu ≤ π̄0, it is a singleton. In this case, its only element w∗ belongs to [0, 1
αu ]G and

satisfies
∑
g πgπ̄g,0w

∗
g = 1. If αu ≥ π̄0 it is included in [ 1

αu ,∞)G.
Finally, maxw∈K∞ G

∞
w (u) ≤ 1 with equality if and only if αu ≥ π̄0.

The same statements are true for P∞· , except that the upper bound of maxw∈K∞ P
∞
w (u), which

is achieved if and only if αu ≥ π̄0, is not 1 but 1− π0.

Proof. The function w 7→ G∞w (u) is continuous over the compact K∞ so it has a maximum. Note
that maxw∈K∞ G

∞
w (0) = 0 and arg maxw∈K∞ G

∞
w (0) = K∞. For the rest of the proof u is greater

than 0.
First we show that any w∗ ∈ arg maxw∈K∞ G

∞
w (u) belongs to [0, 1

αu ]G or [ 1
αu ,∞)G. If not, there

is w∗ ∈ arg maxw∈K∞ G
∞
w (u) such that αuw∗g1 > 1 and αuw∗g2 < 1 for some g1, g2 ≤ G. Now then

we define w̃ such that w̃g = w∗g for all g 6∈ {g1, g2}, w̃g1 = 1
αu and

w̃g2 = w∗g2 +

(
w∗g1 −

1

αu

)
πg1 π̄g1,0
πg2 π̄g2,0

> w∗g2 .

So w̃ belongs to K∞ and satisfies

G∞w̃ (u) =
∑

g 6=g1,g2

πgDg(αuw
∗
g) + πg1 + πg2Dg2(αuw̃g2)

>
∑

g 6=g1,g2

πgDg(αuw
∗
g) + πg1 + πg2Dg2(αuw∗g2) = G∞w∗(u),

because Dg is increasing over [0, 1] and then constant equal to 1. This contradicts the definition
of w∗ so is impossible.

Next we distinct three cases.
(i) αu = π̄0. Then w0 = ( 1

αu , . . . ,
1
αu ) = ( 1

π̄0
, . . . , 1

π̄0
) is obviously an element of arg maxw∈K∞ G

∞
w (u)

because

G∞w0
(u) =

G∑
g=1

πgDg (1) = 1,

and we easily check that
∑
g πgπ̄g,0(w0)g = 1. Thus for every w ∈ K∞ distinct from w0, there

must exist a g1 ∈ {1, . . . , G} such that αuwg1 < 1, so Dg1(αuwg1) < 1 and G∞w (u) <
∑
g πg = 1 :

w0 is the only element of arg maxw∈K∞ G
∞
w (u).

(ii) αu < π̄0. If a w∗ ∈ arg maxw∈K∞ G
∞
w (u) exists in [ 1

αu ,∞)G, then w∗g ≥ 1
αu > 1

π̄0
and∑

g πgπ̄g,0w
∗
g > 1 which is impossible. So

arg max
w∈K∞

G∞w (u) = arg max
w∈K∞∩[0, 1

αu ]G
G∞w (u).

The function w 7→ G∞w (u) is strictly concave over the convex set K∞ ∩ [0, 1
αu ]G because πg,1 > 0

and Dg is strictly concave over [0, 1] for all g, hence the maximum is unique.
We showed that the only w∗ ∈ arg max

w∈K∞
G∞w (u) is not in [ 1

αu ,∞)G so there exists g1 ≤ G such

that αuw∗g1 < 1 thus G∞w∗(u) < 1. Furthermore
∑
g πgπ̄g,0w

∗
g = 1 : if not there would exist a w̃

with w̃g1 > w∗g1 (for the same g1 as in previous sentence) and w̃g = w∗g for all g 6= g1 such that
w̃ ∈ K∞ and G∞w̃ (u) > G∞w∗(u) which is impossible.
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(iii) αu > π̄0. So u > π̄0

α and obviously

max
w∈K∞

G∞w (u) ≥ max
w∈K∞

G∞w

( π̄0

α

)
= G∞w0

( π̄0

α

)
= 1,

as stated in case (i). So maxw∈K∞ G
∞
w (u) = 1 and the vectors w∗ of arg maxw∈K∞ G

∞
w (u) are the

ones fulfilling Dg(αuw
∗
g) = 1 for all g that is w∗ ∈ [ 1

αu ,∞)G.
The proof is similar for P∞· , by replacing Dg by πg,1Fg.

From now on, W ∗(u) denotes an element of arg maxw∈K∞ G
∞
w (u) (just like we write Ŵ ∗(u) as an

element of arg maxw∈K̂ Ĝw(u)), our results will not depend on the chosen element of the argmax.
Next Lemma gives some properties on the function G∞W∗ , among them G∞W∗ is nondecreasing which
allow us to define

u∗ = u∞W∗ = I (G∞W∗) . (B.3)

Lemma B.2. G∞W∗ is nondecreasing and u∗ > 0. G∞W∗ is strictly concave over [0, π̄0

α ∧ 1] and, if
α ≥ π̄0, constant equal to 1 over [ π̄0

α , 1].
In particular, (i) u∗ = 1 if and only if α ≥ π̄0, (ii) the function u 7→ G∞W∗(u)/u is decreasing

over (0, 1], (iii) G∞W∗ is continuous over [0, 1].

Proof. G∞W∗ is nondecreasing by exactly the same argument as in the proof of Lemma A.6. The
result can be strengthened thanks to Lemma B.1, by writing, for u < u′ ≤ π̄0

α ∧1, thatG∞W∗(u)(u
′) >

G∞W∗(u)(u) because 1 > G∞W∗(u). So G∞W∗ is increasing on [0, π̄0

α ∧ 1].
To prove that u∗ > 0, take some w ∈ K∞ such that

α >
1∑

g πgwg (πg,0 + πg,1fg(0+))
≥ α∗.

Because the expression above is continuous of the wg, they can always be chosen nonzero. We have
u∗ ≥ u∞w because G∞W∗ ≥ G∞w . Then we have, for x > 0, x→ 0+,

G∞w (x)−G∞w (0)

x− 0
=
G∞w (x)

x
=
∑
g

πgπg,0αwg +
∑
g

πgπg,1αwg
Fg(αxwg)

αxwg

→ α
∑
g

πgwg
(
πg,0 + πg,1fg(0

+)
)
> 1,

so G∞w (u) > u in the neighborhood of 0+, which entails u∞w > 0.
Now take a, b ∈ [0, π̄0

α ∧1] with a < b and λ ∈ (0, 1), by Lemma B.1, we have that αaW ∗g (a), αbW ∗g (b) ≤
1 and then, for all g:

Dg

(
λαaW ∗g (a) + (1− λ)αbW ∗g (b)

)
≥ λDg

(
αaW ∗g (a)

)
+ (1− λ)Dg

(
αbW ∗g (b)

)
.

Moreover, because G∞W∗(a) < G∞W∗(b), for at least one g1 we have aW ∗g1(a) 6= bW ∗g1(b) and by strict

concavity of Dg1 the inequality above is strict for g1. Then define w̃g =
λaW∗g (a)+(1−λ)bW∗g (b)

λa+(1−λ)b . We

have w̃ ∈ K∞ and then for all g:

πgDg (α(λa+ (1− λ)b)w̃g) ≥ λπgDg

(
αaW ∗g (a)

)
+ (1− λ)πgDg

(
αbW ∗g (b)

)
,

the inequality being strict for g1. Finally by summing:

G∞W∗(λa+ (1− λ)b) ≥ G∞w̃ (λa+ (1− λ)b) > λG∞W∗(a) + (1− λ)G∞W∗(b).

Additionally, G∞W∗(u) = 1 for αu ≥ π̄0 comes from Lemma B.1. The fact that u∗ = 1 ⇐⇒
α ≥ π̄0 follows directly from the previous statements and Lemma B.1. The decreasingness of
u 7→ G∞W∗(u)/u is straightforward from strict concavity properties because it is the slope of the
line between the origin and the graph of G∞W∗ at abscissa u > 0. Previous statements imply that
G∞W∗ is continuous at least over (0, π̄0

α ∧ 1) and, if α ≥ π̄0, over [ π̄0

α , 1]. K∞ is bounded, let B such
that |wg| ≤ B for all w ∈ K∞, then G∞W∗(u) ≤

∑
g
mg
m Dg(αuB)→ 0 when u→ 0 which gives the

continuity in 0. As in the proof of Lemma A.1, the continuity in π̄0

α ∧1 is given by the combination
of concavity and nondecreasingness.
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Fig 13: Plot of u 7→ G∞
W∗ (u) when α ≥ π̄0 (left panel) and α < π̄0 (right panel).

Remark B.1. The case α ≥ π̄0 is rarely met in practice because α is chosen small and the signal is
assumed to be sparse (so π̄0 is large) but it is kept to cover all situations. It confirms the intuitive
idea that in this situation the best strategy is to reject all hypotheses because then the FDP is
equal to π0 ≤ π̄0 ≤ α.

Remark B.2. For a weight vector w ∈ RG+, G∞w is obviously continuous. Moreover if w 6= 0, let
M = max0≤u≤1G

∞
w (u) ≤ 1 and u� = min{u : G∞w (u) = M} > 0, then G∞w is strictly concave over

[0, u�] and constant equal to M on [u�, 1], hence u 7→ G∞w (u)/u is decreasing. So whether w = 0
or not, I(·) is continuous in G∞w by Lemma A.4.

Remark B.3. The proof of the strict concavity of G∞W∗ can easily be adapted to show the (non

necessary strict) concavity of G̃
W̃∗

when D̃g = LCM
(
D̂g

)
.

Figure 13 illustrates all the properties stated in Lemma B.2, with the two cases α ≥ π̄0 and
α < π̄0.

The next Lemma justifies the intuitive idea that maximizing the rejections and the power is
the same thing (as exposed in Section 3.2), but only under (ME).

Lemma B.3. If (ME) holds, for all u ∈ [0, 1],

arg max
w∈K∞

G∞w (u) = arg max
w∈K∞

P∞w (u).

In particular, P∞W∗ is continuous nondecreasing.

Proof. First, arg maxw∈K∞ G
∞
w (0) = arg maxw∈K∞ P

∞
w (0) = K∞, so assume u > 0. If αu ≥ π̄0,

maxw∈K∞ G
∞
w (u) = 1 and maxw∈K∞ P

∞
w (u) = 1− π0 by Lemma B.1, thus arg maxw∈K∞ G

∞
w (u)

and arg maxw∈K∞ P
∞
w (u) are both equal to the set of weights w ∈ K∞ such that αuwg ≥ 1 for

all g.
Now if αu ≤ π̄0, both arg max are singletons. Take w∗ the only element of arg maxw∈K∞ P

∞
w (u).

Recall that there exists C ≥ 1 such that, for all 1 ≤ g ≤ G, π̄g,0 = Cπg,0, and write, for all w ∈ K∞,
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G∞w (u) =
∑
g

πgπg,0U(αuwg) + P∞w (u)

≤ αu
∑
g

πgπg,0wg + P∞w∗(u)

=
αu

C

∑
g

πgπ̄g,0wg + P∞w∗(u)

≤ αu

C
× 1 + P∞w∗(u)

=
∑
g

πgπg,0U(αuw∗g) + P∞w∗(u) = G∞w∗(u),

because
∑
g πgπ̄g,0w

∗
g = 1 and αuw∗g ≤ 1 for all g, by Lemma B.1. This means that w∗ is also the

unique element of arg maxw∈K∞ G
∞
w (u). Finally the properties on P∞W∗ are obtained by the same

proof as Lemma B.2.

The next lemma is only a deterministic tool used in the proof of Lemma C.4. Define the
distance d of a weight vector w to a subset S of RG+ by d(w, S) = infw̄∈S maxg |wg − w̄g|. Let
Mu = arg maxw∈K∞ G

∞
w (u) to lighten notations.

Lemma B.4. Take some u ∈ (0, 1]. Then we have:

∀ε > 0,∃ξ > 0,∀w ∈ K∞, |G∞w (u)−G∞W∗(u)| ≤ ξ ⇒ d (w,Mu)<ε.

In particular, if αu ≤ π̄0,

∀ε > 0,∃ξ > 0,∀w ∈ K∞, |G∞w (u)−G∞W∗(u)| ≤ ξ ⇒ max
g

∣∣wg −W ∗g (u)
∣∣<ε, (B.4)

and if αu ≥ π̄0,

∀ε > 0,∃ξ > 0,∀w ∈ K∞, |G∞w (u)−G∞W∗(u)| ≤ ξ ⇒ (∀g, αuwg>1− ε) . (B.5)

Proof. If the statement is false, there exists some ε > 0 and some sequence (wn)n≥1 converging to
a w` in K∞ (because K∞ is compact), such that d (wn,Mu) ≥ ε and∣∣G∞wn(u)−G∞W∗(u)

∣∣→ 0.

By continuity of Dg, G
∞
w`(u) = G∞W∗(u) so w` ∈Mu which contradicts d

(
w`,Mu

)
≥ ε. If αu ≤ π̄0,

Mu is a singleton by Lemma B.1, hence (B.4). However, if αu ≥ π̄0, Mu = {w ∈ K∞ : αuwg ≥
1 ∀g} by Lemma B.1, hence (B.5).

Appendix C: Convergence lemmas

Recall that ‖ · ‖ is the sup norm for the bounded functions on their definition domain: ‖f‖ =
supu∈[0,1] |f(u)| or ‖f‖ = supt∈R |f(t)|.

Lemma C.1. The following quantities converge to 0 in probability:

supw∈RG+

∥∥∥Ĥw −H∞w
∥∥∥, supw∈RG+

∥∥∥P̂w − P∞w ∥∥∥, supw∈RG+

∥∥∥Ĝw −G∞w ∥∥∥, and
∥∥∥D̂g −Dg

∥∥∥, for all g ∈
{1, . . . , G}.

Furthermore, for any (D̃g)g such that
∥∥∥D̃g −Dg

∥∥∥ P−→ 0,

sup
w∈RG+

∥∥∥G̃w −G∞w ∥∥∥ P−→ 0. (C.1)
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Proof. By using the same proof as the one of the Glivenko-Cantelli theorem (which adapts trivially
to convergence in probability instead of almost surely), we get from (2.1) and (2.2) that, for all g,∥∥∥∥∥ 1

mg,0

mg∑
i=1

1{pg,i≤·,Hg,i=0} − U

∥∥∥∥∥ P−→ 0,

and ∥∥∥∥∥ 1

mg,1

mg∑
i=1

1{pg,i≤·,Hg,i=1} − Fg

∥∥∥∥∥ P−→ 0.

Next, we write that∥∥∥∥∥ 1

mg

mg∑
i=1

1{pg,i≤·,Hg,i=0} − πg,0U

∥∥∥∥∥ ≤
∣∣∣∣mg,0

mg
− πg,0

∣∣∣∣
+ πg,0

∥∥∥∥∥ 1

mg,0

mg∑
i=1

1{pg,i≤·,Hg,i=0} − U

∥∥∥∥∥
P−→ 0,

and similarly
∥∥∥ 1
mg

∑mg
i=1 1{pg,i≤·,Hg,i=1} − πg,1Fg

∥∥∥ P−→ 0. So by summing,
∥∥∥D̂g −Dg

∥∥∥ P−→ 0. Apply

the triangular inequality once again to get
∥∥ 1
m

∑mg
i=1 1{pg,i≤·,Hg,i=0} − πgπg,0U

∥∥ P−→ 0, which
implies

sup
w∈RG+

∥∥∥Ĥw −H∞w
∥∥∥ ≤ G∑

g=1

∥∥∥∥∥ 1

m

mg∑
i=1

1{pg,i≤·,Hg,i=0} − πgπg,0U

∥∥∥∥∥
P−→ 0.

Similarly supw∈RG+

∥∥∥P̂w − P∞w ∥∥∥ P−→ 0 and supw∈RG+

∥∥∥Ĝw −G∞w ∥∥∥ P−→ 0 by summation.

Finally,

sup
w∈RG+

∥∥∥G̃w −G∞w ∥∥∥ ≤∑
g

(∣∣∣mg

m
− πg

∣∣∣+ πg

∥∥∥D̃g −Dg

∥∥∥) P−→ 0.

From now on D̃g is assumed to converge uniformly to Dg in probability and that W̃ ∗(u) ∈
arg maxw∈K̂ G̃w(u) exists for all u.

Next Lemma is the main technical one (with the longest proof).

Lemma C.2. We have the following convergence in probability:∥∥∥G̃W̃∗ −G∞W∗∥∥∥ P−→ 0.

Proof. First, ∥∥∥G̃W̃∗ −G∞W∗∥∥∥ ≤ sup
w∈RG+

∥∥∥G̃w −G∞w ∥∥∥+
∥∥∥G∞

W̃∗
−G∞W∗

∥∥∥ ,
where the first term tends to 0 by (C.1), so we work on the second term.

The main idea is to use the maximality of G̃w(u) in W̃ ∗(u) and the maximality of G∞w (u) in
W ∗(u). The problem is that one is a maximum over K̂ and the other is over K∞. The solution

consists in defining small variations of W̃ ∗(u) and W ∗(u) to place them respectively in K∞ and
K̂.
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Let W̃ †g (u) =
mgπ̂g,0
mπgπ̄g,0

W̃ ∗g (u). Then W̃ †(u) ∈ K∞ and

∥∥∥W̃ †g − W̃ ∗g ∥∥∥ =

∣∣∣∣ mgπ̂g,0
mπgπ̄g,0

− 1

∣∣∣∣ ∥∥∥W̃ ∗g ∥∥∥
≤
∣∣∣∣ mgπ̂g,0
mπgπ̄g,0

− 1

∣∣∣∣ m

mgπ̂g,0

P−→ 0 because
mg

m
π̂g,0

P−→ πgπ̄g,0,

which in turn implies that∥∥∥G∞
W̃ †
−G∞

W̃∗

∥∥∥ ≤∑
g

πg sup
u

∣∣∣Dg

(
αuW̃ †g (u)

)
−Dg

(
αuW̃ ∗g (u)

)∣∣∣
P−→ 0, (C.2)

because Dg is uniformly continuous over R+. Likewise, we define W †g (u) =
mπgπ̄g,0
mgπ̂g,0

W ∗g (u). There-

fore W †(u) ∈ K̂, ∥∥W †g −W ∗g ∥∥ ≤ ∣∣∣∣mπgπ̄g,0mgπ̂g,0
− 1

∣∣∣∣ 1

πgπ̄g,0

P−→ 0,

and
‖G∞W † −G

∞
W∗‖ ≤

∑
g

πg sup
u

∣∣Dg

(
αuW †g (u)

)
−Dg

(
αuW ∗g (u)

)∣∣ P−→ 0. (C.3)

With (C.1) and (C.2), we deduce that∥∥∥G̃W̃ † − G̃W̃∗∥∥∥ ≤ ∥∥∥G̃W̃ † −G∞W̃ †∥∥∥+
∥∥∥G∞

W̃ †
−G∞

W̃∗

∥∥∥
+
∥∥∥G∞

W̃∗
− G̃

W̃∗

∥∥∥
P−→ 0, (C.4)

and likewise with (C.1) and (C.3) we have∥∥∥G̃W † − G̃W∗∥∥∥ P−→ 0. (C.5)

Combining (C.1), (C.2), (C.4), (C.5), and the maximalities of G̃
W̃∗

(u) and G∞W∗(u) will finish
the proof. As a start, write∥∥∥G∞

W̃∗
−G∞W∗

∥∥∥ ≤ ∥∥∥G∞
W̃∗
−G∞

W̃ †

∥∥∥+
∥∥∥G∞

W̃ †
−G∞W∗

∥∥∥ ,
with

∥∥∥G∞
W̃∗
−G∞

W̃ †

∥∥∥ P→ 0 by (C.2), and, for all u,∣∣∣G∞
W̃ †

(u)−G∞W∗(u)
∣∣∣ = G∞W∗(u)−G∞

W̃ †
(u),

by maximality of G∞W∗(u) over K∞. Then

sup
u

(
G∞W∗(u)−G∞

W̃ †
(u)
)
≤ sup

u

(
G∞W∗(u)− G̃W∗(u)

)
+ sup

u

(
G̃W∗(u)− G̃

W̃ †
(u)
)

+ sup
u

(
G̃
W̃ †

(u)−G∞
W̃ †

(u)
)
,

with supu

(
G∞W∗(u)− G̃W∗(u)

)
P→ 0 and supu

(
G̃
W̃ †

(u)−G∞
W̃ †

(u)
)

P→ 0 by (C.1).
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Finally,

sup
u

(
G̃W∗(u)− G̃

W̃ †
(u)
)
≤ sup

u

(
G̃W∗(u)− G̃W †(u)

)
+ sup

u

(
G̃W †(u)− G̃

W̃∗
(u)
)

+ sup
u

(
G̃
W̃∗

(u)− G̃
W̃ †

(u)
)
,

with supu

(
G̃W∗(u)− G̃W †(u)

)
P→ 0 (C.5) and supu

(
G̃
W̃∗

(u)− G̃
W̃ †

(u)
)

P→ 0 (C.4). As a conse-

quence there exists a random variable Vm
P→ 0 such that∥∥∥G̃W̃∗ −G∞W∗∥∥∥ ≤ sup
u

(
G̃W †(u)− G̃

W̃∗
(u)
)

+ Vm,

but G̃W †(u)− G̃
W̃∗

(u) ≤ 0 by maximality of G̃
W̃∗

(u) over K̂, so∥∥∥G̃W̃∗ −G∞W∗∥∥∥ ≤ Vm P→ 0.

Next Lemma is a direct application of Lemma A.4. Recall that u∗ = u∞W∗ (see (B.3)) and let

ũ = ũ
W̃∗

= I
(
G̃
W̃∗

)
(C.6)

Lemma C.3. We have the following convergences in probability:{
ũ

P−→ u∗

G̃
W̃∗

(ũ)
P−→ G∞W∗(u

∗).

Proof. u 7→ G∞W∗(u)/u is nondecreasing and G∞W∗ is continuous by Lemma B.2 so by Lemma A.4
I(·) is continuous in G∞W∗ : let γ > 0 and ηγ as in the proof of Lemma A.4, then

P (|ũ− u∗| ≤ γ) ≥ P
(∥∥∥G̃W̃∗ −G∞W∗∥∥∥ ≤ ηγ) −→

Lemma C.2
1.

Second result follows immediately because G̃
W̃∗

(ũ) = ũ and G∞W∗(u
∗) = u∗ by Lemma A.4.

Lemma C.4.
(i) If α ≤ π̄0, W̃ ∗(ũ)

P−→W ∗(u∗).

(ii) If α ≥ π̄0, the inferior limit in probability of αũW̃g(ũ) is greater than or equal to 1, uniformly
in g, which reads formally:

∀ε > 0, P
(
∀g, αũW̃ ∗g (ũ)>1− ε

)
−→ 1.

Proof. First, we use the same trick as in the proof of Lemma C.2: let W̃ †g (u) =
mgπ̄g,0
mπgπ̄g,0

W̃ ∗g (u) such

that W̃ †(u) ∈ K∞ and ‖W̃ ∗g − W̃ †g ‖
P−→ 0.

Let us show that
∣∣∣G∞

W̃ †(ũ)
(u∗)−G∞W∗(u∗)

∣∣∣ P−→ 0 to apply then Lemma B.4 (always possible

because u∗ > 0). We have∣∣∣G∞
W̃ †(ũ)

(u∗)−G∞W∗(u∗)
∣∣∣ ≤ ∣∣∣G∞

W̃ †(ũ)
(u∗)−G∞

W̃∗
(ũ)
∣∣∣

+
∣∣∣G∞

W̃∗
(ũ)− G̃

W̃∗
(ũ)
∣∣∣

+
∣∣∣G̃W̃∗(ũ)−G∞W∗(u∗)

∣∣∣ .
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First term converges to 0 because for all g, Dg is uniformly continuous and∣∣∣αu∗W̃ †g (ũ)− αũW̃ ∗g (ũ)
∣∣∣ ≤ ∣∣∣αu∗W̃ †g (ũ)− αu∗W̃ ∗g (ũ)

∣∣∣+
∣∣∣αu∗W̃ ∗g (ũ)− αũW̃ ∗g (ũ)

∣∣∣
≤ ‖W̃ †g − W̃ ∗g ‖+ |u∗ − ũ| m

mgπ̂g,0

P−→ 0. (C.7)

Apply (C.1) to the second term and Lemma C.3 to the third.

(i) If α ≤ π̄0, then αu∗ ≤ π̄0 and by equation (B.4), W̃ †(ũ)
P−→W ∗(u∗). But for all g∣∣∣W̃ ∗g (ũ)−W ∗g (u∗)

∣∣∣ ≤ ‖W̃ ∗g − W̃ †g ‖+
∣∣∣W̃ †g (ũ)−W ∗g (u∗)

∣∣∣ ,
and then W̃ ∗(ũ)

P−→W ∗(u∗).
(ii) If α ≥ π̄0, u∗ = 1 by Lemma B.2 and by equation (B.5),

∀ε > 0, P
(
∀g, αu∗W̃ †g (ũ)>1− ε

2

)
−→ 1.

By equation (C.7) we also have

∀ε > 0, P
(
∀g,

∣∣∣αu∗W̃ †g (ũ)− αũW̃ ∗g (ũ)
∣∣∣ ≤ ε

2

)
−→ 1,

and by combining the two we get the desired result.

Lemma C.5. We have the following convergences in probability:

Ĝ
W̃∗

(ũ)
P−→ G∞W∗(u

∗),

Ĥ
W̃∗

(ũ)
P−→ H∞W∗(u

∗).

Proof. We have∣∣∣ĜW̃∗(ũ)−G∞W∗(u∗)
∣∣∣ ≤ sup

w∈RG+

∥∥∥Ĝw −G∞w ∥∥∥+
∣∣∣G∞

W̃∗
(ũ)−G∞W∗(u∗)

∣∣∣ .
Hence, by Lemma C.1, we only need to show that G∞

W̃∗
(ũ)

P−→ G∞W∗(u
∗).

(i) If α ≤ π̄0, ũ
P−→ u∗ and W̃ ∗(ũ)

P−→W ∗(u∗) by Lemma C.4. Then αũW̃ ∗(û)
P−→ αu∗W ∗(u∗).

We get the desired convergence by Dg’s continuity.
(ii) If α ≥ π̄0, u∗ = 1 and αu∗W ∗g (u∗) ≥ 1 for all g so G∞W∗(u

∗) = 1. Then by Lemma C.4

Dg

(
αũW̃ ∗g (û)

)
P−→ 1 which means that G∞

W̃∗
(ũ)

P−→
∑
g πg1 = 1.

The proof for Ĥ is similar, just replace Dg by πg,0U .

The last lemma states that LCM(D̂g) is a valid estimator of Dg to use in GADDOW.

Lemma C.6. Assume that D̃g = LCM(D̂g). Then D̃g is nondecreasing, D̃g(0) = 0, D̃g(1) = 1

and
∥∥∥D̃g −Dg

∥∥∥ P−→ 0.

Proof. D̃g(0) = D̂g(0) = 0 and D̃g(1) = D̂g(1) = 1 from the closed form given in Lemma 1 in
Carolan (2002). Let a, b ∈ [0, 1], a < b, and let

C(t) =

{
D̃g(t+ b− a) if t+ b− a ≤ 1

1 if t+ b− a ≥ 1.
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Then,

C(t) ≥

{
D̂g(t+ b− a) ≥ D̂g(t) if t+ b− a ≤ 1

1 ≥ D̂g(t) if t+ b− a ≥ 1,

because D̂g is non decreasing.
Furthermore, C is concave. The inequality C(λx+ (1−λ)y) ≥ λC(x) + (1−λ)C(y) for x, y, λ ∈

[0, 1], x ≤ y, is trivial except in the case where λx+ (1− λ)y ≤ A ≤ y, where A = 1− (b− a). In
this case, let λ′ such that λx+ (1− λ)y = λ′x+ (1− λ′)A. Then

C(λx+ (1− λ)y) = C(λ′x+ (1− λ′)A)

≥ λ′C(x) + (1− λ′)C(A)

= λ′C(x) + (1− λ′)
≥ λC(x) + (1− λ) = λC(x) + (1− λ)C(y)

where the last inequality is true because λ′ ≤ λ and C(x) ≤ 1. Indeed, we have

λ′ =
λx+ (1− λ)y −A

x−A

=
λ(y − x)− (y −A)

A− x

=
λ(A− x) + λ(y −A)− (y −A)

A− x

= λ− (1− λ)
y −A
A− x

≤ λ.

So by definition of the LCM, C(t) ≥ D̃g(t) for all t ∈ [0, 1]. In particular,

D̃g(b) = C(a) ≥ D̃g(a),

and D̃g is nondecreasing. Finally, the convergence comes from ‖D̃g −Dg‖ ≤ ‖D̂g −Dg‖, see also
Carolan (2002).

Appendix D: Proof of Corollary 5.3 for Pro 1

First, ŵ(1) P−→ w(1) where w(1) =
(

1
π̄0
, . . . , 1

π̄0

)
and ŵ(2) P−→ w(2) where, for all g, w

(2)
g =

π̄g,1
π̄g,0(1−π̄0) . By using Lemma C.1 and the continuity of Dg, we get that ‖Ĝŵ(1) −G∞w(1)‖

P−→ 0 and

‖Ĝŵ(2) −G∞w(2)‖
P−→ 0 and then by Lemma A.4 we get that ûŵ(1)

P−→ u∞
w(1) and ûŵ(2)

P−→ u∞
w(2) so

ûM
P−→ uM where uM = max(u∞

w(1) , u
∞
w(2)).

Define again Ŵ †g (u) =
mgπ̂g,0
mπgπ̄g,0

Ŵ ∗g (u) and note that the power of Pro1 is E
[
P̂
Ŵ∗

(ûM )
]
. We

have

P̂
Ŵ∗

(ûM ) ≤ sup
w∈RG+

∥∥∥P̂w − P∞w ∥∥∥+
∥∥∥P∞

Ŵ∗
− P∞

Ŵ †

∥∥∥+ P∞
Ŵ †

(ûM )

≤ sup
w∈RG+

∥∥∥P̂w − P∞w ∥∥∥+
∥∥∥P∞

Ŵ∗
− P∞

Ŵ †

∥∥∥+ P∞W∗(ûM )

P−→ P∞W∗(uM ),

because P∞W∗ is continuous by Lemma B.3.
Note that u∗ ≥ uM (because G∞W∗ ≥ G∞w(1) and G∞W∗ ≥ G∞w(2)) to conclude.
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Appendix E: Proof of Theorem 7.1

First, note that, by the independence provided by Assumption 7.1, we can work conditionally to
(Fm)m and consider this sequence fixed and deterministic. Second, note that m−1|{1 ≤ i ≤ mg :
Fm(g, i) = f}| −→

m→∞
πg
F . Finally, note that the empirical function used for crADDOW is defined

by

Ĝcross : u 7→ m−1
G∑
g=1

F∑
f=1

∑
1≤i≤mg :
Fm(g,i)=f

1{pg,i≤αuw∗g,f}. (E.1)

By using Assumption 7.2, we can apply Lemmas C.1, C.2, C.3 and C.4 to ADDOW−f for each

f , so we get that w∗g,f
P−→ W ∗g (u∗). Using again Lemma C.1 for each fold, and then using the

continuity of G∞, we get that ∥∥∥Ĝcross −G∞W∗(u∗)
∥∥∥ P−→ 0.

Then, by Remark B.2,

ûcross
P−→ u∞W∗(u∗),

where ûcross = I
(
Ĝcross

)
is the step-up threshold of crADDOW. Now, by using the asymptotic

counterpart of Remark 9.2, we have that u∞W∗(u∗) = u∗. Then we can proceed as in the proofs of
Lemma C.5 and Theorems 5.1 and 5.2 to finally obtain that

lim
m→∞

FDR (crADDOW) =
H∞W∗(u

∗)

u∗

and
lim
m→∞

Pow (crADDOW) = P∞W∗(u
∗),

which concludes.

Remark E.1. To keep notation light, we did not introduce the generalization of Section 9.1 but
we could use it to get a Theorem with a generalized crADDOW.

Remark E.2. It is easy to see that crADDOW is a WBH procedure with G×F groups when using
the expression given by Equation (E.1).
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