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Abstract. Workload-aware loop schedulers were introduced to deliver better
performance than classical strategies, but they present limitations on work-
load estimation, chunk scheduling and integrability with applications. Targeting
these challenges, in this work we propose a novel workload-aware loop sched-
uler that is called BinLPT and it is based on three features. First, it relies on
some user-supplied estimation of the workload of the target parallel loop. Sec-
ond, BinLPT uses a greedy bin packing heuristic to adaptively partition the iter-
ation space in several chunks. The maximum number of chunks to be produced
is a parameter that may be fine-tuned. Third, it schedules chunks of iterations
using a hybrid scheme based on the LPT rule and on-demand scheduling. We in-
tegrated BinLPT in OpenMP, and we evaluated its performance in a large-scale
NUMA machine using a synthetic kernel and 3D N-Body Simulations. Our re-
sults revealed that BinLPT improves performance over OpenMP’s strategies by
up to 45.13% and 37.15% in the synthetic and application kernels, respectively.

1. Introduction
Evenly distributing the workload among the working threads of an irregular application is
a NP-Hard minimization problem known as the Multiprocessor Scheduling Problem. This
is a challenge to both academic and industry communities, and it is a recurring subject of
research in High Performance Computing (HPC). In shared memory parallel applications,
this problem emerges when scheduling iterations of parallel loops [Polychronopoulos and
Kuck 1987]. In this scenario, the problem is referred as the Loop Scheduling Problem
(LSP), and it can be reduced to the assignment of independent loop iterations such that
their load is evenly distributed and the scheduling overhead is minimized.

Several loop scheduling strategies have been proposed to address the previous
problem [Hurson et al. 1997], and they mainly rely on two techniques. In the first, called
on-demand scheduling, iterations are scheduled to threads on-the-fly at runtime, so that
both load imbalance and runtime variations may be dynamically handled. In the second
technique, called chunk-size tuning, iterations are scheduled in optimally sized batches
(i.e. chunks) so that (i) scheduling overheads are mitigated, (ii) load imbalance is fur-
ther amortized and (iii) iteration affinity is exploited. When coupled together, on-demand
scheduling and chunk-size tuning may indeed deliver reasonable performance to a wide
range of scenarios. Nevertheless, these techniques do not consider any knowledge about
the underlying workload of the target parallel loop, and thus scheduling strategies built
upon them naturally turn out to be suboptimal [Penna et al. 2016]. To address this weak-
ness, workload-aware strategies were introduced [Banicescu and Velusamy 2001, Ke-
jariwal et al. 2006, Wang et al. 2012]. These strategies rely on some knowledge about



the workload to adaptively fine-tune chunk sizes to further amortize load imbalance, and
thus deliver superior performance. Although these strategies present better performance
gains than workload-unaware strategies (or blind strategies), existing workload-aware
loop scheduling strategies still face some drawbacks that should be addressed.

First, these strategies rely on profiling and statistical regression techniques, and
thus are inherently designed to well-behaved workloads. To tackle irregular loops, whose
workload varies drastically, some alternatives for estimating the workload on-the-fly are
necessary. Usually, the loop scheduling strategy itself and the workload-estimation tech-
nique should be loosely coupled. This way, HPC engineers may plug into their solutions
the workload-estimator that best fits their needs. However, existing knowledge-based
strategies do not provide this flexibility. Moreover, existing workload-aware loop schedul-
ing strategies fail to apply their knowledge about the underlying workload of the target ir-
regular loop when scheduling chunks of iterations. They only rely on-demand scheduling
technique, which leads to scalability problems [Bull 1998]. Finally, no workload-aware
strategy is integrated in a publicly available parallel Application Programming Interface
(API) or library, since such integration is usually not trivial [Banicescu 2003].

In this context, the main goal of this work is to propose a novel workload-aware
loop scheduling strategy for irregular parallel loops in which iterations are independent
from one another. This new strategy overcomes the aforementioned weaknesses in work-
load prediction and chunk-scheduling and was integrated in a widely-used API for paral-
lel programming. In summary, this work delivers the following main contributions to the
state-of-the-art:

• A novel workload-aware loop scheduling strategy entitled BinLPT. To enable su-
perior performance and flexibility, our strategy is based on three features: (i) a
user-supplied estimation about the workload of the target irregular loop; (ii) a
greedy bin packing heuristic to adaptively partition the iteration space into several
chunks; and (iii) a hybrid scheme based on the Longest Processing Time (LPT)
rule and on-demand scheduling [Graham 1969].
• An integration of our novel workload-aware loop scheduling strategy into the

OpenMP runtime system of GCC. Our implementation is open-source and pub-
licly available for download, thereby enabling any parallel application that relies
on this programming abstraction to seamlessly use our strategy.

To evaluate BinLPT, we carried out a performance analysis using a synthetic ker-
nel and a 3D N-Body Simulations application kernel. We ran experiments on a large-scale
Non-Uniform Memory Access (NUMA) machine and we contrasted the performance of
BinLPT against the default strategies that are shipped with OpenMP. The remainder of
this work is organized as follows. In Section 2, we introduce the LSP and classical loop
scheduling strategies. In Section 3, we detail the workload-aware loop scheduling strategy
proposed in this work. In Section 4, we present our evaluation methodology. In Section
5, we discuss the experimental results. In Section 6, we contrast related work with ours.
In Section 7, we draw the conclusions of our work and discuss some future works.

2. Background

In this section we introduce the background on which this work relies. First, we present
the LSP, and then we discuss the classical loop schedulers.



2.1. The Loop Scheduling Problem
The LSP is an instance of the NP-Hard minimization problem for multiprocessor schedul-
ing and it down to partitioning x̂ into n non-overlapping chunks and assigning disjoint sets
of these n chunks to the p threads; such that the following are minimized: (i) the number
of n chunks that are used to partition the loop iteration space x̂; and the maximum load
imbalance between any pair of threads in p. This formulation shows the relation of the
four core variables of the LSP: (i) the loop iteration space x̂; (ii) the load of iterations wk;
(iii) the number of chunks n in which x̂ will be partitioned; and (iv) the number of threads
p that will process the n chunks in parallel.

Additional variables may also play an important role in a real-world context. For
instance, the scheduling overhead is an important concern for strategies that assign chunks
of iterations to idle threads on-the-fly. If contention in synchronization structures is costly,
the irregular parallel loop may face scalability issues [Fang et al. 1990]. The perfor-
mance of memory-intensive irregular loops can also be severely impacted by data local-
ity, so memory affinity can be exploited by loop schedulers when through the use of large
chunks [Markatos and Le Blanc 1994].

2.2. Loop Scheduling Strategies
Loop scheduling strategies boil down to one of the following two approaches: static, in
which loop iterations are assigned to the threads of the parallel application at compile-
time; and runtime, in which scheduling decisions are made at runtime [Kejariwal et al.
2006]. Static scheduling strategies introduce no runtime overhead, but (i) they are only
possible on parallel loops which can have their bounds somehow determined at compile
time, and (ii) they are suitable only for parallel loops which feature a compile-time pre-
dictable workload. In contrast, runtime strategies are employed to address parallel loops
that either do not meet the aforementioned compile-time requirement, or perform compu-
tation on a workload that is known only at runtime. In this work, we address the problem
of scheduling irregular parallel loops in which the workload is known only at runtime, and
in the following paragraphs we discuss the classical scheduling strategies on this scenario.

Pure Dynamic Scheduling (PDS) assigns iterations to threads in unit-sized chunks
and on-demand. Whenever a thread becomes idle, an iteration is assigned to it. This strat-
egy achieves good load balancing but at the price of a possibly high runtime overhead.

Chunk Self-Scheduling (CSS) works like PDS, but instead of assigning iterations
one by one, it assigns iterations in equally-sized chunks [Fang et al. 1990]. Small chunk
sizes deliver good load balancing, but they likely introduce prohibitive runtime overheads.
In contrast, large chunk sizes avoid this problem, but may increase load imbalance. When
the chunk size is fine-tuned, near-optimum load balancing is achieved [Balasubramaniam
et al. 2012], and when it equals to one, this scheduling strategy degenerates to PDS.

Guided Self-Scheduling (GSS) also assigns chunks of iterations to threads on de-
mand, but it dynamically changes their size at runtime (the size of the next chunk is given
by the number of remaining iterations divided by the number of threads) [Polychronopou-
los and Kuck 1987]. The idea of having a decreasing chunk size is to offer a compromise
between achieving good load balancing while reducing runtime overhead.

Factoring Self-Scheduling (FSS) works similarly to GSS, but it differs in the way
that chunk sizes are determined [Hummel et al. 1992]. To address the scenarios in which



GSS does not perform so well, FSS computes the next chunk size by dividing a subset of
the remaining loop iterations (usually half) evenly among the threads. FSS introduces no
significant runtime overhead compared to GSS, and it may deliver better performance.

Among the aforementioned loop scheduling strategies, OpenMP offers builtin
support for FSS and CSS. The OpenMP community pragmatically refers to them as
Guided and Dynamic, respectively. Therefore, we will refer to these strategies using
the latter notation, unless otherwise stated.

3. The BinLPT Loop Scheduler

In this section, we present our novel workload-aware loop scheduling strategy. First,
we discuss the internals of BinLPT, and then we detail our strategy algorithmically. We
implemented BinLPT in libGOMP and we made the enhanced version of this runtime
system publicly available1 under the GPL v3 License. Therefore, any parallel application
that is built on top of OpenMP may seamlessly use our scheduling strategy.

3.1. Strategy Internals

BinLPT operates in two phases to deliver load balance to irregular parallel loops, namely
chunk partitioning and chunk scheduling. The heuristics used in each phase are indeed
the key features that enable the superior performance of BinLPT.

In the chunk partitioning phase, BinLPT splits the iteration space into chunks
so as to amortize load imbalance while minimizing the number of chunks that are pro-
duced. In this way, runtime scheduling overheads can be reduced and iteration affin-
ity may be exploited efficiently. Indeed, this sub-problem could be optimally solved in
pseudo-polynomial time using a dynamic programming algorithm for the Linear Partition
Problem. Nevertheless, since loop ranges may grow asymptotically, the overhead incurred
by this algorithm makes its use prohibitive. Therefore, BinLPT relies on a workload-
aware adaptive technique that takes as input a user-supplied threshold k and works as
follows. First it computes the average load ωavg for a chunk based on the workload infor-
mation and k. Next, it uses a greedy bin packing heuristic that bundles into a single chunk
the maximum number of iterations whose overall load does not exceed ωavg.

In the chunk scheduling phase, the goal is to come up with a chunk/thread assign-
ment that minimizes load imbalance. Therefore, BinLPT relies on a hybrid scheduling
scheme that works as follows. Initially, chunks are statically scheduled to threads using
the LPT rule: which assigns the heaviest chunks to the least overloaded threads, and then
iteratively assigns lighter chunks to more heavily loaded threads. Next, threads are un-
blocked and start computing. Then, whenever a thread finishes computing all its chunks,
it steals a chunk from other thread that still has work left. This simple scheme optimally
handles load imbalance created by both predictable and unpredictable phenomena. Static
scheduling based on LPT ensures a 4/3-approximation scheduling solution to load im-
balance incurred by the workload. On the other hand, on-demand scheduling ensures that
unpredictable phenomena, such as communication latencies, external load interference,
and poor workload estimation, are optimally tackled in a 2-approximative fashion [Gra-
ham 1969].



Algorithm 1 BinLPT loop scheduling strategy.

1: function BINLPT(A, k, n)
2: C ← COMPUTE-CHUNKS(A, k)
3: SORT(C, descending order)

4: for i from 0 to n do
5: Ti ← 0

6: for i from 0 to | C | do
7: Tj ← min T
8: PTj ← PTj ∪ {ĉi}
9: Tj ← Tj + ω(ĉi)

10: return P

11: function COMPUTE-CHUNKS(A, k)
12: j ← 0
13: C ← empty multiset
14: ĉ0 ← empty sequence

15: ωavg ←

∑
ij∈A

wj

k

16: for i from 0 to | A | do
17: ĉj ← (ĉj , Ai)

18: if ω(ĉj) > ωavg then
19: C ← C ∪ {ĉj}
20: j ← j + 1

21: return C

3.2. Strategy Design
The BinLPT loop scheduling strategy is outlined in Algorithm 1. In the pictured notation,
means that iteration Ai is added to ĉj . It takes as input three parameters: an array that
gives a load estimation of each iteration in the target parallel loop (A), the maximum
number of chunks to generate (k) and the number of working threads (n). Then it returns
a multiset (P ) that states the thread/chunk assignment (i.e. Pj is a set containing all
chunks assigned to thread j). The algorithm starts by computing chunks according to the
greedy bin packing heuristic detailed in the previous section (line 13). Then, it sorts the
produced chunks according to their loads (line 14). Next, chunks are statically scheduled
following the LPT rule (lines 15 to 20). Later, during the execution, whenever a thread
becomes idle, it steals chunks from other threads.

4. Evaluation methodology
To evaluate BinLPT, we employed a synthetic kernel and an application kernel. The
former was used to assess the upper bound performance of our strategy, whereas the latter
was employed to enable such analysis in a realistic scenario.

The synthetic kernel performs embarrassingly parallel computations on private
variables as proposed in [Bull 1998], and thus it benchmarks the load balancing perfor-
mance of a scheduler. The kernel takes as input four parameters: the iteration space size,
the input workload w, the scheduling strategy, and the number of working threads. The
application kernel performs N-Body Simulations and it was chosen for two main rea-
sons. First, it has great importance to the scientific community as a whole, since it finds
application on different domains, such as Computation Fluid Dynamics and Molecular
Dynamics [Springel et al. 2005]. Second, it is a typical irregular kernel that is frequently
studied within the context of loop scheduling [Banicescu 2003, Wang et al. 2012]. The N-
Body Simulations kernel that we considered (code-named LavaMD) was extracted from
the Rodinia Benchmarks Suite [Che et al. 2009].

Table 1 summarizes the parameters we used in each set of experiments. The work-
loads are frequently studied by related works, and they were generated using the tool

1www.github.com/lapesd/libgomp



Table 1. Parameters for experiments.
Parameters Synthetic Kernel Application Kernel

Workload PDF Exponential, Gamma and Gaussian Exponential, Gamma and Gaussian
Loop Size {384, 768, 1536, 3072, 6144} 11× 11× 11

Chunk Size
Guided {1}, Dynamic {1,2},
BinLPT {288, 384}

Guided {1,2,3}, Dynamic {1,2,3},
BinLPT {384, 576, 768}

proposed by [Penna et al. 2016]. Problem sizes were chosen so as to reflect the full
processing capacity of the experimental platform. Baseline strategies were selected to be
consistent with related works. Chunk sizes were selected based on earlier experiments
that revealed them to be the optimal values.

For the synthetic kernel, we adopted a full factorial experimental design, thereby
resulting in 75 different scenarios. For these experiments, we set the number of threads to
192 to reflect the full computational power of the experimental platform. For the appli-
cation kernel, on the other hand, we adopted a fractioned experimental design, where we
varied the number of threads from 24 to 192, with a constant step of 24. We considered 27
different scenarios for each experimental configuration. We carried out five replications
of each configuration to account for the inherent variance of the measures. For each repli-
cate, the actual order in which individual runs were executed was randomly determined.
This approach ensures that experimental results and errors are independent and identically
distributed (i.i.d) random variables. In our experiments, the maximum relative standard
deviation error (σ/µ) observed was below to 1.0%.

We considered the following performance metrics2 [Luke et al. 1998, Cariño and
Banicescu 2008]: (a) Parallel Time, which is the overall execution time of the parallel
loop; (b) Cost, which is the aggregate time spent to execute the parallel loop, and thus
quantifies the waste of processor time; (c) Performance, which is the ratio of the total
amount of work to the parallel time; (d) Coefficient of Variance (C.o.V), which is the ratio
between the standard deviation and the mean execution time of the threads; (e) Slowdown,
which is the ratio between the execution time of the slowest thread to the fastest one.

All experiments were performed on a SGI Altix UV 2000 machine, which has 24
cache coherent NUMA nodes interconnected through SGI’s NUMAlink6 (bidirectional).
Each node has an Intel Xeon E5 Sandy-Bridge processor and 32 GB of DDR3 memory.
Overall, this platform features 192 physical cores and 768 GB of memory. In our experi-
ments, hyper-threading was disabled and we used a first-touch memory allocation strategy
coupled with a compact thread affinity policy to mitigate runtime NUMA effects.

5. Experimental Results
First, we show results for the synthetic kernel, and then we analyze results for the appli-
cation kernel. All experimental results are publicly available for download3.

5.1. Synthetic Kernel Results

The actual number of chunks produced by BinLPT varies according to the workload itself
and it be fine-tuned by its k parameter. For instance, BinLPT,288 produces at most k =

2We will refer hereafter to these metrics using capitalization along with their symbol.
3Experimental results available at: https://doi.org/10.6084/m9.figshare.4742272
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Figure 1. Synthetic kernel benchmarking results for Exponential workload.

288 chunks, pragmatically. On the other hand, for the Guided and Dynamic strategies, the
number of chunks that are generated depends on the iteration space |x̂|. For the former
strategy, the number of chunks grows proportionally to O(log |x̂|), whereas for the latter
strategy it grows with O(|x̂|). In both latter strategies, the granularity of the chunk-sizes
may be fine-tuned according to a parameter b. For instance, Dynamic,1 will cause
Dynamic to use unit-sized chunks (b = 1). On the other hand, Guided,2 instructs
Guided to generate chunks which are not smaller than 2 (b = 2).

Figure 1(a) presents the number of chunks generated by each strategy for an
Exponential-generated workload, when varying the size of the iteration space (i.e. |x̂|)
at a constant ratio (2×). We observed similar behaviors for the other workloads (i.e.
Gamma- and Gaussian-based), and thus we omitted them due to space limitations. Over-
all, the results show that the number of chunks produced by BinLPT are far fewer than the
ones produced by both Guided and Dynamic, regardless of the values assigned to parame-
ters k and b. The number of chunks generated by Guided grows linearly and for Dynamic
grows exponentially. Since the scheduling overhead of runtime on-demand scheduling
techniques depends on the number of chunks [Cariño and Banicescu 2008], it turns out
that BinLPT is the most scalable scheduling strategy for the chosen k values. Indeed, if
we used larger values for k, the number of chunks produced by BinLPT could be bigger.
However, in the performance analysis that follows, we reveal that the values used for k
are sufficient for BinLPT to deliver superior performance.

Figure 1(b) presents Performance (ρ) results for a Exponential-generated work-
load, when varying the size of the iteration space (i.e. |x̂|) at the same constant ratio
of 2×. Overall, BinLPT achieved the best results. The highest Performance (ρ) ob-
served for BinLPT,288 was for the scenario with 768 iterations, where it delivered
34.75% superior Performance (ρ) than the best configuration for the other two strategies
(Dynamic,1). The highest Performance (ρ) observed for BinLPT,384 was also in the
same scenario, where it delivered 37.65% superior Performance (ρ).

The worst Performance (ρ) observed for BinLPT was for the scenario with 6144
loop iterations and k = 288, where we noted 6.09% of Performance (ρ) degradation.
Although BinLPT,288 did perform slightly worse, the weight of chunks generated by
BinLPT was not fine-grained enough to amortize load imbalance in this scenario. This be-
havior is confirmed by Figure 1(a), which shows that BinLPT generated much less chunks
than the other strategies for this scenario (BinLPT,288 generated 266 chunks, whereas
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Figure 2. Experimental results for the N-Body Simulations application kernel.

Guided,1, Dynamic,1 and Dynamic,2 generated 4.33×, 23.09× and 11.54×more
chunks, respectively). Thus, a fair comparison between BinLPT and the other strategies
accounts for the equivalence between the maximum number of chunks k produced by our
strategy and the number of chunks generated by them. Recall that BinLPT,288 splits
the iteration space in at most 288 variable-size chunks, whereas Dynamic,1 produces
6144 unit-sized chunks (b = 1). Therefore, for instance, a fair comparison would be in
the scenario with 768 iterations, between BinLPT,384 (at most 384 chunks) against
Dynamic,2 (768/2 = 384 chunks). In this case, BinLPT would deliver 45.13% bet-
ter Performance (ρ). We observed similar results for the Gamma- and Gaussian gener-
ated workloads (they were omitted due to space limitations), in which BinLPT delivered
29.94% and 32.81% better Performance (ρ) over dynamic,2, respectively.

5.2. Application Kernel Results
Figure 2(a) presents Parallel Time (τ ) results for the N-Body Simulations application
when using 192 threads and varying both the chunk size and the workload. In this plot,
the chunk size for the BinLPT means that the parameter k of our strategy was chosen so
as it would lead a fair-comparison with Guided and Dynamic in each scenario. Overall,
the results unveiled that BinLPT delivers better Parallel Time (τ ) regardless the scenario.

Figure 2(b) presents Cost (γ) results when varying the number of threads, for a



scenario with the following configurations (worst-case scenario for BinLPT): Guided,3
Dynamic,3 and BinLPT,384. When analyzing the results, we observed that BinLPT
delivers near constant scalability in a large-scale NUMA machine, for all the three work-
loads. On the other hand, the Cost (γ) scales up quasi-linear for Guided and linear for
Dynamic. Nevertheless, it is worthy to note that Cost (γ) results suggest that BinLPT
performs better on the Exponential and Gaussian results. Indeed, we confirmed this find-
ing with Performance (ρ) results showed in Figure 2(c). In the case of Exponential- and
Gaussian-generated workloads, BinLPT delivers up to 37.15% (168 threads) and 34.45%
(192 threads) better Performance (ρ), when considering Dynamic as baseline. In, contrast,
for the Gamma workload, we noted 30% of improvement.

So far, we considered metrics that rely on the performance of the slowest thread
executing the parallel loop. Thus, we now analyze the other two metrics that consider
the performance of all threads: C.o.V (λ) and Slowdown (χ). When we analyzed C.o.V
(λ), we found out that BinLPT presented lower values than Guided and Dynamic on
the Exponential-generated workload; and it showed up worst C.o.V (λ) results for the
other two distributions. Indeed, these results at glance suggest that BinLPT does not
deliver load balancing. Nevertheless, since our strategy did present better overall Cost
(γ) and Performance (ρ) results than Guided and Dynamic in all the three workloads
regardless the number of threads, we drawn the following conclusion. Even though there
is a great difference between the execution times of threads in BinLPT, the actual absolute
difference is smaller than it is for Guided and Dynamic. We confirmed this finding by
plotting histograms of execution times of threads, when running with 96 to 192 threads.
However, we had to omit these plots due to space limitations. This conclusion is also
pictured in Figure 3(b), which presents Slowdown (χ) results. This plot evidences that
the difference between the slowest and fastest threads in BinLPT is actually smaller than
in Guided and Dynamic for all thread configurations. Considering Dynamic as baseline,
and when using 192 threads, gains are 45.54%, 26.32% and 12.62% for the Exponential-
Gamma- and Gaussian-generated workloads, respectively.

6. Related Work

Targeting time-step applications with irregular parallel loops, Banicescu [Banicescu 2003]
proposed Adaptive Weighted Factoring (AWF). In this strategy, the chunk size is dynami-
cally adapted after each step in the application. The newly computed chunk size decreases
across the iteration space, likewise in FSS. However, the performance of the threads dur-
ing the last time-step and their accumulative performance during all the previous ones is
additionally considered in this adjustment. To evaluate the performance of AWF, two in-
house applications were studied: (i) Laplace’s Equation Solver on an unstructured grid us-
ing Jacobi’s method; and (ii) N-Body Simulations. Pure Static Scheduling (PSS) and FSS
strategies were considered as baselines. Experiments were carried out on a synthetically-
loaded homogeneous cluster, and the results unveiled that AWF may achieve up to 46%
better performance than the baseline strategies. Due to the notable performance of AWF,
extensions have been proposed to enable its use on non-iterative applications as well [Car-
iño and Banicescu 2008]. Nevertheless, the enhanced version of this strategy presented a
performance that is comparable to the one achieved by FSS.

To address a broader class of applications, Kejariwal et al. [Kejariwal et al. 2006]
proposed History-Aware Self-Scheduling (HSS). Unlike AWF, HSS relies on statistical
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Figure 3. Experimental results for the N-Body Simulations application kernel.

information collected offline via profiling to carry out a smarter scheduling. Based on this
extra knowledge, at every scheduling round, HSS computes chunk sizes in a decreasing
fashion like FSS, but also considering the load of previously executed iterations and their
corresponding actual loads. To assess the performance of HSS, irregular parallel loops ex-
tracted from the Standard Performance Evaluation Corporation (SPEC) Benchmarks were
studied, and the FSS and AWF strategies were considered as baselines. Experiments were
carried out on an in-house simulator, and the results unveiled that HSS may outperform
baseline strategies up to 18%.

Based on a similar offline profiling-guided approach to HSS, Wang et al. [Wang
et al. 2012] introduced Knowledge-Based Adaptive Self-Scheduling (KASS). This strat-
egy works on two phases: a static partitioning phase, and a dynamic scheduling phase. In
the first phase, a knowledge-based approach is used to partition iterations of the parallel
loop into local work queues of threads, which makes the total workload to be equally
distributed to the threads, approximately. In the second phase, iterations on local work
queues are scheduling with decreasing sizes likewise in FSS. Each thread gets a chunk
from its local queue to execute, and when it finishes the execution of all the chunks in its
local queue, it steals chunks from other threads. To evaluate the performance of KASS,
two scenarios were studied: (i) parallel loops extracted from the SPEC Benchmarks; and
(ii) and three in-house application kernels, namely Over-Relaxation, Jacobi Iteration and
Transitive Closure. The GSS, FSS, Trapezoid Self-Scheduling (TSS) and Affinity Self-
Scheduling (AFS) strategies were considered as baselines. Experiments were carried out
on a Symmetric Multiprocessing (SMP) machine, and the results unveiled that for the
parallel loops, KASS is up to 16.9% faster than the baseline strategies. On the other hand,
for application kernels, KASS achieved up to 21% better performance.



The workload-aware loop scheduling strategy that we proposed in this work dif-
fers from the related strategies discussed above in several points, thereby delivering con-
tributions to the state-of-the-art. First, unlike all these strategies, BinLPT does not rely on
a particular workload-estimation technique. Indeed, the HPC engineer is free to couple
BinLPT with the one that yields to the best workload estimation for the application. Con-
sequently, the applicability of our strategy is not restricted to time-step applications such
as AWF nor to applications that present well-behaved workloads like HSS and KASS,
which rely on offline profiling and online regression techniques. Second, even though
the aforementioned strategies do use their estimations on the workload to partition the
iteration space in several chunks, they lack in using this knowledge to actually schedule
chunks of iterations. Alternatively, BinLPT uses a hybrid scheduling scheme based on
the LPT rule and on the on-demand scheduling technique. The former handles work-
load imbalance in a 4/3-approximative fashion, while the latter deals with unpredictable
phenomena in a 2-approximation optimally [Graham 1969]. Finally, existing strategies
lack on integrability with applications. For instance, their source-code is not available for
download, and their reported algorithmic description is not detailed enough to enable an
in-house implementation of them. Our solution, on the other hand, is open-source and is
built into GCC’s OpenMP runtime.

7. Conclusions
In this work we proposed a novel workload-aware loop scheduling strategy called BinLPT.
To enable superior performance and flexibility, our strategy is based on three features.
First, it relies on some user-supplied estimation of the workload of the target irregular
loop. Such estimation may be derived either from the problem structure or through on-
line/offline profiling, thus enabling maximum flexibility. Second, BinLPT uses a greedy
bin packing heuristic to adaptively partition the iteration space in several chunks. The
number of chunks to be produced is a parameter of our strategy that may be fine-tuned.
Third, it schedules chunks of iterations using a hybrid scheme based on the LPT rule and
on-demand scheduling.

We integrated BinLPT into OpenMP, and we evaluated its performance in a large-
scale NUMA machine using a synthetic kernel and a 3D N-Body Simulations application
kernel. We considered several workloads and we contrasted the performance of our strat-
egy against other strategies available in OpenMP (Guided and Dynamic). Our results un-
veiled that BinLPT achieves up to 45.13% and 37.15% better performance in the synthetic
and application kernels, respectively. As future work, we intend to enhance BinLPT so
that it also accounts for data locality when scheduling chunks; and to extend our strategy
to emerging manycore platforms which feature a distributed shared memory.
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