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Abstract. The decomposition of geophysical processes into relevant

modes is a key issue for characterization, forecasting and reconstruction

problems. The blind separation of contributions from different sources is a

well-studied problem in signal and image processing. Recently, significant

advances have been reported with the introduction of non-negative and

sparse formulations. In this work, we address an extension to the blind

decomposition of linear operators or transfer functions between variables of

interest with an emphasis on a non-negative setting. As illustrated here,

such decompositions are of key interest for the analysis of geophysical

dynamics and the relationships between different geophysical variables.

1 Introduction

The decomposition of geophysical processes into relevant and more interpretable
modes, most notably by orthogonal decomposition approaches such as empirical
orthogonal functions (EOF) [1], has been used extensively in analysis and fore-
casting applications in oceanography and meteorology. Besides EOF-based de-
compositions, the blind separation of the contributions from different sources or
processes has been extensively studied in signal and image processing [2]. Signifi-
cant advancements have been reported with the introduction of non-negative [3]
and sparse [4, 5] formulations. Here, we address the blind decomposition of
spatially-varying or temporally-varying operators or transfer functions. Poten-
tial applications include the decomposition of dynamical processes as well as the
analysis of the relationships between different variables of interest (See Section
3 for illustrations). In a previous work [6], we introduced a non-negative formu-
lation that generalizes latent class regression models [7] and allows for the blind
characterization of the relationships between two processes as the superimposi-
tion of multiple linear relationships. We further generalize this previous work
and address a blind dictionary-based decomposition of local linear operators.
This paper is organized as follows. Section 2 presents the proposed model and
the associated calibration and estimation algorithms. In Section 3 we report
applications to the analysis of geophysical dynamics. Finally, our concluding
remarks and future work perspectives are presented in Section 4.
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2 Model formulation

2.1 Blind dictionary-based decomposition of linear operators

Let us consider a multivariate observation dataset {x,y}n, where xn ∈ R
J ,

yn ∈ R
I denote the nth observation couple. Assuming that a linear operator

relates xn to yn, our goal is to decompose this linear operator as the non-negative
superposition of multiple linear relationships. Following our previous work [6],
we consider the following model:

yn =

K
∑

k=1

αnkβkxn + ωn

Subject to

{

αnk ≥ 0, ∀ k ∈ J1,KK, ∀n ∈ J1, NK

||βk||F = 1, ∀ k ∈ J1,KK

(1)

where αnk ∈ R
+ are non-negative mixing coefficients that model the contribu-

tion of each linear mode to the reconstruction of yn given xn, βk ∈ R
I×J is

the regression matrix associated with mode k, || · ||F is the Frobenius norm and
ωn ∈ R

I is a noise process, typically a Gaussian noise. N and K denote, re-
spectively, the total number of observations and modes, while k ∈ J1,KK and
n ∈ J1, NK indicate, respectively, the current mode and observation.
In [6] we focus on case-studies where I, the number of dimensions of variable yn,
is large enough with respect to the number of modes to guarantee the identifia-
bility of the decomposition. We here extend model (1) with no specific constraint
on I and propose a blind dictionary-based approach. Let us denote by Θn an
estimation of the linear operator relating xn and yn. Model (1) then resorts to
the blind non-negative decomposition of linear operators Θn:
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αnk ≥ 0, ∀n ∈ J1, NK, ∀k ∈ J1,KK

||βk||2 = 1, ∀k ∈ J1,KK

(2)

By considering the set {Θ}n of all N local linear operators and vectorizing them,
the constrained minimization problem in (2) can be rewritten as the following
blind dictionary-based decomposition issue:















[

Γ̂, D̂
]

= argmin
Γ,D

||Φ−DΓ||
2

F

Γkn ≥ 0, ∀k ∈ J1,KK, ∀n ∈ J1, NK

||D:k||2 = 1, ∀k ∈ J1,KK

(3)

where Φ ∈ R
IJ×N is the concatenation of vectorized operators θv

n = vec(Θn)
(i.e. Φ = [θv

1
|...|θv

N ]), lines of Γ ∈ R
K×N contain mixing coefficients αnk for each

mode and columns of D ∈ R
IJ×K (noted as D:k) contain vectorized versions of

modal linear regression matrices βk.



2.2 Dictionary learning

Compared with [6], the dictionary-based formulation has greater flexibility and
adaptability, as it allows for the use of any blind dictionary-based decomposi-
tion approach to solve constrained minimization (3) (e.g. NMF [3], K-SVD [8],
etc). Hence, model constraints can be changed seamlessly simply by changing
the considered blind dictionary-based decomposition approach. Here, for a given
dataset of operators {Θ}n, we solve for minimization (3) using a proximal split-
ting method to account for non-negativity constraints. It comes to iterate two
steps until convergence, namely the least-square estimation of dictionary matrix
D with normalization constraints ||D:k||2 = 1 and the estimation of the mixing
coefficients Γ using a proximal operator [9] to enforce non-negativity.

2.3 Application to the decomposition of linear operators

Given a trained dictionary of operators {β̂}k (matrix D̂ in formulation (3)), we
can apply the proposed decomposition to any new observation dataset {x∗,y∗}n
to estimate the associated mixing coefficients α̂nk (matrix Γ̂ in formulation (3)).
Two approaches may be considered. Similarly to the training step, we can first
estimate the linear operators {Θ∗}n (see Section 3 for details on the estimation
for each case-study) and estimate the mixing coefficients as the projection of
these operators onto the trained dictionary with a non-negativity constraint.
A second approach comes to the direct estimation of the mixing coefficients
according to a least-squares criterion derived from model (1). This scheme does
not require the prior estimation of linear operators {Θ∗}n. Both approaches
can exploit either proximal operators, as in the model training step, or classical
non-negative least-squares solvers [10].

3 Application to geophysical dynamics

3.1 Application to analog forecasting

We first illustrate the interest of the proposed approach for the forecasting of
dynamical systems. We apply the proposed blind non-negative decomposition
to Lorenz ’96 dynamics, which have been extensively studied in the assimilation
and forecasting literature, since they are representative of chaotic geophysical
dynamical systems (e.g., the atmosphere). We let the reader refer to [11] for a
detailed presentation of Lorenz ’96 model.
Here, we simulate Lorenz’96 40-dimensional time series with forcing parameter
F = 8 and time step ∂t = 0.05. We build training and test datasets from inde-
pendent time series corresponding respectively to 2 × 105 and 200 consecutive
time steps. Following [12], we consider a locally-linear analog model. It comes to
fitting a multivariate linear regression Θn ∈ R

I×J : yn = Θnxn, where, for given
time series S and variable index l∗ ∈ J1, 40K, variable xn is the 21-dimensional
vector {S(t∗, l∗ − 10), ...., S(t∗, l∗ + 10)} and variable yn is the 3-dimensional
vector {S(t∗ + ∂t, l∗ − 1), ...., S(t∗ + ∂t, l∗ + 1)}. Local linear operators Θn are
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Fig. 1: Forecasting performance of linear analog operators: we depict the normalized forecast-
ing RMSE vs. the number of analogs used to estimate the locally-linear analog forecasting
operator for Lorenz ’96 dynamics for: locally-linear operators (Full line), the proposed non-
negative decomposition of locally-linear operators with K = 4 modes (Dashed line). We
consider three experimental settings: a noise-free scenario with a large catalog of 2 × 10

5 ex-
emplars, a noisy scenario with a large catalog of 2× 10

5 exemplars, a noise-free scenario with
a smaller catalog of 2× 10

3 exemplars.

estimated for each observation pair n under the hypothesis that the nearest ob-
servation pairs in the training dataset, referred to as analogs, share the same
Θn. Numerically, the estimation of Θn resorts to a weighted least-square es-
timate from the dataset formed by the analogs of pair (yn,xn), the weights
accounting for relative similarities.
We illustrate here the application of the proposed non-negative decomposition

with K = 4 modes. Given the dictionary {β̂}k learnt from the training dataset,
we state the analog forecasting operators of the test dataset according to model
(2). It resorts to the estimation of mixing coefficients in model (2). More pre-
cisely, for the current observation pair (y∗

n,x
∗

n) in the test dataset, the associated
analog forecasting operator involves the non-negative projection of the previously
estimated locally-linear operator Θ∗

n onto the manifold spanned by the estimated

modes {β̂}k. The forecasting for the next time step simply amounts to the ap-
plication of the projected linear operator to the current state.
Figure 1 illustrates the performance of the analog forecasting for different pa-
rameter settings with a focus on variable index l∗ = 20 of the Lorenz’96 state.
We report the normalized root mean square error (RMSE) of the forecasting as a
function of the number of analogs used, for the locally-linear analog forecasting
with no decomposition (full line) and the proposed analog forecasting using a
non-negative decomposition (dashed line). Three scenarios are simulated: i) a
noise-free scenario with a large catalog (N = 2 × 105 exemplars) (Fig.1a), ii)
a noisy scenario with a large catalog and noise variance σ2

noise = 0.1 (Fig.1b),
iii) a noise-free scenario with a small catalog (N = 2× 103 exemplars) (Fig.1c).
The non-negative decomposition of local operators in an analog-based prediction
scheme clearly reduces forecasting errors when the analogs are sampled from a
noisy or reduced catalog. This decomposition can be seen as a projection of the
original operator into a lower-dimensional space, what makes the identification
of the model feasible for small datasets and improves robustness to noise.



3.2 Decomposition of upper-ocean dynamics

We illustrate a second application of the proposed non-negative decomposition
to the characterization of upper ocean dynamics from the synergy exhibited by
different sea surface geophysical fields, namely sea surface temperature (SST)
and sea surface salinity (SSS). As illustrated in Figure 2a, we analyze the rela-
tionships between SST and SSS in the Alboran Sea (35◦N - 38◦N ,0◦W - 5◦W ).
This region involves strong seasonal patterns associated with the intake of cold
Atlantic water through the Gibraltar strait, which strongly affects the SST sig-
nature in the Alborean Sea and results in a shift from positive to negative cor-
relations between SST and SSS fields. We expect the proposed non-negative
decomposition to capture this seasonal patterns.
For the reported experiments, we exploit 1/16◦ operational ROMS simulations
of WMOP model [13] from 2009 to 2012. We analyse the relationships between
daily SST and SSS images (Figure 2a) using a convolutional model for 3×3 image
patches, which comes to considering SSS pixel values can be approximated daily
by a single shared linear regression Θn on values from the corresponding 3 × 3
SST patch. Daily estimated linear operators are decomposed into K = 2 modes
using the proposed non-negative operator decomposition. Given the learnt dic-
tionary, mixing coefficients are re-estimated directly from SST-SSS observations.
Figure 2b presents the SSS fields predicted by each mode. The first mode
clearly captures an inversion of the SST, while the second mode captures a
sign-coherent SST-SSS relationship. This is further illustrated in Figure 2c by
the SST-SSS correlation probability density functions computed independently,
via Gaussian-kernel estimation, for dates when either one of the estimated modes
are dominant. These results suggest that the proposed decomposition is capable
of accurately separating the inverted and coherent SST-SSS relationships, thus
providing a useful tool for the analysis of the physical processes behind them.

4 Conclusion

We extended the observation-based non-negative decomposition of linear opera-
tors introduced in [6] and explored applications to the characterization and fore-
casting of geophysical dynamics. The proposed formulation exploits a dictionary-
based formulation from locally estimated linear operators and has increased flex-
ibility and adaptability. Especially, besides non-negativity constraints, this for-
mulation may involve other sparsity priors by exploiting adequate dictionary
learning techniques [8]. Future work will explore and evaluate such alternative
blind dictionary-based approaches as well as the integration of the proposed
approach in analog data assimilation methods [12].
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Fig. 2: Non-negative decomposition of SST-SSS relationships in the Alboran Sea: (a) SST and
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