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Abstract: Weighting the p-values is a well-established strategy that improves the power of
multiple testing procedures while dealing with heterogeneous data. However, how to achieve
this task in an optimal way is rarely considered in the literature. This paper contributes to
fill the gap in the case of group-structured null hypotheses, by introducing a new class of
procedures named ADDOW (for Adaptive Data Driven Optimal Weighting) that adapts both
to the alternative distribution and to the proportion of true null hypotheses. We prove the
asymptotical FDR control and power optimality among all weighted procedures of ADDOW,
which shows that it dominates all existing procedures in that framework. Some numerical
experiments show that the proposed method preserves its optimal properties in the finite
sample setting when the number of tests is moderately large.
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1. Introduction

Recent high-throughput technologies bring to the statistical community new type of data being
increasingly large, heterogeneous and complex. Addressing significance in such context is partic-
ularly challenging because of the number of questions that could naturally come up. A popular
statistical method is to adjust for multiplicity by controlling the False Discovery Rate (FDR),
which is defined as the expected proportion of errors among the items declared as significant.
Once the amount of possible false discoveries is controlled, the question of increasing the power,
that is the amount of true discoveries, arises naturally. In the literature, it is well-known that the
power can be increased by clustering the null hypotheses into homogeneous groups. The latter can
be derived in several ways:

• sample size: a first example is the well-studied data set of the Adequate Yearly Progress
(AYP) study (Rogosa, 2005), which compares the results in mathematics tests between
socioeconomically advantaged and disadvantaged students in Californian high school. As
studied by Cai and Sun (2009), ignoring the sizes of the schools tends to favor large schools
among the detections, simply because large schools have more students and not because the
effect is stronger. By grouping the schools in small, medium, and large schools, more rejec-
tions are allowed among the small schools, which increases the overall detection capability.
This phenomenon also appears in more large-scale studies, as in GWAS (Genome-Wide As-
sociation Studies) by grouping hypotheses according to allelic frequencies (Sun et al., 2006)
or in microarrays experiments by grouping the genes according to the DNA copy number
status (Roquain and Van De Wiel, 2009).

• spatial structure: some data sets naturally involve a spatial (or temporal) structure into
groups. A typical example is neuroimaging: in Schwartzman, Dougherty and Taylor (2005),
a study compares diffusion tensor imaging brain scans on 15443 voxels of 6 normal and 6
dyslexic children. By estimating the densities under the null of the voxels of the front and
back halves of the brain, some authors highlight a noteworthy difference which suggests that
analysing the data by making two groups of hypotheses seems more appropriate, see Efron
(2008) and Cai and Sun (2009).

• hierarchical relation: groups can be derived from previous knowledge on hierarchical struc-
ture, like pathways for genetic studies, based for example on known ontologies (see e.g.
The Gene Ontology Consortium (2000)). Similarly, in clinical trials, the tests are usually
grouped in primary and secondary endpoints, see Dmitrienko, Offen and Westfall (2003).

In these examples, while ignoring the group structure can lead to overly conservative procedures,
this knowledge can easily be incorporated by using weights. This method can be traced back to
Holm (1979) who presented a sequentially rejective Bonferroni procedure that controls the Family-
Wise Error Rate (FWER) and added weights to the p-values. Weights can also be added to the
type-I error criterion instead of the p-values, as presented in Benjamini and Hochberg (1997) with
the so-called weighted FDR. Blanchard and Roquain (2008) generalized the two approaches by
weighting the p-values and the criterion, with a finite positive measure to weight the criterion (see
also Ramdas et al. (2017) for recent further generalizations). Genovese, Roeder and Wasserman
(2006) introduced the p-value weighted BH procedure (WBH) which has been extensively used
afterwards with different choices for the weights. Roeder et al. (2006); Roeder and Wasserman
(2009) have built the weights upon genomic linkage, to favor regions of the genome with strong
linkage. Hu, Zhao and Zhou (2010) calibrated the weights by estimating the proportion of true
nulls inside each group (procedure named HZZ here). Zhao and Zhang (2014) went one step further
by improving HZZ and BH with weights that maximize the number of rejections at a threshold

imsart-generic ver. 2014/10/16 file: HAL_Durand2018v1.tex date: September 28, 2017



G. Durand/Adaptive p-value weighting with power optimality 3

computed from HZZ and BH. They proposed two procedures Pro1 and Pro2 shown to control the
FDR asymptotically and to have a better power than BH and HZZ.

However, the problem of finding optimal weights (in the sense of achieving maximal averaged
number of rejected false nulls) has been only scarcely considered in the literature. For FWER
control and Gaussian test statistics, Wasserman and Roeder (2006) designed oracle and data-driven
optimal weights, while Dobriban et al. (2015) considered a Gaussian prior on the signal. For FDR
control, Roquain and Van De Wiel (2009) designed oracle optimal weights by using the knowledge
of the distribution under the alternative of the hypotheses. Unfortunately, this knowledge is not
reachable in practice. This leads to the natural idea of estimating the oracle optimal weights by
maximizing the number of rejections. This idea has been followed by Ignatiadis et al. (2016) with
a procedure called IHW. While they proved that IHW controls the FDR, its power properties
have not been considered. In particular, it is unclear whether maximizing the overall number of
rejections is appropriate in order to maximize power.

In this paper, we present a general solution to the problem of optimal data-driven weighting
of BH procedure in the case of grouped null hypotheses. The new class of procedures is called
ADDOW (for Adaptive Data-Driven Optimal Weighting). With mild assumptions, we show that
ADDOW asymptotically controls the FDR and has optimal power among all weighted step-up
procedures. Interestingly, our study shows that the heterogeneity with respect to the proportion
of true nulls should be taken into account in order to attain optimality. This fact seems to have
been ignored so far: for instance we show that IHW is optimal when the true nulls are evenly
distributed across groups but its performance can quickly deteriorate otherwise.

In Section 2, we present the mathematical model and assumptions. In Section 3, we define what
is a weighting step-up procedure. In Section 4, we introduce ADDOW along with a stabilized
version, designed to deal with the overfitting problem due to weak signal. Section 5 provides our
main theoretical results. Our numerical simulations are presented in Section 6, while we conclude
in Section 7 with a discussion. The proofs of the two main theorems are given in Section 8 and
more technical results are deferred to appendix. Let us underline that an effort has been made to
make the proofs as short and concise as possible, while keeping them as clear as possible.

In all the paper, the probabilistic space is denoted (Ω,A,P). The notations
a.s.−→ and

P−→ stand
for the convergence almost surely and in probability. A ”+” symbol is used to indicate that two
cases (A) and (B) are simultaneously statisfied: (A)+(B).

2. Setting

2.1. Model

We consider the following stylized grouped p-value modeling: let G ≥ 2 be the number of groups.
In each group g ∈ {1, . . . , G}, let (Hg,1, Hg,2, . . . ) be some binary variables corresponding to the
null hypotheses to be tested in this group, with Hg,i = 0 if it is true and = 1 otherwise. Consider in
addition (pg,1, pg,2, . . . ) some random variables in [0, 1] where each pg,i corresponds to the p-value
testing Hg,i.

We make the following marginal distributional assumption for pg,i: if Hg,i = 0, pg,i follows a
uniform distribution on [0, 1]. We denote by U : x 7→ 1{x>0}×min(x, 1) its cumulative distribution
function (c.d.f.). If Hg,i = 1, pg,i follows a common distribution corresponding to c.d.f. Fg. In
particular, note that the p-values are assumed to have the same alternative distribution within
each group. We make the mild assumption that Fg is strictly concave on [0, 1] (and thus is also

continuous on R, see Lemma A.1). Furthermore, by concavity, x 7→ Fg(x)−Fg(0)
x−0 has a right limit

in 0 that we denote by fg(0
+) ∈ [0,∞], and x 7→ Fg(x)−Fg(1)

x−1 has a left limit in 1 that we denote

by fg(1
−) ∈ [0,∞).

Above, we considered an infinite set of hypotheses/p-values because our study will be asymptotic
in the number of tests m. At step m, we observe the p-values pg,i, g ≤ G, i ≤ mg where the mg are

non-decreasing integer sequences depending on m and such that
∑G
g=1mg = m. Let us emphasize
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that G is kept fixed with m throughout the paper. Note also mg,1 =
∑mg
i=1Hg,i the number of

false nulls and mg,0 = mg −mg,1 the number of true nulls in group g. We make the assumption
that there exists πg > 0 and πg,0 > 0 such that for all g, mg/m → πg and mg,0/mg → πg,0
when m → ∞. For each g we also assume that πg,1 = 1 − πg,0 > 0. These assumptions mean
that, asymptotically, no group, and no proportion of signal or sparsity, is vanishing. We denote
π0 =

∑
g πgπg,0 the mean of the πg,0’s and denote the particular case where the nulls are evenly

distributed in each group by (ED):

πg,0 = π0, 1 ≤ g ≤ G. (ED)

Let us now specify assumptions on the joint distribution of the p-values. While we make no
assumption on the p-value dependence between two different groups, we assume that the p-values
are weakly dependent within each group:

1

mg,0

mg∑
i=1

1{pg,i≤t,Hg,i=0}
a.s.−→ U(t), t ≥ 0, (2.1)

and
1

mg,1

mg∑
i=1

1{pg,i≤t,Hg,i=1}
a.s.−→ Fg(t), t ≥ 0. (2.2)

This assumption is mild and classical, see Storey, Taylor and Siegmund (2004). Note that weak
dependence is trivially achieved if the p-values are independent.

2.2. πg,0 estimation

For each g, let us assume we have at hand an estimator π̂g,0 ∈ (0, 1] of mg,0/mg and assume that

π̂g,0
P−→ π̄g,0 for some π̄g,0 ≥ πg,0. Let also π̄0 =

∑
g πgπ̄g,0.

In our setting, this assumption can be fulfilled by using the estimators introduced in Storey,
Taylor and Siegmund (2004):

π̂g,0(λ) =
1− 1

mg

∑mg
i=1 1{pg,i≤λ} + 1

m

1− λ
, (2.3)

for a given parameter λ ∈ (0, 1) let arbitrary (the 1
m is here just to ensure π̂g,0(λ) > 0). It is easy

to deduce from (2.1) and (2.2) that 1
mg

∑mg
i=1 1{pg,i≤λ}

a.s.−→ πg,0λ+ πg,1Fg(λ), which provides our

condition:

π̂g,0(λ)
a.s.−→ πg,0 + πg,1

1− Fg(λ)

1− λ
≥ πg,0.

While (π̄g,0)g is let arbitrary in our setting, some particular cases will be of interest in the
sequel. First is the Evenly Estimation case (EE) one where

π̄g,0 = π̄0, 1 ≤ g ≤ G. (EE)

In that case, our estimators all share the same limit, and doing so they do not take in account the
heterogeneity with respect to the proportion of true nulls. As we will see, (EE) is relevant when
the proportion of true nulls is homogeneous across groups, that is, when (ED) holds. A particular
subcase of (EE) is the Non Estimation case (NE) where:

π̂g,0 = 1 which implies π̄g,0 = 1, 1 ≤ g ≤ G. (NE)

In the latter, basically, the πg,0 estimation step is skipped.
Finally, let us introduce the Consistent Estimation case (CE) for which the estimators π̂g,0 are

assumed to be all consistent:
π̄g,0 = πg,0, 1 ≤ g ≤ G. (CE)
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While this corresponds to a favorable situation, this assumption can be met in classical situations,
where fg(1

−) = 0 and λ = λm tends to 1 slowly enough in definition (2.3), see Lemma A.2 in
Section A.

The condition fg(1
−) = 0 is called ”purity” in the literature. It has been introduced in Genovese

and Wasserman (2004) and then deeply studied, along with the convergence of Storey estimators,
in Neuvial (2013).

2.3. Criticality

To study asymptotic FDR control and power, it is convenient to focus only in situations where we
some rejections are possible (the Power and FDR being converging to 0 otherwise). To this end,
Chi (2007) introduced the notion of criticality: they defined some critical alpha level, denoted α∗,
for which BH procedure has no asymptotical power if α < α∗ (see also Neuvial (2013) for a link
between criticality and purity).

We extended this notion of criticality in our heterogeneous setting in Section A (see Defini-
tion A.1) and will focus in our results on the supercritical case α ∈ (α∗, 1). Lemma A.3 states that
α∗ < 1 so such an α always exists.

While the formal definition of α∗ is reported to the appendix for the sake of clarity, let us
emphasize that it depends on the (Fg)g, (πg)g, (πg,0)g and, maybe less intuitively, on the (π̄g,0)g,
which means that the choice of the estimators changes the value of α∗.

2.4. Leading example

While our framework allows a general choice for Fg, a canonical example that we have in mind
is the Gaussian one-sided framework where the test statistic in group g follows N (0, 1) under the
null, while it follows N (µg, 1) under the alternative, for G unknown parameters µg > 0.

Classically, this corresponds to consider p-values uniform under the null with alternative c.d.f.
given by

Fg(·) = Φ̄
(
Φ̄−1(·)− µg

)
,

with derivative
fg(·) = exp

(
µg

(
Φ̄−1(·)− µg

2

))
,

where we denoted Φ̄(z) = P (Z ≥ z) for Z ∼ N (0, 1). Hence Fg is strictly concave and this
framework fulfills the assumptions of Section 2.1.

Furthermore we easily check that fg(0
+) =∞, so α∗ = 0 and fg(1

−) = 0 which means that this
framework is supercritical (α∗ = 0, see Definition A.1) with purity and then achievable consistent
estimation (CE).

2.5. Criteria

The set of indices corresponding to true nulls is denoted by H0, that is (g, i) ∈ H0 if and only if
Hg,i = 0, and we also denote H1 = H0

c.
In this paper, we define a multiple testing procedure R as a set of indices that are rejected:

pg,i is rejected if and only if (g, i) ∈ R. The False Discovery Proportion (FDP) of R, denoted by
FDP(R), is defined as the number of false discoveries divided by the number of rejections if there
are any, and 0 otherwise:

FDP(R) =
|R ∩H0|
|R| ∨ 1

.

We denote FDR(R) = E [FDP(R)] the FDR of R. Its power, denoted Pow(R), is defined as the
mean number of true positives divided by m:

Pow(R) = m−1E [|R ∩H1|] .
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Fig 1: The BH procedure applied to a set of 10 p-values. Right plot: the p-values and the function k → αk/m.

Left plot: identity function and Ĝ. Each plot shows that 6 p-values are rejected.

Note that our power definition is slightly different than the usual one for which the number
of true discoveries is divided by m1 =

∑
gmg,1 instead of m. This simplifies our expressions

(see Section 8.1) and does not have any repercussion because the two definitions differ only by a
multiplicative factor converging to 1− π0 ∈ (0, 1) when m→∞.

3. Weighting

3.1. Weighting the BH procedure

Say we want to control the FDR at level α. Assume that the p-values are arranged in increasing

order p(1) ≤ . . . ≤ p(m) with p(0) = 0, the classic BH procedure consists in rejecting all pg,i ≤ α k̂
m

where k̂ = max
{
k ≥ 0 : p(k) ≤ α k

m

}
.

Take a nondecreasing function h defined on [0, 1] such that h(0) = 0 and h(1) ≤ 1, we de-
note I(h) = sup {u ∈ [0, 1] : h(u) ≥ u} . Some properties of the functional I(·) are gathered in
Lemma A.4, in particular h (I(h)) = I(h). We now reformulate BH with the use of I(·), because
it is more convenient when dealing with asymptotics. Doing so, we follow the formalism notably
used in Roquain and Van De Wiel (2009) and Neuvial (2013). Define the empirical function

Ĝ : u 7→ m−1
G∑
g=1

mg∑
i=1

1{pg,i≤αu},

then k̂ = m× I(Ĝ). This is a particular case of Lemma A.5.
The graphical representation of the two points of view for BH is depicted in Figure 1 with

m = 10. The p-values are plotted on the right part of the figure along with the function k 7→ αk/m

and we see that the last p-value under the line is the sixth one. On the left, the function Ĝ
corresponding to these p-values is displayed alongside the identity function, with the last crossing
point being located between the sixth and seventh jumps, thus I(Ĝ) = 6/m and 6 p-values are
rejected.
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The weighted BH (WBH) with weight vector w ∈ RG+ is defined by computing

Ĝw : u 7→ m−1
G∑
g=1

mg∑
i=1

1{pg,i≤αuwg}

and rejecting all pg,i ≤ αI (Gw)wg. We denote it WBH(w). Note that w is authorized to be
random, hence it can be computed from the p-values. In particular, BH = WBH(1) where 1 =
(1, . . . , 1) ∈ RG+.

Following Roquain and Van De Wiel (2009), to deal with optimal weighting, we need to further
generalize WBH into a multi-weighted BH (MWBH) procedure by introducing a weight function
W : [0, 1]→ RG+, which can be random, such that the following function:

ĜW : u 7→ m−1
G∑
g=1

mg∑
i=1

1{pg,i≤αuWg(u)}, (3.1)

is nondecreasing. The resulting procedure rejects all the p-values such that pg,i ≤ αûWWg(ûW )
and is denoted MWBH(W ) where, for the rest of the paper, we denote

ûW = I
(
ĜW

)
, (3.2)

and name it the step-up threshold. One different weight vector W (u) is associated to each u, hence
the ”multi”-weighting. Note that the class of MWBH procedures is more general than the one of
WBH procedures because any weight vector can be seen as a constant weight function.

Note that, there is a simple way to compute ûW . For each r between 1 and m denote the

W (r/m)-weighted p-values p
[r]
g,i = pg,i/Wg(r/m) (with the convention pg,i/0 = ∞), order them

p
[r]
(1) ≤ . . . ≤ p

[r]
(m) and note p

[r]
(0) = 0. Then ûW = m−1 max

{
r ≥ 0 : p

[r]
(r) ≤ α

r
m

}
(this is Lemma A.5).

As in previous works, in order to achieve a valid FDR control, these procedures should be used
with weights that satisfy some specific relation. Here, we introduce the following weight spaces:

Km =

{
w ∈ RG+ :

∑
g

m

mg
π̂g,0wg ≤ 1

}
, (3.3)

Km
NE =

{
w ∈ RG+ :

∑
g

m

mg
wg ≤ 1

}
. (3.4)

Note that Km may appear unusual because it depends on the estimators π̂g,0, however it is
completely known and usable in practice. Note also that Km = Km

NE in the (NE) case.
Finally, for a weight function W and a threshold u ∈ [0, 1], we denote by Ru,W the double

indexed procedure rejecting the p-values less than or equal to αuWg(u), that is Ru,W = {(g, i) :

pg,i ≤ αuWg(u)}. By (3.1), note that ĜW (u) = m−1 |Ru,W | and MWBH(W ) = RûW ,W .

3.2. Choosing the weights

Take W and u, and let P
(m)
W (u) = Pow (Ru,W ). We have

P
(m)
W (u) = m−1E

[
G∑
g=1

mg∑
i=1

1{pg,i≤αuWg(u),Hg,i=1}

]

=

G∑
g=1

mg,1

m
Fg (αuWg(u)) .
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Note that these relations are valid only if W and u are deterministic. In particular, they are not
valid when used a posteriori with a data-driven weighting and u = ûW .

In Roquain and Van De Wiel (2009), the authors define the oracle optimal weight function W ∗or
as:

W ∗or(u) = arg max
w∈Km

NE

P (m)
w (u). (3.5)

Note that they defined W ∗or only in case (NE), but their definition easily extends to the general
case as above. They proved the existence and uniqueness of W ∗or in (ED)+(NE) case and that,
asymptotically, MWBH(W ∗or) controls the FDR at level π0α and has a better power than ev-
ery MWBH(w(m)) for w(m) ∈ Km

NE some deterministic weight vectors satisfying a convergence
criterion.

However, computing W ∗or requires the knowledge of the Fg, not available in practice, so the

idea is to estimate W ∗or with a data driven weight function Ŵ ∗ and then apply MWBH with this
random weight function. For this, consider the functional defined by, for any (deterministic) weight
function W and u ∈ [0, 1]:

G
(m)
W (u) = E

[
ĜW (u)

]
=

G∑
g=1

(mg,0

m
U(αuWg(u)) +

mg,1

m
Fg(αuWg(u))

)

= P
(m)
W (u) +

G∑
g=1

mg,0

m
U(αuWg(u)). (3.6)

G
(m)
W (u) is the mean ratio of rejections for the procedure rejecting each pg,i ≤ αuWg(u). The intu-

itive idea is that maximizing G
(m)
W (u) is close to maximizing P

(m)
W (u). We justify this heuristic as

follows: assuming U is the identity function, then the right term of (3.6) becomes αu
∑
g
mg,0
m Wg(u)

and it does not depend of the weights if additionally
∑
g
mg,0
m Wg(u) = 1, which makes P

(m)
W (u)

the only term depending on W . Now, we can evaluate the constraint on W by estimating
mg,0
m =

mg
m

mg,0
mg

by
mg
m π̂g,0 (which leads to the weight space Km defined in equation (3.3)), and G

(m)
w (u)

can be easily estimated by the (unbiased) estimator Ĝw(u). As a result, maximizing the latter in
w should lead to good weights, not too far from W ∗or(u).

Zhao and Zhang (2014) followed this heuristic by applying a two-stage approach to derive two
procedures, named Pro1 and Pro2. Precisely, in the first stage they use the weight vectors ŵ(1) =

( 1
π̂0
, . . . , 1

π̂0
), where π̂0 =

∑
g
mg
m π̂g,0, and ŵ(2) defined by ŵ

(2)
g =

π̂g,1
π̂g,0(1−π̂0) , where π̂g,1 = 1− π̂g,0,

and let ûM = max(ûŵ(1) , ûŵ(2)). In the second stage, they maximize Ĝw(ûM ) over Km, which gives

rise to the weight vector Ŵ ∗(ûM ) according to our notation. Then they define their procedures as
the following:

Pro 1 = R
ûM ,Ŵ∗(ûM )

,

and
Pro 2 = WBH

(
Ŵ ∗(ûM )

)
.

The caveat of this approach is that the initial thresholding, that is the definition of ûM , seems
somewhat arbitrary, which will result in sub-optimal procedures, see Corollary 5.3. As a side
remark, ŵ(1) and ŵ(2) are involved in other procedures of the literature. The HZZ procedure of
Hu, Zhao and Zhou (2010) is WBH(ŵ(2)), and WBH(ŵ(1)) is the classical Adaptive BH procedure
(see e.g. Lemma 2 of Storey, Taylor and Siegmund (2004)) denoted here as ABH.

Ignatiadis et al. (2016) actually used the above heuristic with multi-weighting (while their

formulation differs from ours) which consists in maximizing Ĝw(u) in w for each u. However, their
choice of the weight space is only suitable for the case (NE) and can make the above heuristic
break down, because in general the right term in (3.6) can still depend on w, see remark 3.1.

In the next section, we take the best of the two approaches to attain power optimality with
data-driven weighting. Let us already mention that the crucial point is Lemma B.3, that fully
justifies the heuristic (in cases (CE) and (ED)+(EE)).
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Remark 3.1. We can compute numerical examples where BH has asymptotic power larger than
IHW. For example, if we break (ED) by taking a small π1,0 (almost pure signal) and a large π2,0

(sparse signal), along with a small group and a large one (π1 much smaller than π2) and strong
signal in both groups, IHW slightly favors group 2 whereas the oracle optimal favors group 1. BH
does not favor any group thus a larger power than IHW. This example is simulated in Section 6.3
(see Figure 5).

4. New procedures

4.1. ADDOW definition

We exploit previous intuition and propose to estimate the oracle optimal weights W ∗or by maxi-

mizing in w ∈ Km the empirical counterpart to G
(m)
w (u), that is Ĝw(u).

Definition 4.1. We call an adaptive data-driven optimal weight function a random function
Ŵ ∗ : [0, 1]→ Km such that for all u ∈ [0, 1]:

Ĝ
Ŵ∗

(u) = max
w∈Km

Ĝw(u).

Such function always exists because
{
Ĝw(u), w ∈ Km

}
⊂
{
k
m , k ∈ J0,mK

}
is finite, but may

not be unique. So in all the following, we take a certain Ŵ ∗, and our results do not depend on
the choice of Ŵ ∗. An important fact is that Ĝ

Ŵ∗
is nondecreasing (see Lemma A.6) so û

Ŵ∗
exists

and the corresponding MWBH procedure is well-defined:

Definition 4.2. The ADDOW procedure is the MWBH procedure using Ŵ ∗ as the weight func-

tion, that is, ADDOW = MWBH
(
Ŵ ∗
)

.

One shall note that ADDOW is in fact a class of procedures depending on the estimators π̂g,0
through Km. Note that, in the (NE) case, ADDOW reduces to IHW.

Remark 4.1. It turns out that ADDOW reduces to a WBH procedure. It comes from part 2 of
the proof of Theorem 5.2 and Remark 8.2. Moreover, to every MWBH procedure, corresponds a
WBH procedure with power higher or equal.

4.2. Stabilization for weak signal

Since ADDOW uses the data both through the p-values and the weights, this will result in a
slight increase of the FDR, as we will see in the simulations (Section 6.2). This effect is close in
spirit to the well known overfitting phenomenon. In our setting where the signal is strong enough,
this drawback is proved to vanish when m is large enough, see the simulations and Theorem 5.1.
However, the latter is not true for weak signal: if the data are close to be random noise, making
the weight optimization can lead ADDOW to find signal only by chance, that is, to make false
positives. To circumvent this concern, we propose to stabilize ADDOW by using a pre-testing phase
close in spirit to the Kolmogorov-Smirnov (KS) test (Kolmogorov, 1933) to determine whether
the signal is weak or not and then to apply ADDOW only if the signal is large enough (and just
apply BH otherwise).

Formally, we reject the hypothesis that the signal is weak if Zm > qβ,m, where

Zm =
√
m sup
w∈Km

NE

sup
u∈[0,1]

(
Ĝw(u)− αu

)
,

and qβ,m is the (1− β)-quantile of the distribution of Z0m, where Z0m is defined as

Z0m =
√
m sup
u∈[0,1]

(
m−1

G∑
g=1

mg∑
i=1

1{Ug,i≤αuW̃∗g (u)} − αu

)
, (4.1)
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where the Ug,i are uniform variables over [0, 1] with, for all g, Ug,1, . . . , Ug,mg independent, and

W̃ ∗(u) ∈ arg max
w∈Km

NE

m−1
G∑
g=1

mg∑
i=1

1{Ug,i≤αuwg}.

Z0m can be viewed as a copy of Zm but under the full null model where the p-values are uniform
on [0, 1] and independent, and without estimating πg,0. We denote the test rejecting the weak
signal scenario by φβ = 1{Zm>qβ,m}. This gives us a stabilization procedure depending on β that
we call sADDOWβ :

sADDOWβ =

{
ADDOW if φβ = 1

BH if φβ = 0
(4.2)

We expect that in the weak signal case, the stabilized procedures have better control of the
FDR than ADDOW, because in that case, without estimating πg,0 and if the p-values are all
independent, the distribution of Zm is close to the distribution of Z0m, and we have the following
approximation:

FDR (sADDOWβ) = E [φβ FDP (ADDOW) + (1− φβ) FDP (BH)]

≤ E [φβ + FDP (BH)]

≤ P (Zm > qβ,m) + FDR (BH)

. P (Z0m > qβ,m) +
m0

m
α

≤ β +
m0

m
α,

where P (Z0m > qβ,m) ≤ β by definition of qβ,m and m0 =
∑
gmg,0 is the number of true nulls.

If β is chosen small the control at level α should be achieved. This heuristic will be supported by
the simulations in Section 6.2.

5. Results

5.1. Main results

Now we present the two main Theorems of this paper. The two are asymptotical and justify the
use of ADDOW when m is large. The first is the control of the FDR at level at most α. The second
shows that ADDOW has maximum power over all MWBH procedures in the (CE) case, and also
in (ED)+(EE) case. The two are proven in Section 8.

Theorem 5.1. Let us consider the framework defined in Sections 2.1 and 2.2. We have

lim
m→∞

FDR (ADDOW) ≤ α. (5.1)

If α ≤ π̄0, we have two more accurate results: in (CE) case,

lim
m→∞

FDR (ADDOW) = α,

and in (ED)+(EE) case,

lim
m→∞

FDR (ADDOW) =
π0

π̄0
α.

Theorem 5.2. Let us consider defined in Sections 2.1 and 2.2, with the additional assumption
(CE) or (ED)+(EE). For any sequence of random weight functions (Ŵ )m≥1, such that Ŵ : [0, 1]→
Km and Ĝ

Ŵ
is nondecreasing, we have

lim
m→∞

Pow (ADDOW) ≥ lim sup
m→∞

Pow
(

MWBH
(
Ŵ
))

.
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5.2. Relation to IHW

Recall that IHW is ADDOW in the (NE) case, and that (NE) is a subcase of (EE). Hence, as a
byproduct, we deduce from Theorems 5.1 and 5.2 the following result on IHW.

Corollary 5.1. Let us consider the framework defined in Sections 2.1 and 2.2, with the additional
assumption (ED). Then

lim
m→∞

FDR (IHW) = π0α,

and for any sequence of random weight functions (Ŵ )m≥1 such that Ŵ : [0, 1]→ Km
NE and Ĝ

Ŵ
is

nondecreasing, we have

lim
m→∞

Pow (IHW) ≥ lim sup
m→∞

Pow
(

MWBH
(
Ŵ
))

.

While equation (5.1) of Theorem 5.1 covers Theorem 4 of the supplementary material of Igna-
tiadis et al. (2016) (with slightly stronger assumption on the smoothness of the Fgs), the FDR
controlling result of Corollary 5.1 gives a slightly sharper bound (π0α instead of α) in (ED) case.

The power optimality stated in Corollary 5.1 is new and was not shown in Ignatiadis et al.
(2016). It thus supports the fact that IHW should be used under the assumption (ED) and when
π0 is close to 1 or not estimated.

5.3. Comparison to other existing procedures

For any estimators π̂g,0 ∈ [0, 1], any weighting satisfying
∑
g
mg
m wg ≤ 1 also satisfies

∑
g
mg
m π̂g,0wg ≤

1, that is Km
NE ⊂ Km. Hence, any MWBH procedure estimating

mg,0
mg

by 1 uses a weight function

valued in Km. This immediately yields the following corollary.

Corollary 5.2. Let us consider the framework defined in Sections 2.1 and 2.2, with the additional
assumption (CE) or (ED)+(EE). Then

lim
m→∞

Pow (ADDOW) ≥ lim sup
m→∞

Pow (R) ,

for any R ∈ {BH, IHW}.

The next corollary simply states that ADDOW outperforms many procedures of the ”weighting
with π0 adaptation” literature.

Corollary 5.3. Let us consider the framework defined in Sections 2.1 and 2.2, with the additional
assumption (CE) or (ED)+(EE). Then

lim
m→∞

Pow (ADDOW) ≥ lim sup
m→∞

Pow (R) ,

for any R ∈ {Pro 1,Pro 2,HZZ,ABH}.

The results for Pro2, HZZ and ABH follow directly from Theorem 5.2 because these are MWBH
procedures. The proof for Pro1 (which is not of the MWBH type) can be found in Section D.

5.4. Results for the stabilized version

Next theorem shows that, asymptotically, the procedure sADDOWβ is the same as ADDOW. Our
result is true even if β = βm −→

m→∞
0 provided that the convergence is not too fast. It is proven in

Section E.

Theorem 5.3. Let us consider the framework defined in Sections 2.1 and 2.2. Take a sequence
(βm)m≥1 such that βm ≥ a exp

(
−bm1−ν) for some a ∈ (0, 1], b > 0 and ν > 0.

Then φβm → 1 almost surely. In particular, all Theorems and Corollaries of Sections 5.1 and 5.3
hold when replacing ADDOW with sADDOWβm .
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6. Numerical experiments

6.1. Simulation setting

In our experiments, additionally to BH which is not adaptive, three groups of procedures are
compared:

• Group 1: some procedures not adaptive to π0 but adaptive to the signal via optimal weights:

– MWBH (W ∗or) where W ∗or is given by equation 3.5 in the (NE) case.

– ADDOW in the (NE) case, that is, IHW.

– sADDOWβ in the (NE) case for some value of β.

– Pro2 as defined in section 3.2 and in the (NE) case.

• Group 2: procedures only adaptive to πg,0 and not to the signal strength, with an oracle
adaptation to πg,0:

– ABH as defined in section 3.2 with π̂g,0 = πg,0.

– HZZ as defined in section 3.2 with π̂g,0 = πg,0.

• Group 3: procedures that combine both adaptive properties, with an oracle adaptation to
πg,0:

– MWBH (W ∗or) where W ∗or is given by equation 3.5 with π̂g,0 = πg,0.

– ADDOW with π̂g,0 = πg,0.

– sADDOWβ with π̂g,0 = πg,0 for some value of β.

– Pro2 as defined in section 3.2 with π̂g,0 = πg,0.

We consider the one-sided Gaussian framework described in Section 2.4 for G = 2 groups.
The parameters are thus given by m1, m2, m1,0, m2,0, µ1, µ2, and α. For the stabilisation, qβ,m is
estimated with realizations of Z0m (as defined in equation (4.1)), where Z0m and Zm are computed
as suprema on {k/m, 1 ≤ k ≤ m} instead of [0, 1] for an easier computation. Our experiments
have been performed by using the three following scenarios, for which the values of µ1 and µ2 are
defined according to a parameter µ̄. Each simulation of each scenario is replicated 1000 times.

• Scenario 1: µ1 = µ̄ and µ2 = 2µ̄, α = 0.05, β = 0.001, m1 = m2 = 2000, m1,0/m1 = 0.7 and
m2,0/m2 = 0.8. Furthermore the values of µ̄ are in {0.01, 0.02, 0.05} and then from 0.5 to 3
with jumps of size 0.25. Here, qβ,m is estimated with 10000 realizations of Z0m.

• Scenario 2: µ1 = 2 and µ2 = µ̄, α = 0.7, m1 = 1000 and m2 = 9000, m1,0/m1 = 0.05 and
m2,0/m2 = 0.85. Furthermore µ̄ ∈ {1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3}.

• Scenario 3: µ1 = µ̄ and µ2 = 2µ̄, α = 0.05, β = 0.05, m ∈ {100, 300, 500, 1000, 2000, 5000},
m1 = m2 = m/2, mg,0/mg = 0.8. Furthermore µ̄ ∈ {0.01, 3}. Here, qβ,m is estimated with
1000 realizations of Z0m.

6.2. FDR control

The FDR of all above procedures are compared in Figure 2, Figure 3a and Figure 3b.
First, Figure 3b shows that the convergence of the FDR holds for moderate m.This supports

the theoretical finding of Corollary 5.1 showing that the FDR shall converge to π0α in scenario 3.
This Figure also shows that when the signal is strong, sADDOWβ behaves as ADDOW, which is
well expected for the definition of φβ . While Figure 2 supports the latter for large signal (µ̄ ≥ 2),
we see that the FDR control of data-driven weighted procedures (ADDOW, Pro2) can deteriorate
as µ̄ decreases. This is due to an overfitting phenomenon.

As µ̄ get smaller, the overfitting seems to increase and the FDR control seems to get violated.
Let us underline that this does not contradict our theory because considering a small µ̄ might
imply a smaller convergence rate while m stays ≤ 5000 in scenarios 1 and 3. Fortunately, in
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Fig 2: FDR against µ̄ in scenario 1. Group 1 in black; Group 2 in green; Group 3 in red. The type of procedure
is MWBH (W ∗or) (squares); ADDOW (triangles); sADDOWβ (circles); Pro2 (disks); HZZ (diamonds) and finally
BH/ABH (crosses). Horizontal lines: α and π0α levels. See Section 6.1.
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Fig 4: DiffPow against µ̄ in scenario 1. Same legend as Figure 2

this regime, it is apparent from Figure 2 and Figure 3a that the regularization process correctly
addresses the overfitting by maintaining the FDR control holds true. Again, this is well expected
because sADDOWβ simply corresponds to BH in that regime, see equation (4.2).

6.3. Power

Now that the FDR control has been studied, let us compare the procedures in terms of power.
First, to better emphasize the benefit of adaptation, the power is rescaled in the following way:
we define the normalized difference of power with respect to BH, or DiffPow, by

DiffPow(R) =
m

m1
(Pow(R)− Pow(BH)) ,

for any procedure R.
Figure 4 displays the power of all the procedures defined in Section 6.1. We can make several

observations:

• We see a huge difference of behavior between the Group 1 and the Group 3. Hence, incor-
porating the knowledge of π0 can lead to a large improvement of power.

• In both groups (that is in both (NE) and (CE) cases) ADDOW achieves the best power, which
supports Theorem 5.2. Additionnaly, maybe surprisingly, in both cases, Pro2 behaves quite
well, with a power close to the one of ADDOW and despite its theoretical sub-optimality.
Hence, it seems to also be a good choice in practice.

• The comparison between the Group 2 and the Group 3 shows the benefit of adding the Fg
adaptation to the π0 adaptation: the fourth group has better power than the third for all
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Fig 5: DiffPow of ADDOW against µ̄ in scenario 2. Group 1 in black and Group 3 in red.

signals. We can see a zone of moderate signal (around µ̄ = 1.5) where the two groups are
close. That is the same zone where HZZ becomes better than ABH. We deduce that in that
zone the optimal weighting is the same as the uniform ŵ(1) weighting of ABH.

• The comparison of the DiffPow between the Group 1 and Group 2 in Figure 4 shows the
difference between adapting to the Fg’s versus adapting to π0. No method is generally better
than the other: as we see in the plot, it depends on the signal strength. We also see that
neither ABH nor HZZ is better than the other.

Finally, let us discuss Figure 5. Here, the scenario 3 entails that IHW favors the large and
sparse second group of hypotheses whereas the optimal power is achieved by favoring the small
first group of hypotheses which contains almost only signal, as expected in remark 3.1. As a WBH
procedure with weights (1,1), BH does not favor any group. Hence, IHW has a power smaller than
BH. This demonstrates the limitation of the heuristic upon which IHW is built, and underlines
the necessity of estimating the πg,0 when nothing lets us think that (ED) may be met.

7. Concluding remarks

In this paper we presented a new class of data-driven step-up procedure, ADDOW, that gener-
alizes IHW by incorporating πg,0 estimators in each group. We showed that while this procedure
asymptotically controls the FDR at the targeted level, it has the best power among all MWBH
procedures when the π0 estimation can be made consistently. In particular it dominates all the
existing procedures of the weighting literature and solves the p-values weighting issue in a group-
structured multiple testing problem. As a by-product , our work established the optimality of IHW
in the case of homogeneous π0 structure. Finally we proposed a stabilization variant designed to
deal with the case where only few discoveries can be made (very small signal strength or spar-
sity). Some numerical simulations illustrated that our properties are also valid in a finite sample
framework, provided that the number of tests is large enough.
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Assumptions Our assumptions are rather mild: basically we only added the concavity of the Fg
to the assumptions of Ignatiadis et al. (2016). Notably we dropped the other regularity assumptions
on Fg that were made in Roquain and Van De Wiel (2009) while keeping all the useful properties
on W ∗ in the (NE) case. Note that the criticality assumption is often made in the literature, see
Ignatiadis et al. (2016) (assumption 5 of the supplementary material), Zhao and Zhang (2014)
(assumption A.1), or the assumption of Theorem 4 in Hu, Zhao and Zhou (2010). Finally, the
weak dependence assumption is extensively used in our paper. An interesting direction could be
to extend our result to some strong dependent cases, for instance by assuming the PRDS (positive
regression dependence), as some previous work already studied properties of MWBH procedures
under that assumption, see Roquain and Van De Wiel (2008).

Computational aspects The actual maximization problem of ADDOW is difficult, it involves
a mixed integer linear programming that may take a long time to resolve. Some regularization
variant may be needed for applications. To this end, we can think to use the least concave majorant
(LCM) instead of the empirical c.d.f. in equation (3.1) (as proposed in modification (E1) of IHW
in Ignatiadis et al. (2016)). As we show in Section 8, ADDOW can be extended to that case (see
especially Section 8.1) and our results are still valid for this new regularized version of ADDOW.

Toward nonasymptotic results Interesting direction for future research can be to investigate
the convergence rate in our asymptotic results. One possible direction can be to use the work of
Neuvial (2008). However, it would require to compute the Hadamard derivative of the functional
involved in our analysis, which might be very challenging. Finally, another interesting future work
could be to develop other versions of ADDOW that ensure finite sample FDR control property:
this certainly requires to use a different optimization process, which will make the power optimality
difficult to maintain.

8. Proofs of Theorems 5.1 and 5.2

8.1. Further generalization

Define for any u and W

ĤW (u) = m−1 |Ru,W ∩H0| = m−1
G∑
g=1

mg∑
i=1

1{pg,i≤αuWg(u),Hg,i=0}

and
P̂W (u) = m−1 |Ru,W ∩H1| = ĜW (u)− ĤW (u),

so that FDP (Ru,W ) = ĤW (u)

ĜW (u)∨m−1
and Pow (Ru,W ) = E

[
P̂W (u)

]
(recall that MWBH (W ) =

RûW ,W ). Also define D̂g(t) = m−1
g

∑mg
i=1 1{pg,i≤t} so that ĜW (u) =

∑
g
mg
m D̂g(αuWg(u)).

For the sake of generality D̂g is not the only estimator of Dg (defined in equation (B.1)) that

we will use to prove our results (for example, we can use the LCM of D̂g, denoted LCM(D̂g),

see Section 7). So let us increase slightly the scope of the MWBH class by defining G̃W (u) =∑
g
mg
m D̃g(αuWg(u)) for any estimator D̃g such that D̃g is nondecreasing, D̃g(0) = 0, D̃g(1) = 1

and
∥∥∥D̃g −Dg

∥∥∥ P−→ 0, where ‖ · ‖ is the sup norm for the bounded functions on their definition

domain. Note that at least (Dg)g, (D̂g)g (by Lemma C.1), and
(

LCM(D̂g)
)
g

(by Lemma C.6) are

eligible.
If W is such that G̃W is nondecreasing, we then define the generalized MWBH as

GMWBH
(

(D̃g)g,W
)

= RũW ,W where ũW = I
(
G̃W

)
.
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If (D̃g)g is such that we can define, for all u ∈ [0, 1],

W̃ ∗(u) ∈ arg max
w∈Km

G̃w(u), (8.1)

we define the generalized ADDOW by

GADDOW
(

(D̃g)g

)
= GMWBH

(
(D̃g)g, W̃

∗
)
,

the latter being well defined because G̃
W̃∗

is nondecreasing (by a proof similar to the one of

Lemma A.6). Note that for any continuous D̃g, such as LCM(D̂g) or Dg itself, the arg max
in (8.1) is non empty and GADDOW can then be defined.

What we show below are more general theorems, valid for any GADDOW
(

(D̃g)g

)
. Our proofs

combined several technical lemmas deferred to Sections B and C, which are based on the previous
work of Roquain and Van De Wiel (2009); Hu, Zhao and Zhou (2010); Zhao and Zhang (2014).

Remark 8.1. GADDOW
(

(D̃g)g

)
when D̃g = LCM(D̂g) and π̂g,0 = 1 is not exactly the same as

IHW with modification (E1). In our notation, their procedure is WBH
(
W̃ ∗

(
I
(
G̃
W̃∗

)))
.

8.2. Proof of Theorem 5.1

We have

FDP

(
GMWBH

((
D̃g

)
g
, Ŵ ∗

))
=

Ĥ
W̃∗

(ũ)

Ĝ
W̃∗

(ũ) ∨m−1
∈ [0, 1],

where ũ is defined as in (C.6) so by Lemma C.5 we deduce that

FDP
(

GADDOW
(

(D̃g)g

))
P−→

m→∞

H∞W∗(u
∗)

G∞W∗(u
∗)

=
H∞W∗(u

∗)

u∗
,

and then
lim
m→∞

FDR
(

GADDOW
(

(D̃g)g

))
= u∗−1H∞W∗(u

∗),

where G∞W∗ , H
∞
W∗ and u∗ are defined in Section B.

If α ≥ π̄0, u∗ = 1 by Lemma B.2 and αu∗W ∗g (u∗) ≥ 1 by Lemma B.1 so u∗−1H∞W∗(u
∗) = π0 ≤

π̄0 ≤ α.
If α ≤ π̄0, αu∗W ∗g (u∗) ≤ 1 by Lemma B.1 so U(αu∗W ∗g (u∗)) = αu∗W ∗g (u∗) for all g and then

u∗−1H∞W∗(u
∗) = α

∑
g

πgπg,0W
∗
g (u∗)

≤ α
∑
g

πgπ̄g,0W
∗
g (u∗) = α. (8.2)

Moreover if we are in (CE) case (that is π̄g,0 = πg,0) the inequality above becomes an equality.
Finally if we are in (ED)+(EE) case (that is πg,0 = π0 and π̄g,0 = π̄0) we write

u∗−1H∞W∗(u
∗) = α

∑
g

πgπ0W
∗
g (u∗)

=
π0

π̄0
α
∑
g

πgπ̄0W
∗
g (u∗)

=
π0

π̄0
α. (8.3)

The equalities in (8.2) and (8.3) are due to
∑
g πgπ̄g,0W

∗
g (u∗) = 1 (by Lemma B.1).
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8.3. Proof of Theorem 5.2

First, in any case,

P̂
W̃∗

(ũ) = Ĝ
W̃∗

(ũ)− Ĥ
W̃∗

(ũ)
a.s.−→ G∞W∗(u

∗)−H∞W∗(u∗) = P∞W∗(u
∗)

by Lemma C.5, where P∞W∗ is defined in Section B.. Hence the limit of Pow
(

GADDOW
(

(D̃g)g

))
is P∞W∗(u

∗).
For the rest of the proof, we assume we are in case (CE) or (ED)+(EE), which implies by

Lemma B.3 that W ∗(u) ∈ arg maxw∈K∞ P
∞
w (u) for all u, and that P∞W∗ is nondecreasing. We also

split the proof in two parts. For the first part we assume that for all m, Ŵ is a weight vector
ŵ ∈ Km therefore not depending on u. In the second part we will conclude with a general sequence
of weight functions.

Part 1 Ŵ = ŵ ∈ Km for all m. Let ` = lim sup Pow (MWBH (ŵ)). Up to extracting a subse-

quence, we can assume that ` = limE
[
P̂ŵ(ûŵ)

]
and π̂g,0

a.s.−→ π̄g,0 for all g. Define the event

Ω̃ =


∀g, π̂g,0 −→ π̄g,0

supw∈RG+

∥∥∥P̂w − P∞w ∥∥∥ −→ 0

supw∈RG+

∥∥∥Ĝw −G∞w ∥∥∥ −→ 0


then P

(
Ω̃
)

= 1 (by Lemma C.1), ` = limE
[
P̂ŵ(ûŵ)1Ω̃

]
and by reverse Fatou Lemma ` ≤

E
[
lim sup P̂ŵ(ûŵ)1Ω̃

]
.

Now consider that Ω̃ occurs and fix a realization of it, the following of this part 1 is deterministic.

Let `′ = lim sup P̂ŵ(ûŵ). The sequences
(

m
mgπ̂g,0

)
are converging and then bounded, hence the

sequence (ŵ) is also bounded. By compacity, once again up to extracting a subsequence, we can

assume that `′ = lim P̂ŵ(ûŵ) and that ŵ converges to a given wcv. By taking m→∞ in relation∑ mg
m π̂g,0ŵg ≤ 1, it appears that wcv belongs to K∞. ‖Ĝŵ −G∞wcv‖ ≤ supw ‖Ĝw −G∞w ‖+ ‖G∞ŵ −

G∞wcv‖ → 0 so by Remark B.2 ûŵ → u∞wcv and finally∣∣∣P̂ŵ(ûŵ)− P∞wcv (u∞wcv )
∣∣∣ ≤ sup

w∈RG+

∥∥∥P̂w − P∞w ∥∥∥+ |P∞ŵ (ûŵ)− P∞wcv (u∞wcv )|

−→ 0,

by continuity of Fg and because ω ∈ Ω̃. So `′ = P∞wcv (u∞wcv ) ≤ P∞W∗(u
∞
wcv ) by maximality. Note

also that G∞wcv (·) ≤ G∞W∗(·) which implies that u∞wcv ≤ u∞W∗ = u∗ so `′ ≤ P∞W∗(u
∗) because P∞W∗

is nondecreasing. Finally lim sup P̂ŵ(ûŵ)1Ω̃ ≤ P
∞
W∗(u

∗) for any realization of Ω̃, by integrating we
get that ` ≤ P∞W∗(u∗) which concludes that part 1.

Part 2 Now consider the case where Ŵ is a weight function u 7→ Ŵ (u). Observe that

û
Ŵ

= Ĝ
Ŵ

(û
Ŵ

) = Ĝ
Ŵ (û

Ŵ
)
(û
Ŵ

),

so by definition of I(·), û
Ŵ
≤ û

Ŵ (û
Ŵ

)
, and then

P̂
Ŵ

(û
Ŵ

) = P̂
Ŵ (û

Ŵ
)
(û
Ŵ

) ≤ P̂
Ŵ (û

Ŵ
)

(
û
Ŵ (û

Ŵ
)

)
.

As a consequence, Pow
(

MWBH
(
Ŵ
))
≤ Pow

(
MWBH

(
Ŵ (û

Ŵ
)
))

. Finally, apply part 1 to the

weight vector sequence
(
Ŵ (û

Ŵ
)
)

to conclude.
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Remark 8.2. We just showed that for every MWBH procedure, there is a corresponding WBH
procedure with better power. In particular, by defining û = u

Ŵ∗
the ADDOW threshold, we

showed that û ≤ û
Ŵ∗(û)

. But Ĝ
Ŵ∗
≥ Ĝŵ and then û ≥ uŵ for any ŵ. Hence û = û

Ŵ∗(û)
and

ADDOW is the WBH procedure associated to the weight vector Ŵ ∗(û).
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Appendix A: Lemmas and proofs of Sections 2, 3 and 4

Lemma A.1. For all g, Fg is continuous.

Proof. Fg(x) = 0 for all x ≤ 0 and Fg(x) = 1 for all x ≥ 1. Fg is concave so it is continuous

over (0, 1). Fg is càdlàg (as a c.d.f.) so it is continuous in 0. Write Fg
(
t+1

2

)
≥ Fg(t)+Fg(1)

2 and
make t converge to 1− to get that Fg(1

−) ≥ Fg(1) but we also have Fg(1
−) ≤ Fg(1) because Fg is

nondecreasing.

Lemma A.2. Take a real valued sequence (λm) with λm ∈ (0, 1), converging to 1, such that
1√
m

= o(1 − λm) and
mg,0
mg

= πg,0 + o(1 − λm) for all g. If fg(1
−) = 0 for all g and the p-values

inside each group are mutually independent, then

∀g ∈ {1, . . . , G}, π̂g,0(λm)
P−→ πg,0.

Proof. First note that
mg,1
mg
− πg,1 = πg,0 − mg,0

mg
= o(1− λm).
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Thus we have

|π̂g,0(λm)− πg,0| =

∣∣∣∣∣1−
1
mg

∑
i 1{pg,i≤λm} + 1

m

1− λm
− πg,0

∣∣∣∣∣
≤
λm

∣∣∣πg,0 − mg,0
mg

∣∣∣+
mg,0
mg

∣∣∣λm − 1
mg,0

∑
i 1{pg,i≤λm,Hg,i=0}

∣∣∣
1− λm

+

∣∣∣πg,1 − mg,1
mg

∣∣∣+
mg,1
mg

∣∣∣Fg(λm)− 1
mg,1

∑
i 1{pg,i≤λm,Hg,i=1}

∣∣∣
1− λm

+
mg,1

mg

1− Fg(λm)

1− λm
+

1

m(1− λm)

≤ mg,0

mg

supx∈[0,1]

∣∣∣x− 1
mg,0

∑
i 1{pg,i≤x,Hg,i=0}

∣∣∣
1− λm

+
mg,1

mg

supx∈[0,1]

∣∣∣Fg(x)− 1
mg,1

∑
i 1{pg,i≤x,Hg,i=1}

∣∣∣
1− λm

+ o(1).

The two suprema of the last display, when multiplied by
√
m, converge in distribution (by

Kolmogorov-Smirnov’s theorem). So when divided by 1 − λm they converge to 0 in distribution
and then in probability (because 1

1−λm = o(
√
m)).

Definition A.1. The critical alpha value is

α∗ = inf
w∈K∞

1∑
g πgwg (πg,0 + πg,1fg(0+))

,

where K∞ = {w ∈ RG+ :
∑
g πgπ̄g,0wg ≤ 1}.

Lemma A.3. α∗ is always such that α∗ < 1.

Proof. We only need to show that for one w ∈ K∞, we have∑
g

πgwg
(
πg,0 + πg,1fg(0

+)
)
> 1.

Let us show that this is true for every w ∈ K∞ such that
∑
g πgπ̄g,0wg = 1, e.g. the w defined by

wg = 1
π̄g,0

for all g. We use the fact that fg(0
+) >

Fg(1)−Fg(0)
1−0 = 1 by the strict concavity of Fg.

Then πg,0 + πg,1fg(0
+) > 1 and∑
g

πgwg
(
πg,0 + πg,1fg(0

+)
)
>
∑
g

πgwg ≥
∑
g

πgπ̄g,0wg = 1.

Recall that I(·) is defined as I(h) = sup {u ∈ [0, 1] : h(u) ≥ u} on the function space:

F = {h : [0, 1]→ [0, 1] : h(0) = 0, h is nondecreasing, } (A.1)

which has the natural order h1 ≤ h2 ⇐⇒ h1(u) ≤ h2(u)∀u ∈ [0, 1]. F is also normed with the
sup norm ‖ · ‖.

Lemma A.4. For all h ∈ F , I(h) is a maximum and h (I(h)) = I(h). Moreover, I(·), seen
as a map on F , is nondecreasing and continous on each continuous h0 ∈ F such that either
u 7→ h0(u)/u is decreasing over (0, 1], or I(h0) = 0.
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Proof. I(h) is a maximum because there exists εn → 0 such that

h (I(h)) ≥ h (I(h)− εn) ≥ I(h)− εn → I(h).

So h (I(h)) ≥ I(h). Then h (h (I(h))) ≥ h (I(h)) thus h (I(h)) ≤ I(h) by the definition of I(h)
as a supremum.

Next, if h1 ≤ h2, I(h1) = h1 (I(h1)) ≤ h2 (I(h1)) so I(h1) ≤ I(h2) by defintion of I(h2).
Now take a continuous h0 ∈ F such that either u 7→ h0(u)/u is decreasing or I(h0) = 0, and

h any element of F . Let γ > 0, let u− = I(h0) − γ and u+ = I(h0) + γ. We want to prove that
there exists an ηγ such that ‖h− h0‖ ≤ ηγ implies u− ≤ I(h) ≤ u+.

If u+ > 1 then obviously I(h) ≤ u+. If not, let sγ = max
u′∈[u+,1]

(h0(u′)− u′). It is a maximum by

continuity over a compact and is such that sγ < 0, because sγ ≥ 0 would contradict the maximality
of I(h0).

Then, for all u′ ∈ [u+, 1],

h(u′)− u′ ≤ h0(u′)− u′ + ‖h− h0‖ ,

and then
sup

u′∈[u+,1]

(h(u′)− u′) ≤ sγ + ‖h− h0‖ .

Hence, as soon as ‖h− h0‖ ≤ 1
2 |sγ |, supu′∈[u+,1] (h(u′)− u′) < 0 and I(h) < u+.

If u− ≤ 0, which is always the case if I(h0) = 0, then I(h) ≥ u−. If u− > 0, u 7→ h0(u)/u is
decreasing and

h0(u−)

u−
>
h0 (I(h0))

I(h0)
= 1,

so h0(u−) > u−. We can then write the following:

h(u−)− u− ≥ h0(u−)− u− − ‖h− h0‖ > 0,

as soon as ‖h− h0‖ ≤ 1
2 (h0(u−)− u−). This implies I(h) > u−. Taking

ηγ =
1

2
min

(
|sγ |1{u+≤1} + 1{u+>1}, (h0(u−)− u−)1{u−>0} + 1{u−≤0}

)
completes the proof.

Lemma A.5. Let a weight function W : [0, 1] → RG+. For each r between 1 and m denote the

W (r/m)-weighted p-values p
[r]
g,i = pg,i/Wg(r/m) (with the convention pg,i/0 = ∞), order them

p
[r]
(1) ≤ . . . ≤ p

[r]
(m) and note p

[r]
(0) = 0.

Then ûW = m−1 max
{
r ≥ 0 : p

[r]
(r) ≤ α

r
m

}
.

Proof. Let us denote r̂ = max
{
r ≥ 0 : p

[r]
(r) ≤ α

r
m

}
and show ûW = r̂/m by double inequality.

First, we have

ĜW

(
r̂

m

)
= m−1

G∑
g=1

mg∑
i=1

1{pg,i≤α r̂
mWg( r̂m )}

= m−1
G∑
g=1

mg∑
i=1

1{
p
[r̂]
g,i≤α

r̂
m

}

= m−1
m∑
r=1

1{
p
[r̂]

(r)
≤α r̂

m

} ≥ r̂/m,
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because p
[r̂]
(1), . . . , p

[r̂]
(r̂) ≤ α

r̂
m . Then r̂/m ≤ ûW by definition of ûW . Second, we know that ûW can

be written as κ̂/m because ûW = ĜW (ûW ), so we want to show that κ̂ ≤ r̂ which is implied by r̂,

p
[κ̂]
(κ̂) ≤ α

κ̂
m . The latter is true because

m∑
r=1

1{
p
[κ̂]

(r)
≤α κ̂

m

} = mĜW

(
κ̂

m

)
= mĜW (ûW ) ≥ κ̂.

Lemma A.6. Ĝ
Ŵ∗

is nondecreasing.

Proof. Let u ≤ u′. Ĝ
Ŵ∗

(u′) = max
w∈Km

Ĝw(u′) so by denoting w = Ŵ ∗(u) we have Ĝ
Ŵ∗

(u′) ≥

Ĝw(u′). Furthermore,

Ĝw(u′) =
1

m

G∑
g=1

mg∑
i=1

1{pg,i≤αu′wg} ≥
1

m

G∑
g=1

mg∑
i=1

1{pg,i≤αuwg} = Ĝ
Ŵ∗

(u),

which entails Ĝ
Ŵ∗

(u′) ≥ Ĝ
Ŵ∗

(u).

Appendix B: Asymptotical weighting

Define, for a weight function W : [0, 1]→ RG+, possibly random,

P∞W : u 7→
G∑
g=1

πgπg,1Fg (αuWg(u)) ;

G∞W : u 7→
G∑
g=1

πgDg (αuWg(u)) ;

and
H∞W (u) = G∞W (u)− P∞W (u),

where
Dg : t 7→ πg,0U(t) + πg,1Fg(t) (B.1)

is strictly concave on [0, 1] because Fg is and πg,1 > 0. Note that, if W is a fixed deterministic

weight function, P∞W and G∞W are the uniform limits of P
(m)
W and G

(m)
W when m → ∞. If W is

such that G∞W is nondecreasing, we also define

u∞W = I (G∞W ) . (B.2)

Recall that K∞ = {w ∈ RG+ :
∑
g πgπ̄g,0wg ≤ 1}. It is the asymptotic version of Km. We now

define oracle optimal weights over K∞ for G∞· (u) and P∞· (u), for all u > 0.

Lemma B.1. Fix an u ∈ [0, 1]. Then arg maxw∈K∞ G
∞
w (u) is non empty.

If 0 < αu ≤ π̄0 it is a singleton. Its only element w∗ belongs to [0, 1
αu ]G and checks

∑
g πgπ̄g,0w

∗
g =

1. If αu ≥ π̄0 it is included in [ 1
αu ,∞)G. Finally maxw∈K∞ G

∞
w (u) = 1 if and only if αu ≥ π̄0.

The same statements are true for P∞· , except that maxw∈K∞ P
∞
w (u) = 1 − π0 if and only if

αu ≥ π̄0.

Proof. The function w 7→ G∞w (u) is continuous over the compact K∞ so it has a maximum. Note
that maxw∈K∞ G

∞
w (0) = 0 and arg maxw∈K∞ G

∞
w (0) = K∞. For the rest of the proof u is greater

than 0.
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First we show that any w∗ ∈ arg maxw∈K∞ G
∞
w (u) belongs to [0, 1

αu ]G or [ 1
αu ,∞)G. If not, there

is w∗ ∈ arg maxw∈K∞ G
∞
w (u) such that αuw∗g1 > 1 and αuw∗g2 < 1 for some g1, g2 ≤ G. Now then

we define w̃ such that w̃g = w∗g for all g 6∈ {g1, g2}, w̃g1 = 1
αu and

w̃g2 = w∗g2 +

(
w∗g1 −

1

αu

)
πg1 π̄g1,0
πg2 π̄g2,0

> w∗g2 .

So w̃ belongs to K∞ and satisfies

G∞w̃ (u) =
∑

g 6=g1,g2

πgDg(αuw
∗
g) + πg1 + πg2Dg2(αuw̃g2)

>
∑

g 6=g1,g2

πgDg(αuw
∗
g) + πg1 + πg2Dg2(αuw∗g2) = G∞w∗(u),

because Dg is increasing over [0, 1] and then constant equal to 1. This contradicts the definition
of w∗ so is impossible.

Next we distinct three cases.
(i) αu = π̄0. Then w0 = ( 1

αu , . . . ,
1
αu ) = ( 1

π̄0
, . . . , 1

π̄0
) is obviously an element of arg maxw∈K∞ G

∞
w (u)

because

G∞w0
(u) =

G∑
g=1

πgDg (1) = 1,

and we easily check that
∑
g πgπ̄g,0(w0)g = 1. Thus for every w ∈ K∞ distinct from w0, there

must exist a g1 ∈ {1, . . . , G} such that αuwg1 < 1, so Dg1(αuwg1) < 1 and G∞w (u) <
∑
g πg = 1 :

w0 is the only element of arg maxw∈K∞ G
∞
w (u).

(ii) αu < π̄0. If a w∗ ∈ arg maxw∈K∞ G
∞
w (u) exists in [ 1

αu ,∞)G, then w∗g ≥ 1
αu > 1

π̄0
and∑

g πgπ̄g,0w
∗
g > 1 which is impossible. So

arg max
w∈K∞

G∞w (u) = arg max
w∈K∞∩[0, 1

αu ]G
G∞w (u).

The function w 7→ G∞w (u) is strictly concave over the convex set K∞ ∩ [0, 1
αu ]G because πg,1 > 0

and Dg is strictly concave over [0, 1] for all g, hence the maximum is unique.
We showed that the only w∗ ∈ arg max

w∈K∞
G∞w (u) is not in [ 1

αu ,∞)G so there exists g1 ≤ G such

that αuw∗g1 < 1 thus G∞w∗(u) < 1.
Furthermore

∑
g πgπ̄g,0w

∗
g = 1 : if not there is a w̃ with w̃g1 > w∗g1 and w̃g = w∗g for all g 6= g1

such that w̃ ∈ K∞ and G∞w̃ (u) > G∞w∗(u) which is impossible.
(iii) αu > π̄0. So u > π̄0

α and obviously

max
w∈K∞

G∞w (u) ≥ max
w∈K∞

G∞w

( π̄0

α

)
= G∞w0

( π̄0

α

)
= 1,

as stated in case (i). So maxw∈K∞ G
∞
w (u) = 1 and then the elements w∗ of arg maxw∈K∞ G

∞
w (u)

are the ones fulfilling Dg(αuw
∗
g) = 1 for all g that is w∗ ∈ [ 1

αu ,∞)G.
The proof is similar for P∞· , by replacing Dg by πg,1Fg.

From now on, W ∗(u) denotes an element of arg maxw∈K∞ G
∞
w (u) (just like we write Ŵ ∗(u) as an

element of arg maxw∈Km Ĝw(u)), our results will not depend on the chosen element of the argmax.
Next Lemma gives some properties on the function G∞W∗ , among them G∞W∗ is nondecreasing which
allow us to define

u∗ = u∞W∗ = I (G∞W∗) . (B.3)

Lemma B.2. G∞W∗ is nondecreasing and u∗ > 0. G∞W∗ is strictly concave over [0, π̄0

α ∧ 1] and, if
α ≥ π̄0, constant equal to 1 over [ π̄0

α , 1].
In particular, (i) u∗ = 1 if and only if α ≥ π̄0 (ii) the function u 7→ G∞W∗(u)/u is decreasing

over (0, 1] (iii) G∞W∗ is continuous over [0, 1].
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Proof. G∞W∗ is nondecreasing by exactly the same argument as in the proof of Lemma A.6. The
result can be strengthened thanks to Lemma B.1, by writing, for u < u′ ≤ π̄0

α ∧1, thatG∞W∗(u)(u
′) >

G∞W∗(u)(u) because 1 > G∞W∗(u). So G∞W∗ is increasing on [0, π̄0

α ∧ 1].
To prove that u∗ > 0, take some w ∈ K∞ such that

α >
1∑

g πgwg (πg,0 + πg,1fg(0+))
≥ α∗.

Because the expression above is continuous of the wg, they can always be chosen nonzero. We have
u∗ ≥ u∞w because G∞W∗ ≥ G∞w . Then we have, for x > 0, x→ 0+,

G∞w (x)−G∞w (0)

x− 0
=
G∞w (x)

x
=
∑
g

πgπg,0αwg +
∑
g

πgπg,1αwg
Fg(αxwg)

αxwg

→ α
∑
g

πgwg
(
πg,0 + πg,1fg(0

+)
)
> 1,

so G∞w (u) > u in the neighborhood of 0+, which entails u∞w > 0.
Now take a, b ∈ [0, π̄0

α ∧ 1] with a < b and λ ∈ (0, 1), by Lemma B.1 αaW ∗g (a), αbW ∗g (b) ≤ 1
and then, for all g:

Dg

(
λαaW ∗g (a) + (1− λ)αbW ∗g (b)

)
≥ λDg

(
αaW ∗g (a)

)
+ (1− λ)Dg

(
αbW ∗g (b)

)
.

Moreover, because G∞W∗(a) < G∞W∗(b), for at least one g1 we have aW ∗g1(a) 6= bW ∗g1(b) and by strict

concavity of Dg1 the inequality above is strict for g1. Then define w̃g =
λaW∗g (a)+(1−λ)bW∗g (b)

λa+(1−λ)b . We

have w̃ ∈ K∞ and then for all g:

πgDg (α(λa+ (1− λ)b)w̃g) ≥ λπgDg

(
αaW ∗g (a)

)
+ (1− λ)πgDg

(
αbW ∗g (b)

)
,

the inequality being strict for g1. Finally by summing:

G∞W∗(λa+ (1− λ)b) ≥ G∞w̃ (λa+ (1− λ)b) > λG∞W∗(a) + (1− λ)G∞W∗(b).

Additionally, G∞W∗(u) = 1 for αu ≥ π̄0 comes from Lemma B.1. The fact that u∗ = 1 ⇐⇒
α ≥ π̄0 follows directly from the previous statements and Lemma B.1. The decreasingness of
u 7→ G∞W∗(u)/u is straightforward from strict concavity properties because it is the slope of the
line between the origin and the graph of G∞W∗ at abscissa u > 0. Previous statements imply that
G∞W∗ is continuous at least over (0, π̄0

α ∧ 1) and, if α ≥ π̄0, over [ π̄0

α , 1]. K∞ is bounded, let B such
that |wg| ≤ B for all w ∈ K∞, then G∞W∗(u) ≤

∑
g
mg
m Dg(αuB)→ 0 when u→ 0 which gives the

continuity in 0. As in the proof of Lemma A.1, the continuity in π̄0

α ∧1 is given by the combination
of concavity and nondecrease.

Remark B.1. The case α ≥ π̄0 is rarely met in practice because α is chosen small and the signal is
assumed to be sparse (so π̄0 is large) but it is kept to cover all situations. It confirms the intuitive
idea that in this situation the best strategy is to reject all hypotheses because then the FDP is
equal to π0 ≤ π̄0 ≤ α.

Remark B.2. For a weight vector w ∈ RG+, G∞w is obviously continuous. Moreover if w 6= 0, let
M = max0≤u≤1G

∞
w (u) ≤ 1 and u� = min{u : G∞w (u) = M} > 0, then G∞w is strictly concave over

[0, u�] and constant equal to M on [u�, 1], hence u 7→ G∞w (u)/u is decreasing. So whether w = 0
or not, I(·) is continuous in G∞w by Lemma A.4.

Remark B.3. The proof of the strict concavity of G∞W∗ can easily be adapted to show the (non

necessary strict) concavity of G̃
W̃∗

when D̃g = LCM
(
D̂g

)
.

Figure 6 illustrates all the properties stated in Lemma B.2, with the two cases α ≥ π̄0 and
α < π̄0.

The next Lemma justifies the intuitive idea that maximizing the rejections and the power is
the same thing (as exposed in Section 3.2), but only under (CE) or (ED)+(EE).
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Fig 6: Plot of u 7→ G∞W∗ (u) when α ≥ π̄0 (left panel) and α < π̄0 (right panel).

Lemma B.3. In (CE) or (ED)+(EE) case, for all u ∈ [0, 1],

arg max
w∈K∞

G∞w (u) = arg max
w∈K∞

P∞w (u).

In particular, P∞W∗ is continuous nondecreasing.

Proof. First, arg maxw∈K∞ G
∞
w (0) = arg maxw∈K∞ P

∞
w (0) = K∞, so assume u > 0. If αu ≥ π̄0,

maxw∈K∞ G
∞
w (u) = 1 and maxw∈K∞ P

∞
w (u) = 1− π0 by Lemma B.1, thus arg maxw∈K∞ G

∞
w (u)

and arg maxw∈K∞ P
∞
w (u) are both equal to the set of weights w ∈ K∞ such that αuwg ≥ 1 for

all g.
Now if αu ≤ π̄0, both arg max are singletons. Take w∗ the only element of arg maxw∈K∞ P

∞
w (u)

and write, for all w ∈ K∞,

G∞w (u) =
∑
g

πgπg,0U(αuwg) + P∞w (u)

≤ αu
∑
g

πgπg,0wg + P∞w∗(u).

In case (CE), πg,0 = π̄g,0 so
∑
g πgπg,0wg ≤ 1 and

G∞w (u) ≤ αu+ P∞w∗(u) = αu
∑
g

πgπg,0w
∗
g + P∞w∗(u)

=
∑
g

πgπg,0U(αuw∗g) + P∞w∗(u) = G∞w∗(u),

because
∑
g πgπg,0w

∗
g = 1 and αuw∗g ≤ 1 for all g, by Lemma B.1. This means that w∗ is also the

unique element of arg maxw∈K∞ G
∞
w (u).

In case (ED)+(EE), we write, as in the last part of the proof of Theorem 5.1,

G∞w (u) ≤ αuπ0

π̄0
+ P∞w∗(u) = αu

∑
g

πgπ0w
∗
g + P∞w∗(u) = G∞w∗(u),

and we get the same result. Finally the properties on P∞W∗ are obtained by the same proof as
Lemma B.2.
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The next lemma is only a deterministic tool used in the proof of Lemma C.4. Define the
distance d of a weight vector w to a subset S of RG+ by d(w, S) = infw̄∈S maxg |wg − w̄g|. Let
Mu = arg maxw∈K∞ G

∞
w (u) to lighten notations.

Lemma B.4. Take some u ∈ (0, 1]. Then we have:

∀ε > 0,∃ξ > 0,∀w ∈ K∞, |G∞w (u)−G∞W∗(u)| ≤ ξ ⇒ d (w,Mu)<ε.

In particular, if αu ≤ π̄0,

∀ε > 0,∃ξ > 0,∀w ∈ K∞, |G∞w (u)−G∞W∗(u)| ≤ ξ ⇒ max
g

∣∣wg −W ∗g (u)
∣∣<ε, (B.4)

and if αu ≥ π̄0,

∀ε > 0,∃ξ > 0,∀w ∈ K∞, |G∞w (u)−G∞W∗(u)| ≤ ξ ⇒ (∀g, αuwg>1− ε) . (B.5)

Proof. If the statement is false, there exists some ε > 0 and some sequence (wn)n≥1 converging to
a w` in K∞ (because K∞ is compact), such that d (wn,Mu) ≥ ε and∣∣G∞wn(u)−G∞W∗(u)

∣∣→ 0.

By continuity of Dg, G
∞
w`(u) = G∞W∗(u) so w` ∈Mu which contradicts d

(
w`,Mu

)
≥ ε. If αu ≤ π̄0,

Mu is a singleton by Lemma B.1, hence (B.4). However, if αu ≥ π̄0, Mu = {w ∈ RG+ : αuwg ≥ 1∀g}
by Lemma B.1, hence (B.5).

Appendix C: Convergence lemmas

Recall that ‖ · ‖ is the sup norm for the bounded functions on their definition domain: ‖f‖ =
supu∈[0,1] |f(u)| or ‖f‖ = supt∈R |f(t)|.

Lemma C.1. The following quantities converge to 0 almost surely:

supw∈RG+

∥∥∥Ĥw −H∞w
∥∥∥, supw∈RG+

∥∥∥P̂w − P∞w ∥∥∥, supw∈RG+

∥∥∥Ĝw −G∞w ∥∥∥, and, for all g,
∥∥∥D̂g −Dg

∥∥∥.

Furthermore, for any (D̃g)g such that
∥∥∥D̃g −Dg

∥∥∥ P−→ 0,

sup
w∈RG+

∥∥∥G̃w −G∞w ∥∥∥ P−→ 0. (C.1)

Proof. By using the same proof as the one of the Glivenko-Cantelli theorem, we get from (2.1)
and (2.2) that, for all g, ∥∥∥∥∥ 1

mg,0

mg∑
i=1

1{pg,i≤·,Hg,i=0} − U

∥∥∥∥∥ a.s.−→ 0,

and ∥∥∥∥∥ 1

mg,1

mg∑
i=1

1{pg,i≤·,Hg,i=1} − Fg

∥∥∥∥∥ a.s.−→ 0.

Next, we write that∥∥∥∥∥ 1

mg

mg∑
i=1

1{pg,i≤·,Hg,i=0} − πg,0U

∥∥∥∥∥ ≤
∣∣∣∣mg,0

mg
− πg,0

∣∣∣∣
+ πg,0

∥∥∥∥∥ 1

mg,0

mg∑
i=1

1{pg,i≤·,Hg,i=0} − U

∥∥∥∥∥
a.s.−→ 0,
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and similarly
∥∥∥ 1
mg

∑mg
i=1 1{pg,i≤·,Hg,i=1} − πg,1Fg

∥∥∥ a.s.−→ 0. So by summing,
∥∥∥D̂g −Dg

∥∥∥ a.s.−→ 0. Apply

the triangular inequality once again to get that
∥∥ 1
m

∑mg
i=1 1{pg,i≤·,Hg,i=0} − πgπg,0U

∥∥ a.s.−→ 0 which
implies

sup
w∈RG+

∥∥∥Ĥw −H∞w
∥∥∥ ≤ G∑

g=1

∥∥∥∥∥ 1

m

mg∑
i=1

1{pg,i≤·,Hg,i=0} − πgπg,0U

∥∥∥∥∥
a.s.−→ 0.

Similarly supw∈RG+

∥∥∥P̂w − P∞w ∥∥∥ a.s.−→ 0 and supw∈RG+

∥∥∥Ĝw −G∞w ∥∥∥ a.s.−→ 0 by sum.

Finally,

sup
w∈RG+

∥∥∥G̃w −G∞w ∥∥∥ ≤∑
g

(∣∣∣mg

m
− πg

∣∣∣+ πg

∥∥∥D̃g −Dg

∥∥∥) P−→ 0.

From now on D̃g is assumed to converge uniformly to Dg in probability and that W̃ ∗(u) ∈
arg maxw∈Km G̃w(u) exists for all u.

Next Lemma is the main technical one (with the longest proof).

Lemma C.2. We have the following convergence in probability:∥∥∥G̃W̃∗ −G∞W∗∥∥∥ P−→ 0.

Proof. First, ∥∥∥G̃W̃∗ −G∞W∗∥∥∥ ≤ sup
w∈RG+

∥∥∥G̃w −G∞w ∥∥∥+
∥∥∥G∞

W̃∗
−G∞W∗

∥∥∥ ,
where the first term tends to 0 by (C.1), so we work on the second term.

The main idea is to use the maximality of G̃w(u) in W̃ ∗(u) and the maximality of G∞w (u) in
W ∗(u). The problem is that one is a maximum over Km and the other is over K∞. The solution

consists in defining small variations of W̃ ∗(u) and W ∗(u) to place them respectively in K∞ and
Km.

Let W̃ †g (u) =
mgπ̂g,0
mπgπ̄g,0

W̃ ∗g (u). Then W̃ †(u) ∈ K∞ and∥∥∥W̃ †g − W̃ ∗g ∥∥∥ =

∣∣∣∣ mgπ̂g,0
mπgπ̄g,0

− 1

∣∣∣∣ ∥∥∥W̃ ∗g ∥∥∥
≤
∣∣∣∣ mgπ̂g,0
mπgπ̄g,0

− 1

∣∣∣∣ m

mgπ̂g,0

P−→ 0 because
mg

m
π̂g,0

P−→ πgπ̄g,0,

which in turn implies that∥∥∥G∞
W̃ †
−G∞

W̃∗

∥∥∥ ≤∑
g

πg sup
u

∣∣∣Dg

(
αuW̃ †g (u)

)
−Dg

(
αuW̃ ∗g (u)

)∣∣∣
P−→ 0, (C.2)

because Dg is uniformly continuous over R+. Likewise, we define W †g (u) =
mπgπ̄g,0
mgπ̂g,0

W ∗g (u). There-

fore W †(u) ∈ Km, ∥∥W †g −W ∗g ∥∥ ≤ ∣∣∣∣mπgπ̄g,0mgπ̂g,0
− 1

∣∣∣∣ 1

πgπ̄g,0

P−→ 0,

and
‖G∞W † −G

∞
W∗‖ ≤

∑
g

πg sup
u

∣∣Dg

(
αuW †g (u)

)
−Dg

(
αuW ∗g (u)

)∣∣ P−→ 0. (C.3)
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With (C.1) and (C.2), we deduce that∥∥∥G̃W̃ † − G̃W̃∗∥∥∥ ≤ ∥∥∥G̃W̃ † −G∞W̃ †∥∥∥+
∥∥∥G∞

W̃ †
−G∞

W̃∗

∥∥∥
+
∥∥∥G∞

W̃∗
− G̃

W̃∗

∥∥∥
P−→ 0, (C.4)

and likewise with (C.1) and (C.3) we have∥∥∥G̃W † − G̃W∗∥∥∥ P−→ 0. (C.5)

Combining (C.1), (C.2), (C.4), (C.5), and the maximalities of G̃
W̃∗

(u) and G∞W∗(u) will finish
the proof. As a start, write∥∥∥G∞

W̃∗
−G∞W∗

∥∥∥ ≤ ∥∥∥G∞
W̃∗
−G∞

W̃ †

∥∥∥+
∥∥∥G∞

W̃ †
−G∞W∗

∥∥∥ ,
with

∥∥∥G∞
W̃∗
−G∞

W̃ †

∥∥∥ P→ 0 by (C.2), and, for all u,∣∣∣G∞
W̃ †

(u)−G∞W∗(u)
∣∣∣ = G∞W∗(u)−G∞

W̃ †
(u),

by maximality of G∞W∗(u) over K∞. Then

sup
u

(
G∞W∗(u)−G∞

W̃ †
(u)
)
≤ sup

u

(
G∞W∗(u)− G̃W∗(u)

)
+ sup

u

(
G̃W∗(u)− G̃

W̃ †
(u)
)

+ sup
u

(
G̃
W̃ †

(u)−G∞
W̃ †

(u)
)
,

with supu

(
G∞W∗(u)− G̃W∗(u)

)
P→ 0 and supu

(
G̃
W̃ †

(u)−G∞
W̃ †

(u)
)

P→ 0 by (C.1).

Finally,

sup
u

(
G̃W∗(u)− G̃

W̃ †
(u)
)
≤ sup

u

(
G̃W∗(u)− G̃W †(u)

)
+ sup

u

(
G̃W †(u)− G̃

W̃∗
(u)
)

+ sup
u

(
G̃
W̃∗

(u)− G̃
W̃ †

(u)
)
,

with supu

(
G̃W∗(u)− G̃W †(u)

)
P→ 0 by (C.5) and supu

(
G̃
W̃∗

(u)− G̃
W̃ †

(u)
)

P→ 0 by (C.4). As a

consequence there exists a random variable Vm
P→ 0 such that∥∥∥G̃W̃∗ −G∞W∗∥∥∥ ≤ sup

u

(
G̃W †(u)− G̃

W̃∗
(u)
)

+ Vm,

but G̃W †(u)− G̃
W̃∗

(u) ≤ 0 by maximality of G̃
W̃∗

(u) over Km, so∥∥∥G̃W̃∗ −G∞W∗∥∥∥ ≤ Vm P→ 0.

Next Lemma is a direct application of Lemma A.4. Recall that u∗ = u∞W∗ (see (B.3)) and let

ũ = ũ
W̃∗

= I
(
G̃
W̃∗

)
(C.6)
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Lemma C.3. We have the following convergences in probability:{
ũ

P−→ u∗

G̃
W̃∗

(ũ)
P−→ G∞W∗(u

∗).

Proof. u 7→ G∞W∗(u)/u is nondecreasing and G∞W∗ is continuous by Lemma B.2 so by Lemma A.4
I(·) is continuous in G∞W∗ : let γ > 0 and ηγ as in the proof of Lemma A.4, then

P (|ũ− u∗| ≤ γ) ≥ P
(∥∥∥G̃W̃∗ −G∞W∗∥∥∥ ≤ ηγ) −→

Lemma C.2
1.

Second result follows immediately because G̃
W̃∗

(ũ) = ũ and G∞W∗(u
∗) = u∗ by Lemma A.4.

Lemma C.4.
(i) If α ≤ π̄0, W̃ ∗(ũ)

P−→W ∗(u∗).

(ii) If α ≥ π̄0, the inferior limit in probability of αũW̃g(ũ) is greater than or equal to 1, uniformly
in g, which reads formally:

∀ε > 0, P
(
∀g, αũW̃ ∗g (ũ)>1− ε

)
−→ 1.

Proof. First, we use the same trick as in the proof of Lemma C.2: let W̃ †g (u) =
mgπ̄g,0
mπgπ̄g,0

W̃ ∗g (u) such

that W̃ †(u) ∈ K∞ and ‖W̃ ∗g − W̃ †g ‖
P−→ 0.

Let us show that
∣∣∣G∞

W̃ †(ũ)
(u∗)−G∞W∗(u∗)

∣∣∣ P−→ 0 to apply then Lemma B.4 (always possible

because u∗ > 0). We have∣∣∣G∞
W̃ †(ũ)

(u∗)−G∞W∗(u∗)
∣∣∣ ≤ ∣∣∣G∞

W̃ †(ũ)
(u∗)−G∞

W̃∗
(ũ)
∣∣∣

+
∣∣∣G∞

W̃∗
(ũ)− G̃

W̃∗
(ũ)
∣∣∣

+
∣∣∣G̃W̃∗(ũ)−G∞W∗(u∗)

∣∣∣ .
First term converges to 0 because for all g, Dg is uniformly continuous and∣∣∣αu∗W̃ †g (ũ)− αũW̃ ∗g (ũ)

∣∣∣ ≤ ∣∣∣αu∗W̃ †g (ũ)− αu∗W̃ ∗g (ũ)
∣∣∣+
∣∣∣αu∗W̃ ∗g (ũ)− αũW̃ ∗g (ũ)

∣∣∣
≤ ‖W̃ †g − W̃ ∗g ‖+ |u∗ − ũ| m

mgπ̂g,0

P−→ 0. (C.7)

Apply (C.1) to the second term and Lemma C.3 to the third.

(i) If α ≤ π̄0, then αu∗ ≤ π̄0 and by equation (B.4), W̃ †(ũ)
P−→W ∗(u∗). But for all g∣∣∣W̃ ∗g (ũ)−W ∗g (u∗)

∣∣∣ ≤ ‖W̃ ∗g − W̃ †g ‖+
∣∣∣W̃ †g (ũ)−W ∗g (u∗)

∣∣∣ ,
and then W̃ ∗(ũ)

P−→W ∗(u∗).
(ii) If α ≥ π̄0, u∗ = 1 by Lemma B.2 and by equation (B.5),

∀ε > 0, P
(
∀g, αu∗W̃ †g (ũ)>1− ε

2

)
−→ 1.

By equation (C.7) we also have

∀ε > 0, P
(
∀g,

∣∣∣αu∗W̃ †g (ũ)− αũW̃ ∗g (ũ)
∣∣∣ ≤ ε

2

)
−→ 1,

and by combining the two we get the desired result.
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Lemma C.5. We have the following convergences in probability:

Ĝ
W̃∗

(ũ)
P−→ G∞W∗(u

∗),

Ĥ
W̃∗

(ũ)
P−→ H∞W∗(u

∗).

Proof. We have∣∣∣ĜW̃∗(ũ)−G∞W∗(u∗)
∣∣∣ ≤ sup

w∈RG+

∥∥∥Ĝw −G∞w ∥∥∥+
∣∣∣G∞

W̃∗
(ũ)−G∞W∗(u∗)

∣∣∣ .
Hence, by Lemma C.1, we only need to show that H∞

W̃∗
(ũ)

P−→ H∞W∗(u
∗).

(i) If α ≤ π̄0, ũ
P−→ u∗ and W̃ ∗(ũ)

P−→W ∗(u∗) by Lemma C.4. Then αũW̃ ∗(û)
P−→ αu∗W ∗(u∗).

We get the desired convergence by Dg’s continuity.
(ii) If α ≥ π̄0, u∗ = 1 and αu∗W ∗g (u∗) ≥ 1 for all g so G∞W∗(u

∗) = 1. Then by Lemma C.4

Dg

(
αũW̃ ∗g (û)

)
P−→ 1 which means that G∞

W̃∗
(ũ)

P−→
∑
g πg1 = 1.

The proof for Ĥ is similar, just replace Dg by πg,0U (and 1 by πg,0).

The last lemma states that LCM(D̂g) is a valid estimator of Dg to use in GADDOW.

Lemma C.6. Assume that D̃g = LCM(D̂g). Then D̃g is nondecreasing, D̃g(0) = 0, D̃g(1) = 1

and
∥∥∥D̃g −Dg

∥∥∥ P−→ 0.

Proof. D̃g(0) = D̂g(0) = 0 and D̃g(1) = D̂g(1) = 1 from the closed form given in Lemma 1 in
Carolan (2002). Let a, b ∈ [0, 1], a < b, and let

C(t) =

{
D̃g(t+ b− a) if t+ b− a ≤ 1

1 if t+ b− a ≥ 1.

Then C is concave, and

C(t) ≥

{
D̂g(t+ b− a) ≥ D̂g(t) if t+ b− a ≤ 1

1 ≥ D̂g(t) if t+ b− a ≥ 1,

because D̂g is non decreasing. So by definition of the LCM, C(t) ≥ D̃g(t) for all t ∈ [0, 1]. In
particular,

D̃g(b) = C(a) ≥ D̃g(a),

and D̃g is nondecreasing. Finally, the convergence comes from ‖D̃g −Dg‖ ≤ ‖D̂g −Dg‖, see also
Carolan (2002).

Appendix D: Proof of Corollary 5.3 for Pro 1

First, ŵ(1) P−→ w(1) where w(1) =
(

1
π̄0
, . . . , 1

π̄0

)
and ŵ(2) P−→ w(2) where, for all g, w

(2)
g =

π̄g,1
π̄g,0(1−π̄0) . By using Lemma C.1 and the continuity of Dg, we get that ‖Ĝŵ(1) −G∞w(1)‖

P−→ 0 and

‖Ĝŵ(2) −G∞w(2)‖
P−→ 0 and then by Lemma A.4 we get that ûŵ(1)

P−→ u∞
w(1) and ûŵ(2)

P−→ u∞
w(2) so

ûM
P−→ uM where uM = max(u∞

w(1) , u
∞
w(2)).
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Define again Ŵ †g (u) =
mgπ̂g,0
mπgπ̄g,0

Ŵ ∗g (u) and note that the power of Pro1 is E
[
P̂
Ŵ∗

(ûM )
]
. We

have

P̂
Ŵ∗

(ûM ) ≤ sup
w∈RG+

∥∥∥P̂w − P∞w ∥∥∥+
∥∥∥P∞

Ŵ∗
− P∞

Ŵ †

∥∥∥+ P∞
Ŵ †

(ûM )

≤ sup
w∈RG+

∥∥∥P̂w − P∞w ∥∥∥+
∥∥∥P∞

Ŵ∗
− P∞

Ŵ †

∥∥∥+ P∞W∗(ûM )

P−→ P∞W∗(uM ),

because P∞W∗ is continuous by Lemma B.3.
Note that u∗ ≥ uM (because G∞W∗ ≥ G∞w(1) and G∞W∗ ≥ G∞w(2)) to conclude.

Appendix E: Proof of Theorem 5.3

First note that 1 = (1, . . . , 1) ∈ Km
NE. Fix a given u0 ∈ (0, 1), say u0 = 1/2. Then, by Lemma C.1,

sup
w∈Km

NE

sup
u∈[0,1]

(
Ĝw(u)− αu

)
≥ Ĝ1(u0)− αu0

a.s.−→ G∞1 (u0)− αu0. (E.1)

Then, denoting K1 = G∞1 (u0)− αu0, we have

K1 =

G∑
g=1

πg (πg,0αu0 + πg,1Fg(αu0)− αu0)

=

G∑
g=1

πgπg,1 (Fg(αu0)− αu0) > 0,

because πg,1 > 0 and, by strict concavity, for any x ∈ (0, 1),

Fg(x)

x
=
Fg(x)− Fg(0)

x− 0
>
Fg(1)− Fg(0)

1− 0
= 1.

By multiplying both terms of (E.1) by
√
m we get that Zm ≥

√
mYm for some variable Ym checking

Ym
a.s.−→
m→∞

K1 > 0.

Next, recall that

Z0m =
√
m sup
u∈[0,1]

(
m−1

G∑
g=1

mg∑
i=1

1{Ug,i≤αuW̃∗g (u)} − αu

)
,

where the Ug,i are uniform variables over [0, 1] with, for all g, Ug,1, . . . , Ug,mg independent, and

W̃ ∗(u) ∈ arg max
w∈Km

NE

m−1
G∑
g=1

mg∑
i=1

1{Ug,i≤αuwg}.
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Define also Ûg,mg : t 7→ m−1
g

∑mg
i=1 1{Ug,i≤t}. We then have

Z0m =
√
m sup
u∈[0,1]

(
G∑
g=1

mg

m
Ûg,mg

(
αuW̃ ∗g (u)

)
− αu

)

=
√
m sup
u∈[0,1]

(
G∑
g=1

mg

m

(
Ûg,mg

(
αuW̃ ∗g (u)

)
− αuW̃ ∗g (u)

))
(E.2)

≤
√
m

G∑
g=1

mg

m
sup
t∈R+

(
Ûg,mg (t)− t

)

≤
√
m

G∑
g=1

mg

m
sup
t∈[0,1]

(
Ûg,mg (t)− U(t)

)
, (E.3)

where the equality in (E.2) comes from
∑
g
mg
m W̃ ∗g (u) = 1, and the inequality in (E.3) comes from

U(t) = min(1, t) ≤ t. Therefore

Z0m ≤ |Z0m| ≤
√
m

G∑
g=1

mg

m

∥∥∥Ûg,mg − U∥∥∥ =

G∑
g=1

√
mg

m

√
mg

∥∥∥Ûg,mg − U∥∥∥ .
Therefore, for all c > 0,

P(Z0m > c) ≤ P

(
G∑
g=1

√
mg

m

√
mg

∥∥∥Ûg,mg − U∥∥∥ > c

)

≤ P
(
∃g :
√
mg

∥∥∥Ûg,mg − U∥∥∥ >√ m

mg

c

G

)

≤
G∑
g=1

P
(
√
mg

∥∥∥Ûg,mg − U∥∥∥ >√ m

mg

c

G

)
.

Now, applying G times the Dvoretzky-Kiefer-Wolfowitz-Massart inequality (Dvoretzky, Kiefer and
Wolfowitz, 1956; Massart, 1990), we derive

P(Z0m > c) ≤
G∑
g=1

2 exp

(
−2

m

mg

c2

G2

)

≤ 2G exp

(
−2 min

1≤g≤G

(
m

mg

)
c2

G2

)
.

Now define

cm =
G√

2

√
max

1≤g≤G

(mg

m

)
log

(
2G

βm

)
≤ K2

√
K3 − log(βm) for some K2,K3 > 0.

From above, P(Z0m > cm) ≤ βm which in turn implies qβm,m ≤ cm, because by definition

qβm,m = min {x : P(Z0m > x) ≤ βm} .

Finally, φβm = 1{Zm>qβm,m} ≥ 1{
√
mYm>cm}, and cm =

m→∞
o (
√
m) because βm ≥ a exp

(
−bm1−ν),

which proves that φβm → 1 almost surely.
Now showing that sADDOWβm has same asymptotical FDR and power as ADDOW is easy,

because on one hand,

|FDP (sADDOWβm)− FDP (ADDOW)| = |(φβm − 1) FDP (ADDOW)

+(1− φβm) FDP (BH)|

≤ 2 |1− φβm |
a.s.−→ 0,
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and on the other hand

Pow (sADDOWβm) = E
[
φβm P̂Ŵ∗(û) + (1− φβm)P̂1(u1)

]
,

with ∣∣∣φβm P̂Ŵ∗(û) + (1− φβm)P̂1(u1)− P̂
Ŵ∗

(û)
∣∣∣ ≤ 2 |1− φβm |

a.s.−→ 0.
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