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. This allows to unify, justify and extend the preceding results. New aspects are indeed included. For instance, the dielectric tensor is defined for real frequencies through singular integrals involving the Hilbert transform.
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Introduction

The dispersion relations have been extensively studied in plasma physics. It is because they are involved in a wide range of astrophysical contexts and laboratory experiments through wave-particle interaction [START_REF] Koch | Wave-particle interactions in plasmas[END_REF][START_REF] Tsurutani | Some basic concepts of wave-particle interactions in collisionless plasmas[END_REF], transfer of power between waves and particles, heating of plasmas, reflectometry techniques [START_REF] Imbert-Gérard | Mathematical and numerical problems of some wave phenomena appearing in magnetic plasmas[END_REF], and so on. The preparatory works from the 1960s, 1970s and 1980s [START_REF] Bekefi | Radiation processes in plasmas[END_REF][START_REF] Davidson | Handbook of plasma physics[END_REF][START_REF] Fichtner | Exact algebraic dispersion relations for wave propagation in hot magnetized plasmas[END_REF][START_REF] Krall | Principles of plasma physics[END_REF][START_REF] Stix | Waves in plasma[END_REF][START_REF] Swanson | Plasma waves[END_REF][START_REF] Trubnikov | Plasma Physics and the Problem of Controlled Thermonuclear Reactions[END_REF] are the template for recent numerical studies [START_REF] Tomori | Numerical plasma dispersion relation solver[END_REF][START_REF] Xie | Pdrk: a general kinetic dispersion relation solver for magnetized plasma[END_REF], for contemporary investigations in more complex situations [START_REF] Haverkort | Magnetohydrodynamic waves and instabilities in rotating tokamak plasmas[END_REF][START_REF] Lopez | Kinetic transverse dispersion relation for relativistic magnetized electron-positron plasmas with maxwelljuttner velocity distribution functions[END_REF][START_REF] Piel | Plasma physics: an introduction to laboratory, space and fusion plasmas[END_REF][START_REF] Schlickeiser | General properties of small-amplitude fluctuations in magnetized and unmagnetized collision poor plasmas. i. the dielectric tensor[END_REF] or, like in the present text which is about tokamaks, for developments up to the case of non-uniform magnetized plasmas.

In real fusion machines, the dominant distribution function and the external magnetic field are inhomogeneous. They undergo significant fluctuations in position. These variations have a major effect on the geometry of wave propagation. Their impact is important when performing ray tracing, with many practical consequences. It becomes decisive when looking at the transport equations (to measure power transfers between waves and particles) or in the perspective of long time studies [START_REF] Cheverry | Can One Hear Whistler Waves?[END_REF][START_REF] Cheverry | Anomalous transport[END_REF]. However, the presence of inhomogeneities is complicated to simulate. This is probably why, despite some attempts [START_REF] Sy | Wave propagation in hot nonuniform magnetized plasma[END_REF], this subject has not been completely studied. Another reason is, without a doubt, a general principle of physics according to which a dispersion relation can be obtained by analyzing a plane monochromatic wave in a homogeneous medium, and then letting the medium's properties (in the dielectric tensor) vary slowly in position. After verification, this principle holds true, but it is not so easy to determine what should vary, why and how. There are questions that remain unanswered. The aim of this article is precisely to check what the situation really is. It is to rigorously define the characteristic variety by extracting the corresponding dielectric tensor through a comprehensive study. To this end, it is not enough to extend existing procedures, which give formal results, provide partial information or rely on specific hypotheses. A new approach is needed.

In a plasma, the presence of a strong magnetic field makes the charged particles oscillate at the electron cyclotron frequency ε -1 with ε 1. Away from thermal equilibrium, the repartition of the charged particles is therefore described by oscillating kinetic distribution functions whose structures are exhibited in [START_REF] Cheverry | Anomalous transport[END_REF]. This produces oscillating currents. Then, by a mesoscopic caustic effect [START_REF] Cheverry | Can One Hear Whistler Waves?[END_REF], self-consistent oscillating electromagnetic waves are emitted. They act like coherent sources [START_REF] Cheverry | Mathematical perspectives in plasma turbulence[END_REF]. Roughly speaking, it is as if the rays emanate from a smooth nonlinear phase φ(t, x). The same applies to waves launching by antennas, in view of the radio frequency heating of tokamak plasmas.

It turns out that the propagation of electromagnetic oscillations in a hot quasi-neutral background of ions and electrons can be described in the framework of some asymptotic analysis. To some extent, we can consider WKB expansions involving a single phase φ(t, x), as in (3.3). From there, the matter is to construct for the relativistic Vlasov-Maxwell system an adequate geometrical optics. In comparison with usual theories in hyperbolic equations [START_REF] Métivier | The mathematics of nonlinear optics[END_REF][START_REF] Rauch | Hyperbolic Partial Differential Equations and Geometric Optics[END_REF], new difficulties come from the kinetic resonances which are hidden in the self-consistent picture.

As a matter of fact, the propagation of waves is still governed by a dielectric tensor σ(•).

But now the dielectric property becomes a reactive aspect of the wave-particle interaction.

The aim of this article is to derive σ(•) from basic principles. Then, it is to rigorously define the content of σ(•) in the domain of real frequencies. When doing this, complications arise for instance from the singular integrals that play a part in the construction of σ(•).

Theorem 1 (eikonal equation in axisymmetric configurations). There exists a well-defined skew-symmetric matrix σ(•) playing the part of a conductivity tensor, such that the eikonal equation governing wave propagation in tokamaks can be determined through the following Hamilton-Jacobi equation:

(1.1) det ∇ x φ t ∇ x φ + (∂ t φ) 2 Id -|∇ x φ| 2 Id + i ∂ t φ σ(x, ∂ t φ, ∇ x φ) = 0 .
More precisely, the matrix σ(•) is defined by:

(1.2) σ(x, τ, ξ) := -4 π i G d Ψ(ρ, z) n∈Z ˆ+∞ 0 ˆπ 0 r 4 ∂ r F d (r 2 ) r (τ + τ n ) T n dr d
where G d (•) and F d (•) are constitutive elements of realistic tokamak distribution functions (see [START_REF] Cremaschini | Kinetic description of rotating tokamak plasmas with anisotropic temperatures in the collisionless regime[END_REF][START_REF] Kuiroukidis | Vlasov tokamak equilibria with shearad toroidal flow and anisotropic pressure[END_REF] and Definition 2.2), whereas Ψ(•) is a general poloidal flux function. At the level of (1.2), the " T n " symbol stands for the skew-symmetric matrix: This text is divided into two main chapters, Section 2 and Section 3.

T n :=        n 2 J 2 n (ζ) ζ 2 sin 3 i n J n (ζ) J n (ζ) ζ sin 3 n J 2 n (ζ) ζ cos sin 2 - i n J n (ζ) J n (ζ) ζ sin 3 (J n (ζ)) 2 sin 3 -i J n (ζ) J n (ζ) cos sin 2 n J 2 n (ζ) ζ cos sin 2 i J n (ζ) J n (ζ)
The discussion begins in Section 2 with the modeling of hot magnetized collisionless plasmas in axisymmetric configurations, through the textbook case of tokamaks. The starting point is the relativistic Vlasov-Maxwell (RVM) system. A first step (Part 2.3) is to describe the content of toroidal equilibria. This means (Paragraph 2.3.1) to use practical external magnetic fields Be (•) and (Paragraphs 2.3.2 and 2.3.3) to exhibit realistic distribution functions fd α (•) satisfying the stationnary RVM system (2.9)-(2.10). A second stage (Part 2.4) is to perform some dimensionless analysis of the RVM system. The purpose (Part 2.5) is to interpret the hot regime in terms of some asymptotic analysis, where the size of all physical quantities is expressed in function of the small parameter ε. By this way, we are led to a version of the RVM equations which is much more singular than in the article [START_REF] Cheverry | Dispersion relations in cold magnetized plasmas[END_REF], with a number of new aspects which must be taken into account.

Section 3 contains the core of the analysis. Part 3.2 is devoted to a precise description of the characteristic variety. The framework of geometrical optics allows in the preliminary Paragraph 3.2.1 to extract a simplified system of equations. Then, in Paragraph 3.2.2, we perform a Fourier analysis through the Jacobi-Anger identity. In Paragraph 3.2.3, this leads to some interesting kinetic interpretation of the electron cyclotron resonances. By this way, in Paragraph 3.2.4, we can get a formal definition of the dielectric tensor σ(•). Now, the aim of Part 3.3 is to clarify the meaning of σ(•). This is achieved in several stages. (•) what can be the concrete influence of the inhomogeneities. On the other hand, the mathematical difficulties which are solved in Part 3.3 in order to rigorously define the dielectric tensor σ(•) are original. They are issued from an interpretation of waveparticle interactions, where the gyroballistic dispersion functions τ n (•) with n ∈ Z appear as constitutive elements of σ(•). As an extension of the present work, the mechanisms of power transfer between particles and waves could be further investigated [START_REF] Cheverry | Mathematical perspectives in plasma turbulence[END_REF].

Hot magnetized plasmas in axisymmetric configurations

This section is dedicated to the modelling of hot magnetized plasmas in axisymmetric configurations. We will consider the case of Tokamaks. Keeping in mind the physical observations, the discussion will be systematically tested in this Tokamak context. The basic equations are the Relativistic Vlasov-Maxwell equations (RVM equations) recalled in Paragraph 2.1. Paragraph 2.2 introduces the notations and assumptions that will be used throughout this article. Section 2.3 exhibits exact and realistic stationnary solutions. Section 2.4 highlights dimensionless equations which are issued from the RVM equations. This leads in Section 2.5 to the notion of what is a hot asymptotic regime.

Relativistic Vlasov-Maxwell equations.

The topic of RVM equations has been widely discussed [START_REF] Bostan | Mathematical models for strongly magnetized plasmas with mass disparate particles[END_REF][START_REF] Cheverry | Can One Hear Whistler Waves?[END_REF][START_REF] Frénod | Long time behavior of the two-dimensional Vlasov equation with a strong external magnetic field[END_REF][START_REF] Glassey | Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data[END_REF][START_REF] Lin | Linear stability and instability of relativistic Vlasov-Maxwell systems[END_REF]. The corresponding framework is recalled hereafter. The speed of light is c 0 2, 99 × 10 8 m s -1 . Let L ∈ R * + be a characteristic spatial length. The original spatial variable is x ∈ Ω, where Ω is some non-empty open set of R 3 . We fix the observation time T ∈ R * + as T := L/c 0 . The original time variable is t ∈ [0, T ]. There are corresponding rescaled versions:

(2.1) t := t T ∈ [0, 1] , x = (x 1 , x 2 , x 3 ) := x L ∈ Ω := x L ; x ∈ Ω .
The original space and momentum variables are (x, p) with:

x = (x 1 , x2 , x3 ) ∈ Ω ⊂ R 3 , p = (p 1 , p2 , p3 ) ∈ R 3 .
We consider a plasma which is confined inside Ω, and which consists of N distinct species labelled by α ∈ {1, • • • , N }. The particles of the α th species have charge e α and rest mass m α . The number α = 1 will be associated with electrons.

The elementary charge of electrons is e ≡ -e 1 1, 6 × 10 -19 C and the electron rest mass is m e ≡ m 1 9, 1 × 10 -31 kg. Recall that the proton-to-electron mass ratio β 1836 is a dimensionless quantity, so that:

(2.2) ι 1 := m 1 m e = 1 , ι α := m 1 m α β -1 10 -3 , ∀ α ∈ {2, • • • , N } .
On the other hand, the charge e α is an integer multiple of e. More precisely:

(2.3) ∀ α ∈ {2, • • • , N } , ∃ k α ∈ N * ; k α 1 , e α = k α e .
The velocity ṽα of a particle of type α is limited by |ṽ α | ≤ c 0 , and it is linked to the momentum p ∈ R 3 through: + between these two populations is assumed to be small and independant of α:

(2.4) ṽα (p) c 0 = p m α c 0 1 + |p| 2 m 2 α c 2 0 -1/2 , p(ṽ α ) m α c 0 = ṽα c 0 1 - |ṽ α | 2 c 2 0 -1/2
(2.5) fk α ( t, x, p) = fd α (x, p) + ν fs α ( t, x, p) , ( t, x, p) ∈ R + × Ω × R 3 , ν 1 .
The charge density ρ and the current density  are given by:

ρ ≡ ρ( fk 1 , • • • , fk N )( t, x) ≡ ρ( fk α )( t, x) := N α=1 ˆR3 e α fk α ( t, x, p) dp , (2.6a)  ≡ ( fk 1 , • • • , fk N )( t, x) ≡ ( fk α )( t, x) := N α=1 ˆR3 e α ṽα (p) fk α ( t, x, p) dp . (2.6b)
We impose a (stationary) external magnetic field Be : Ω -→ R 3 . We also take into account some collective self-consistent electromagnetic field ( Ẽ, B)( t, x), which is created by all plasma particles. Then, neglecting the collisional effects, the time evolution of the KDF can be modelled through the Vlasov equation:

(2.7) ∂ tf k α + ṽα (p) • ∇ xf k α + e α Ẽ( t, x) + ṽα (p) × B( t, x) + Be (x) • ∇ pf k α = 0 .
On the other hand, the self-consistent electromagnetic field ( Ẽ, B)( t, x) is subjected to the Maxwell equations:

∂ t Ẽ -c 2 0 ∇ x × ( B + Be ) = --1 0 ( fk α ) , ∇ x • Ẽ = -1 0 ρ( fk α ) , (2.8a) ∂ t B + ∇ x × Ẽ = 0 , ∇ x • ( B + Be ) = 0 . (2.8b)
In (2.8), the physical constant 0 8, 8 × 10 -12 F m -1 stands for the vacuum permitivity.

The unknowns in (2.7)-(2.8) are the fk α (•) and ( Ẽ, B)(•). The strategy is to seek solutions of (2.7)-(2.8) as perturbations of a stationary equilibrium state given by fk α ( t, x, p) ≡ fd α (x, p) for all α ∈ {1, • • • , N } and ( Ẽ, B) ≡ (0, 0).

A first stage in this direction is to find functions fd α (•) and Be (•) satisfying:

(2.9) ṽα (p)

• ∇ xf d α + e α ṽα (p) × Be (x) • ∇ pf d α = 0 , ∀ α ∈ {1, • • • , N } ,
together with:

(2.10)

c 2 0 ∇ x × Be = -1 0 ( fd α ) , ρ( fd α ) = 0 , ∇ x • Be = 0 .
2.2. Some basic assumptions. The purpose of this subsection 2.2 is to introduce the notations of this article, together with a number of other relevant physical constraints.

Cold, warm and hot plasma temperatures. A plasma which is spatially in Local

Thermodynamic Equilibrium (LTE) can be characterized at the position x with a few parameters, as is the case with Maxwell-Boltzmann distributions:

(2.11) fd α (x, p) = ñd α (x) m 3 α c 3 0 M b θd α (x) |p| m α c 0 , M b θ (r) := 1 π 3/2 1 θ 3 exp - r 2 θ 2 .

Both θd

α (•) and ñd α (•) are building blocks in the construction of fd α (•). Retain for instance that the density ñd α (•) can be recovered from fd α (•) through the integral formula:

(2.12)

ñd α (x) := ˆR3 fd α (x, p) dp , x ∈ Ω , α ∈ {1, • • • , N } . Denote simply by θ d α ∈ R * + and n d α ∈ R * + typical sizes of θd α (•)
and ñd α (•). We require that the two quantities θd α (x) and ñd α (x) do not deviate too far from θ d α and n d α . In other words: Assumption 2.1. [possible but slight variations in temperatures and densities] There is a constant c ∈ ]0, 1[ such that:

(2.13) 0 < c θ d α ≤ θd α (x) ≤ c -1 θ d α , 0 < c n d α ≤ ñd α (x) ≤ c -1 n d α , ∀ x ∈ Ω .
Recall that k B 1, 38 × 10 -23 m 2 kg s -2 K -1 stands for the Boltzmann constant, and also retain the relationship 1 eV 1, 16 × 10 4 k B K. The electron temperature (T e ≡ T 1 ) and the ion temperatures (denoted by T α for α > 1) can be expressed either in kelvin (K) or in electronvolt (eV ). Because of the large difference in mass, the electrons will come to thermodynamic equilibrium amongst themselves much faster than they will come into equilibrium with the ions or neutral atoms. For this reason, the ion temperatures may be very different from (usually much lower than) the electron temperature:

(2.14) T α ≤ T e ≡ T 1 , ∀ α ∈ {1, • • • , N } .
Based on the relative temperatures of the electrons, ions and neutrals, plasmas are classified as thermal or non-thermal. Introduce the thermal speed v th α and its dimensionless version θ d α as indicated below:

(2.15)

v th α := k B T α m α 1/2 ∈ R * + , θ d α := v th α c 0 ∈ R * + .
Both v th α and θ d α can be viewed as measures of temperature, albeit in dimensionless units concerning θ d α . Combining (2.2) and (2.14), we get:

(2.16) v th α v th 1 = θ d α θ d 1 = T α T 1 1/2 × m 1 m α 1/2 T α T 1 1/2 × 1 β 1/2 1 .
As a rule of thumb, temperatures T α well below 100 eV (θ d α ε) are said cold ; those which are about 100 eV (θ d α 10 -2 ) are considered warm ; those with T α ranging from 100 eV to 10 keV (10 -2 θ d α < 1) become progressively hot ; particles with higher energies (1 ∼ θ d α ) are termed energetic or relativistic.

Quasi-neutrality.

A plasma consists of approximately equal numbers of positively charged ions and negatively charged electrons. This property is expressed by the second equation of (2.10). In view of (2.6a) and (2.12), this amounts to the following condition.

Assumption 2.2. The plasma is quasi-neutral in the sense that:

(2.17) e ñd 1 (x) = N α=2 e α ñd α (x) , ∀ x ∈ Ω .
The interpretation of (2.17) is the existence of a background neutralizing ion population.

In view of (2.3), (2.13) and (2.17), we can infer that:

(2.18) e n d 1 N α=2 e α n d α , n d α n d 1 , ∀ α ∈ {2, • • • , N } .

Toroidal equilibrium.

The discussion is devoted here to the study of (2.9)-(2.10), that is to the determination of Be (•) and fd α (•). In Paragraph 2.3.1, we select axisymmetric divergence free external magnetic fields Be (•) that are issued from physical considerations. In Paragraph 2.3.2, we explain how (2.9)-(2.10) is usually replaced by the Grad-Shafranov equations, giving rise to a notion of a fluid equilibrium. Finally, in Paragraph 2.3.3, we investigate directly (2.9)-(2.10) to find special solutions incorporating kinetic aspects.

Axisymmetric inhomogeneous external magnetic fields.

In Tokamaks, the charged particles are confined by a strong external inhomogeneous magnetic field Be (•) ∈ C ∞ ( Ω; R 3 ), with amplitude be (x) := | Be (x)|. The function be (•) is assumed to be of the order b e ∈ R * + . More precisely, we can find c ∈ ]0, 1[ such that:

(2.19) 0 < c b e ≤ be (x) ≤ c -1 b e , ∀ x ∈ Ω .
In view of (2.1), we can consider the following rescaled version of Be (•):

(2. Then, the condition (2.19) becomes:

Assumption 2.3. [nowhere-vanishing external magnetic field]

There is c ∈ ]0, 1[ such that:

(2.21) 0 < c ≤ b e (x) ≤ c -1 , ∀ x ∈ Ω .
The function B e (•) generates a unit vector field:

(2.22) e 3 (x) := b e (x) -1 B e (x) ∈ S 2 := x ∈ R 3 ; |x| = 1 .
Complete e 3 (x) into some right-handed orthonormal basis (e 1 , e 2 , e 3 )(x), with:

(2.23)

e j (•) = t (e 1 j , e 2 j , e 3 j )(•) ∈ C ∞ (Ω; S 2 ) , ∀ j ∈ {1, 2, 3} .
With the preceding ingredients, we can define some orthogonal matrix O(x) and some constant skew-symmetric matrix Λ according to:

(2.24)

O :=   e 1 1 e 1 2 e 1 3 e 2 1 e 2 2 e 2 3 e 3 1 e 3 2 e 3 3   = t O -1 , Λ :=   0 1 0 -1 0 0 0 0 0   = -t Λ .
Note that the matrix O(x) allows to straighten out the field lines, since t O e 3 = t (0, 0, 1). On the other hand, the divergence free condition of (2.10) is verified when Be (•) is issued from a magnetic potential.

Assumption 2.4. [magnetic potential]

There is a vector field à ∈ C ∞ ( Ω; R 3 ) such that:

(2.25) Be (x) = ∇ x × Ã(x) . Consider the cylindrical coordinate system (ρ, φ, z) ∈ R + × T × R with corresponding orthonormal basis (e ρ, e φ, e z ). The second direction e φ is called the toroidal direction.

On the other hand, the plane generated by the directions e ρ and e z is called the poloidal plane. Select a and R 0 with 0 < a < R 0 . Then, define:

Ω := (ρ, φ, z) ∈ R + × T × R ; (ρ -R 0 ) 2 + z2 ≤ a 2 .
The domain Ω is represented on Figure 1.

The positive numbers a and R 0 respectively stand for the minor and the major radius of the tokamak. A vector field like à can be decomposed in the basis (e ρ, e φ, e z ). This yields three components Ãρ , Ãφ and Ãz . We consider axisymmetric plasmas.

Assumption 2.5.

[axisymmetric toroidal equilibrium] The vector field Ã(•) and the kinetic distribution functions fd α (•) are exhibiting symmetry around the vertical axis ρ = 0. In particular, all components Ãρ , Ãφ and Ãz of à do not depend on φ. Then:

(2.26) Be = ∇ x × Ã = -∂ z à φ e ρ + (∂ z Ãρ -∂ ρ Ãz ) e φ + ρ-1 ∂ ρ( ρ à φ) e z .
We For axisymmetric systems, the field lines lie in nested magnetic flux surfaces. The cuts of these flux surfaces with the poloidal planes (which are the planes containing the z-axis) give rise to closed curves which can be viewed as the level sets C ψ of a poloidal flux function Ψ(•). The family of poloidal cross sections {C ψ } ψ with ψ ∈ R + is diffeomorphic to concentric circles. The function Ψ(•) can be viewed as depending on the variables (ρ, z) or (r, θ). In the cylindrical coordinate system, the curve C ψ takes the following form:

(2.29)

C ψ = (ρ, z) ∈ R + × R ; Ψ(ρ, z) = ψ .
In the toroidal coordinate system, it is:

(2.30)

C ψ = (r, θ) ∈ R + × T ; Ψ(r, θ) = ψ .
By definition, we must have Bp e • ∇ Ψ ≡ 0. It follows directly from (2.28) that Ψ(•) is a function of ρ Ãϕ . A possible choice for Ψ(•) is simply (see for instance [START_REF] Hu | Notes on Tokamak Equilibrium[END_REF], Section 1.3):

(2.31) Ψ(ρ, z) := ρ Ãϕ (ρ, z) .

The two components Bt e (•) and Bp e (•) can be written:

(2.32) Bt e = g ∇ φ , g(ρ, z) := ρ (∂ z Ãρ -∂ ρ Ãz ) , Bp e = ∇ Ψ × ∇ φ .
In [START_REF] Hu | Notes on Tokamak Equilibrium[END_REF], the function g(•) is called the poloidal current function. It can be freely adjusted since it suffices to integrate the second equation of (2.32) to recover the components Ãρ and Ãz of Ã. Now, a common assumption [START_REF] Cheverry | Anomalous transport[END_REF] is to consider that the function g(•) depends only on Ψ, say g = g( Ψ) for some g ∈ C 1 (R; R). Let (ρ 1 , z) and (ρ 2 , z) be such that Ψ(ρ 1 , z) = ψ 1 and Ψ(ρ 2 , z) = ψ 2 . The poloidal magnetic flux Ψpol between the two magnetic surfaces C ψ 1 and C ψ 2 is the difference of Ψ between the two positions (ρ 1 , z) and (ρ 2 , z).

In other words [START_REF] Hu | Notes on Tokamak Equilibrium[END_REF]:

(2.33) Ψpol := ˆρ 2 ρ1 Be • e z 2 π ρ dρ = 2 π ˆρ 2 ρ1 ∂ ρ Ψ dρ = 2 π (ψ 2 -ψ 1 ) .
There is a similarity between the differential equations contained in (2.25)-(2.31) on the one hand and in (2.10)-(2.32) on the other hand. It follows that the poloidal current Ĩpol enclosed by the two magnetic surfaces C ψ 1 and C ψ 2 is given by:

(2.34) Ĩpol = 2 π ε 0 c 2 0 g(ψ 2 ) -g(ψ 1
) . Sometimes the function g(•) is viewed as constant, see for example [START_REF] Wesson | Tokamaks[END_REF] (Section 3.1). This constant case is highlighted below. Assumption 2.6. [constant poloidal current density] The poloidal current function g(•) is constant. More precisely, the toroidal field Bt e (•) takes the form:

(2.35) Bt e (ρ, z) = b e R 0 (R 0 + r cos θ) -1 e φ = b e R 0 ρ-1 e φ , g ≡ b e R 0 .
The electric current that circulates in the primary coil of the tokamak is supposed to produce the poloidal magnetic field Bp e (•). In view of (2.32), the function Bp e (•) determines the choice of Ψ(•). When Ψ(•) does not depend on the angle θ, the poloidal cross sections form concentric circles. This special situation is described below. where the function ı : [0, a] -→ R * + is called the rotational transform, whereas the function q : [0, a] -→ R * + with q(r) = ı(r) -1 is called the safety factor.

The value q(r) can be defined as the number of rotations a magnetic field line (located at a distance r from the magnetic axis) makes in the toroidal direction when it makes one loop on the poloidal plane. The term safety factor refers to the role it plays in determing the stability of a plasma. Values of q(•) larger than one lead to greater stability. In general (see [START_REF] Argomedo | Safety Factor Profile Control in a Tokamak[END_REF]), the function q(•) is assumed to be increasing, and such that q(0) ≥ 1.

In accordance with (2.6a) and (2.6b), at equilibrium, the total charge density ρd and the total current density d can be defined as the sum of what the α th species bring: In what follows, we will assume that the plasma is in a non-relativistic regime, that is in the case where p(ṽ α ) = m α ṽα . Then, for α ∈ {1, 

ρd := ρ( fd α ) = N α=1 ρd α , ρd α := ˆR3 e α fd α ( t,
(2.41) ∀ (x, p) ∈ R 3 × R 3 , fd α (x, p) = Fd α (x, |p -m α ũd α (x)|) , where Fd α (•) ∈ S(R 3 × R + ; R).
Then, for some scalar function pd α (•), the pressure tensor Pd α takes the form:

(2.42) Pd α (x) = pd α (x)Id . Proof.
The integral over a symmetric domain of an odd function is equal to zero. Therefore, for i = j, with the change of variable Pα := p -m α ũd α , we have:

ˆR3 ṽα -ũd α ⊗ ṽα -ũd α ij fd α (x, p) dp = 1 m 2 α ˆR3 P i α P j α Fd α (x, | P d α |) d Pα = 0 .
On the other hand, for i = 1, changing P i α into P 1 α , we get:

pd α (x) := 1 m 2 α ˆR3 ( P 1 α ) 2 Fd α (x, | Pα |) d Pα = ˆR3 ( P i α ) 2 Fd α (x, | Pα |) d Pα .
In view of these elements, we have (2.42). The function pd α (•) thus defined is called the scalar pressure of the α th species.

The condition of quasi-neutrality ρd ≡ 0 gives rise to the relation (2.17) on ñd α . On the other hand, multiplying (2.9) by ṽα and integrating with respect to p, we can extract:

(2.43) m α ñd α (ũ d α • ∇ x)ũ d α + ∇ x • Pd α = d α × Be . The introduction of ũd α (•)
is strongly motivated by the role achieved in tokamaks by the toroidal plasma current d α . A common assumption [START_REF] Cremaschini | Kinetic description of rotating tokamak plasmas with anisotropic temperatures in the collisionless regime[END_REF][START_REF] Kuiroukidis | Vlasov tokamak equilibria with shearad toroidal flow and anisotropic pressure[END_REF] which turns to be consistent with Assumption 2.5 is to take ũd α (•) of the form:

(2.44) ũd α (x) := ρ Ω α e φ , Ω α ∈ R + .
In (2.44), the number Ω α is the angular rotation frequency. It is easy to see that:

(2.45) (ũ d α • ∇ x)ũ d α = -ρ Ω 2 α e ρ .
This accounts for the centrifugal force density. Moreover, as pointed out by Lemma 2.1, in an isotropic medium, the matrix Pd α is diagonal, of the form Pd α (x) = pd α (x) Id where pd α is the scalar pressure of the α th species. With (2.43) and (2.45), we obtain that pd α is linked to Ω α and to the current density d α of the α th species through:

(2.46)

∇ xp d α = d α × Be + m α ñd α ρ Ω 2 α e ρ , d α = e α ñd α ũd α .
Now, consider the total scalar pressure pd := pd

1 + • • • + pd N .
Due to the axisymmetric hypothesis, the function pd (•) depends only on (ρ, z). Then, summing the equation (2.46) over α, we can infer that:

(2.47)

∇ xp d = ∂ ρp d e ρ + ∂ z pd e z = d × Be + ρ N α=1 m α ñd α Ω 2 α e ρ .
Using the decomposition d = dt + dp of (2.38), it follows directly from (2.47) that:

dp × Bp e = 0 , (2.48a) ∂ ρp d e ρ + ∂ z pd e z = dp × Bt e + dt × Bp e + ρ N α=1 m α ñd α Ω 2 α e ρ . (2.48b)
From the MHD point of view expressed in (2.48), the centrifugal force is balanced by the magnetic and pressure forces at all points. In particular, inserting the expressions (2.32) and (2.38) of Bp e and dp , the relation (2.48a) implies that ∇ Ψ • ∇g = 0. In particular, g(•) is constant along the curves C ψ , and therefore g(•) can be expressed in terms of Ψ.

In other words, g = g( Ψ) for some g ∈ C 1 (R; R). Then, (2.48b) together with (2.32) and (2.38) gives rise to the following vectorial equilibrium equation [START_REF] Maschke | Exact solutions of the stationary mhd equations for a rotating toroidal plasma[END_REF]:

(2.49)

∇p d = - 0 c 2 0 ρ2 ∆ * Ψ ∇ Ψ - 0 c 2 0 ρ2 g( Ψ) g ( Ψ) ∇ Ψ + ρ N α=1 m α ñd α Ω 2 α e ρ .
Moreover, the function pd (•) can always be written in the form pd = P(ρ, Ψ) for some function P ∈ C 1 (R × R; R). A first projection of equation (2.49) in the e ρ direction yields:

(2.50)

∂ P ∂ ρ Ψ=cste = ρ N α=1 m α ñd α Ω 2 α .
Then, a second projection of equation (2.49) in the direction of ∇ Ψ gives the extended Grad-Shafranov equation:

(2.51) ∆ * Ψ = - ρ2 0 c 2 0 ∂ P ∂ Ψ ρ=cste -g( Ψ) g ( Ψ) .
The equation (2.51) has been much studied [START_REF] Goedbloed | Advanced Magnetohydrodynamics. With applications to laboratory and astrophysical plasmas[END_REF][START_REF] Haverkort | Magnetohydrodynamic waves and instabilities in rotating tokamak plasmas[END_REF][START_REF] Hu | Notes on Tokamak Equilibrium[END_REF][START_REF] Maschke | Exact solutions of the stationary mhd equations for a rotating toroidal plasma[END_REF] because it gives access to the geometry of the magnetic surfaces. It is scale invariant through:

(2.52) Ψ / α Ψ , P / α 2 P , g / α g , α ∈ R .
Note that the change (2.52) does not affect the shape of magnetic surfaces. Observe also that the number Ω α plays only an indirect role at the level of (2.51), through (2.50).

Kinetic equilibria in magnetized plasmas.

The fluid theory that has been outlined in Paragraph 2.3.2 is the most common way to study tokamak equilibria. However, it faces significant challenges due to the well-known closure problem. In (2.43), the pressure tensor Pd α (•) is an unknown. Except under special restrictions (see Paragraph 2.3.2), it cannot be expressed in terms of ũd α . The equation (2.43) is not self-contained. From that perspective, the kinetic framework offers a more consistent, thorough and precise approach. As a consequence, the study of tokamak equilibria through a kinetic approach has been the subject of intensive research over the last few years in both physics [START_REF] Cremaschini | Kinetic description of rotating tokamak plasmas with anisotropic temperatures in the collisionless regime[END_REF][START_REF] Kuiroukidis | Vlasov tokamak equilibria with shearad toroidal flow and anisotropic pressure[END_REF] and mathematics [START_REF] Lin | Linear stability and instability of relativistic Vlasov-Maxwell systems[END_REF]. In [START_REF] Cremaschini | Kinetic description of rotating tokamak plasmas with anisotropic temperatures in the collisionless regime[END_REF][START_REF] Kuiroukidis | Vlasov tokamak equilibria with shearad toroidal flow and anisotropic pressure[END_REF], the purpose is to construct exact (or approximate) solutions to the stationary equation:

(2.53) p • ∇ xf d α + e α p × Be (x) • ∇ pf d α = 0 .
To this end, the existence of constants of motion (or of adiabatic invariants) is useful. Obviously, in the case Ẽ ≡ 0, the kinetic energy:

(2.54) E α ≡ E α (p) := 1 2 m α |p| 2 ,
is preserved by the flow associated to the Vlasov equation. The same applies to any function of |p|. It follows that the function E α (•) is a solution to (2.53). There are others.

Definition 2.1. [angular momentum]

The angular momentum is the quantity defined by: 

(2.55) C α ≡ C α (x, p) := m α (ρ p • e φ + e α Ψ)
(2.56) (p ρ ∂ ρ + ρ-1 p φ ∂ φ)( ρ p φ) + e α p • ∇ x Ψ + p × (∇ x Ψ × e φ) • e φ = 0 .
In (2.56), the two parts inside brackets are zero.

More generally, any function of E α and C α is a solution to (2.53). Such prototypes of (non-maxwellian) axisymmetric equilibria are introduced and studied in [START_REF] Cremaschini | Kinetic description of rotating tokamak plasmas with anisotropic temperatures in the collisionless regime[END_REF][START_REF] Kuiroukidis | Vlasov tokamak equilibria with shearad toroidal flow and anisotropic pressure[END_REF] for their practical relevance. In particular, they allow to incorporate some anisotropy (in p), to take into account the existence of a non trivial toroidal current, and to work with spatially confined data. To avoid technicalities, we will only consider functions of separate variables.

Definition 2.2. [tokamak transient distributions]

Any function fd α (x, p) having the form:

(2.57) fd α (x, p) := n d α (m α c 0 θ d α ) 3 F d α |p| 2 (m α c 0 θ d α ) 2 G d α 1 e α L 2 b e • ρ p • e φ + e α Ψ = n d α (m α c 0 θ d α ) 3 F d α 2 E α m α (c 0 θ d α ) 2 G d α 1 e α L 2 b e • C α m α with F d α (•) ∈ S(R + ; R) and G d α (•) ∈ C 1 (R; R) is called a tokamak transient distribution.
As long as the temperature θ d α (see Paragraph 2.2.1) is small enough, such that θ d α ≤ 10 -3 , one can consider that the momentum p satisfies some usual statistical repartition around the toroidal flow velocity ũd α (•). Then, the choice of f d α (•) can be further specified. Definition 2.3. [shifted Maxwell-Boltzmann distribution] The notion of a shifted Maxwell-Boltzmann distribution refers to the special choice:

(2.58) fd α (x, p) = ñd α (x) m 3 α c 3 0 M b θ d α |p -m α ũd α (x)| m α c 0 , M b θ (r) := 1 π 3/2 1 θ 3 exp - r 2 θ 2 .
In (2.58), the vector field ũd α (•) represents the flow velocity of the α th species, as it can be given by (2.44). On the other hand, the function ñd α (•) is determined by:

(2.59) ñd α (x) := n d α exp 1 (c 0 θ d α ) 2 |ũ d α (x)| 2 + 2 e α m α Ω α Ψ .
Remark that (2.58) is indeed some particular case of (2.57), with:

(2.60)

F d α (r) := 1 π 3/2 exp (-r) , G d α (s) := exp 2 Ω α e α L 2 b e m α (c 0 θ d α ) 2 s .
Recall (2.5) which says that fk α = fd α + ν fs α with ν 1. The relativistic features come from the possible presence of energetic particles. As long as the fraction of such particles remains small, the relativistic effects are restricted to the perturbation fs α (•). 

(2.61) e ˆR3 fd 1 (x, p) dp = N α=2 e α ñd α (x) , ∀ x ∈ Ω .
For general choices of fd 1 (•), the pressure tensor Pd 1 is not at all diagonal. It follows that the equation (2.46) does not hold. On the other hand, the relation (2.38) can still be exploited. In particular, the second equation of (2.38) yields:

(2.62) ∆ * Ψ = ρ 0 c 2 0 ˆR3 (-sin φ ṽ1 + cos φ ṽ2 ) N α=1 e α fd α (x, p) dp .
In view of (2.57) and (2.58)-(2.59), the expressions fd α (•) are non linear functions of Ψ. Thus, the condition (2.62) can be interpreted as a non linear elliptic equation. The dependence of (2.62) on Ω α can still appear through (2.60). However, the equation (2.62) cannot be scaled as in (2.52). There are clear differences between (2.51) and (2.62).

Under reasonable assumptions, that is with adequate (possibly free) boundary conditions, the equation (2.62) can be solved. We refer for instance to the appendix of [START_REF] Lin | Linear stability and instability of relativistic Vlasov-Maxwell systems[END_REF] or to the sections III and IV of [START_REF] Kuiroukidis | Vlasov tokamak equilibria with shearad toroidal flow and anisotropic pressure[END_REF]. A realistic adjustment through Ψ(•) of the magnetic flux surfaces is an important piece of information before looking at more refined aspects. In what follows, the function Ψ(•) is assumed to satisfy the condition (2.62), which is equivalent to (2.51) when the fluid approach is affordable. From now on, the external magnetic field Be ( (2.64)

∂ tf s α + ṽα (p) • ∇ xf s α + e α Ẽ + ṽα (p) × ( B + Be ) • ∇ pf s α = - e α ν Ẽ + ṽα (p) × B • ∇ pf d α .
In view of (2.10), the Maxwell's equations give rise to:

(2.65)

∂ t B + ∇ x × Ẽ = 0 , ∂ t Ẽ -c 2 0 ∇ x × B = --1 0 ν ( fs 1 , • • • , fs N ) ,
together with:

(2.66)

∇ x • Ẽ = ν 0 ρ( fs 1 , • • • , fs N ) , ∇ x • B = 0 . 2.4.2. Rescalings. The dimensionless version A(•) of Ã(•) is: (2.67) A(x) := 1 L b e Ã(L x) , x := x L ∈ Ω , ρ := ρ L ∈ R + , z := z L ∈ R .
The dimensionless function Ψ(•) associated with the magnetic flux function Ψ(•) is:

(2.68) Ψ(ρ, z) := 1 L 2 b e Ψ(L ρ, L z) .
From the Ampère's law in (2.65), we can infer that B ν θ d α b e . With this in mind, we can further define new unknowns by the relations:

v α (p) := (c 0 ) -1 ṽα (p) , p α := (m α c 0 θ d α ) -1 pα , ∀ α ∈ {1, • • • , N } , (2.69a) f α (t, x, p α ) := (n d α ) -1 m 3 α c 3 0 (θ d α ) 3 fs α ( t, x, p) , ∀ α ∈ {1, • • • , N } , (2.69b) E(t, x) := (ν θ d 1 c 0 b e ) -1 Ẽ( t, x) , B(t, x) := (ν θ d 1 b e ) -1 B( t, x) . (2.69c)
From now on, the time and spatial positions are t and x with (t, x) ∈ M := [0, T ] × Ω for some T ∈ R * + . Let T * M be the cotangent bundle associated with M . With (2.69a), the vectors v α and p α are linked by the relations issued from (2.4), that is:

(2.70) p α (v α ) := v α θ d α 1 -|v α | 2 1/2 , v α (p α ) := θ d α p α θ d α |p α | , r := 1 + r 2 .
Among the fundamental plasma parameters, we can mention (for α = 1) the electron gyrofrequency (or cyclotron frequency) ω ce ≡ ω c1 and the electron plasma frequency (or plasma oscillation) ω pe ≡ ω p1 . For α ∈ {2, • • • , N }, we can cite the ion gyrofrequencies ω cα and the ion plasma frequencies ω pα . For simplicity of presentation, we define below these quantities with an algebraic sign:

(2.71)

ω cα := e α b e m α , ω pα := n d α e 2 α m α 0 , ∀ α ∈ {1, • • • , N } .
There are corresponding dimensionless coefficients ε α and µ α , given by:

(2.72)

ε α := (L ω cα ) -1 c 0 , µ α := (ω cα ) -1 ω pα , ∀ α ∈ {1, • • • , N } .
Then, the new Vlasov equation is:

(2.73)

∂ t f α + θ d α θ d α |p α | p α • ∇ x f α + θ d 1 θ d α ν ε α E + θ d α θ d α |p α | p α × B • ∇ pα f α + 1 ε α 1 θ d α |p α | p α × B e (x) • ∇ pα f α + θ d 1 θ d α ε α E + θ d α θ d α |p α | p α × B • ∇ pα f d α (x, p α ) = 0 ,
where:

(2.74)

f d α (x, p α ) := (n d α ) -1 m α c 0 (θ d α ) 3 fd α L x, m α c 0 θ d α p α = F d α (|p α | 2 ) G d α ε α θ d α ρ p α • e ϕ + Ψ(ρ, z) .
On the other hand, the Maxwell's equations become:

∂ t B + ∇ x × E = 0 , ∂ t E -∇ x × B = -(f α ) , (2.75a) ∇ x • B = 0 , ∇ x • E = ρ(f α ) , (2.75b)
where we have introduced: 

ρ(f 1 , • • • , f N )(t, x) ≡ ρ(f α )(t, x) := N α=1 1 θ d 1 µ 2 α ε α ˆR3 f α (t, x, p α ) dp α , (2.76a) (f 1 , • • • , f N )(t, x) ≡ (f α )(t, x) := N α=1 θ d α θ d 1 µ 2 α ε α ˆR3 p α θ d α |p α | f α (t, x, p α ) dp α . (2.
(2.77) B e (x) = b e (x) e 3 (x) = b e (x) O(x) t (0, 0, 1) , ∀ x ∈ Ω .
In view of Assumtions 2.6 and 2.7, the directions of the unit vector field e 3 (•), and therefore of B e (•), can vary with changes in x ∈ Ω. To remedy this situation, we replace simultaneously B e , B, E and p α according to:

(2.78) b e t (0, 0, 1) = t O B e , B := t O B , E := t O E , p α := t O p α .
For the sake of simplicity, the subscript α that identifies the different momentum variables p α will be omitted. Concerning p ≡ p α ∈ R 3 , we can pass from cartesian to spherical coordinates, with orthonormal basis (e r , e , e ω ). This gives rise to:

(2.79) p = r t (cos ω sin , sin ω sin , cos ) , ( , ω, r) ∈ T 2 × R + , r = |p| = |p| . From now on, the spatial-velocity position is marked by y

:= (x, , ω, r) ∈ Ω × T 2 × R + .
We modify f α (•) to fit with the preceding adjustements:

f α (t, y) ≡ f (t, x, , ω, r) := f α t, x, r O(x) (cos ω sin , sin ω sin , cos ) .
As usual, the symbol S refers to the Schwartz space. We consider functions f (•) satisfying uniformly in (t, x, , ω) ∈ M × T 2 the conditions:

(2.80) f ∈ C ∞ (M × T 2 × R + ; R) , f (t, x, , ω, •) ∈ S(R + ; R) .
The gradient ∇ p is converted into the spherical gradient ∇ p , with:

∇ p f := ∂f ∂r e r + 1 r ∂f ∂ e + 1 r sin ∂f ∂ω e ω .
The change of variables (x, p) → (x, p) on the right of (2.78) induces some extra term when transforming (v • ∇ x )f accordingly. Some application Q(•) does appear. This is a vector valued quadratic form in p, namely:

Q(x, p) :=   O(x) p • ∂ x 1 e 1 O(x) p • ∂ x 2 e 1 O(x) p • ∂ x 3 e 1 O(x) p • ∂ x 1 e 2 O(x) p • ∂ x 2 e 2 O(x) p • ∂ x 3 e 2 O(x) p • ∂ x 1 e 3 O(x) p • ∂ x 2 e 3 O(x) p • ∂ x 3 e 3   O(x) p ∈ R 3 .
Put aside the integral operators: (2.82)

ρ(f) := ˆ+∞ 0 ˆπ 0 ˆπ -π f ( , ω,
∂ t f α + θ d α θ d α r O(x) p • ∇ x f α + θ d α θ d α r Q(x, p) • ∇ p f α + θ d 1 θ d α ν ε α E + θ d α θ d α r p × B • ∇ p f α - 1 ε α b e (x) θ d α r (-p 2 ∂ p 1 + p 1 ∂ p 2 )f α + θ d 1 θ d α ε α E + θ d α θ d α r p × B • ∇ p f d α (x, O(x) p) = 0 .
On the other hand, the Maxwell's equations become:

O(x) ∂ t B + ∇ x × O(x) E = 0 , ∇ x • O(x) B = 0 , (2.83a) O(x) ∂ t E -∇ x × O(x) B = - h (f α ) , ∇ x • O(x) E = ρ h (f α ) . (2.83b)
In (2.92), the expressions  h (f α ) and ρ h (f α ) are given by:

ρ h (f 1 , • • • , f N )(t, x) ≡ ρ h (f α )(t, x) := N α=1 1 θ d 1 µ 2 α ε α ρ(f α ) , (2.84a)  h (f 1 , • • • , f N )(t, x) ≡  h (f α )(t, x) := N α=1 θ d α θ d 1 µ 2 α ε α J (θ d α ; f α ) . (2.84b) 2.4.4.
Comparison of the dimensionless parameters. For further analysis, it is crucial to produce values for the parameters ε α , θ d α and µ α which could be meaningful from a physical viewpoint. It is also important to compare these quantities to one another. To this end, the following dimensionless number:

(2.85) ε ≡ |ε 1 | := c 0 L |ω c1 | = c 0 m e L e b e 10 -3 L b e ,
(coming from the inverse of the electron cyclotron frequency) will serve as a unit of measure.

Discussion 2.3. [about the size of ε]

As indicated in (2.72), the number ε is defined as the ratio beween the reference frequency 1/T = c 0 /L and the gyrofrequency ω ce . This turns out to be a small parameter. For fusion devices like ITER [START_REF] Wesson | Tokamaks[END_REF], we find ε 10 -4 .

•

From now on, we take ε := 10 -4 1 as the small reference parameter to which all other quantities will be compared. For instance, with (2.2), keep in mind that:

(2.86) 

|ε α | = e |e α | m α m e ε ε ι α β ε 1 , ∀ α ∈ {2, • • • , N } .
(2.87) |µ α | = n d α m α 0 1/2 1 b e = n d α m α n d 1 m 1 1/2 |µ 1 | |µ 1 | , ∀ α ∈ {1, • • • , N } .
The higher value n d 1 10 20 electrons/m 3 is compensated by the presence of a stronger magnetic field b e 4, 5 T . We can again assert that |µ 1 | 1. We also remind that:

(2.88) µ 2 α ε α = e α n d α e 1 n d 1 µ 2 ε µ 2 ε , ∀ α ∈ {1, • • • , N } . •
In practice, the value of µ := |µ 1 | is of size 1. To track the influence of µ, this parameter will not be normalized in what follows. At all events, retain that the size of ε is always small, and far below µ. -(Hp1) : We have 

ε 1 = -ε 1 together with ε α = 1 for all α ∈ {2, • • • , N } ; -(Hp2) : We have θ d 1 (ε) = 1 together with θ d α (ε) = ε for all α ∈ {2, • • • , N } ; - ( 
2 α = ε -1 for all α ∈ {2, • • • , N } . Thus, we have |ε α | θ d α = ε for all α ∈ {1, • • • , N }.
Coming back to (2.74), this yields: (2.89)

f d α (x, p) = F d α (|p| 2 ) G d α Ψ(x) + O(ε) , ∀ α ∈ {1, • • • , N } .
By combining informations from Section 2.4 with assumptions (Hp1), (2.90)

∂ t f α + ε ε r O(x) p • ∇ x f α + ε ε r Q(x, p) • ∇ p f α - b e (x) ε r ∂ ω f α + E + ε ε r p × B • ∇ p f α + 1 ε E + ε ε r p × B • ∇ p f d α = 0 .
On the other hand, for α = 1, the equation (2.82) yields:

(2.91)

∂ t f 1 + 1 r O(x) p • ∇ x f 1 + 1 r Q(x, p) • ∇ p f 1 + 1 ε b e (x) r ∂ ω f 1 -E + 1 r p × B • ∇ p f 1 - 1 ε E + 1 r p × B • ∇ p f d α = 0 .
With B(•) and E(•) as in (2.78), the equation (2.75) becomes:

O(x) ∂ t B + ∇ x × O(x) E = 0 , ∇ x • O(x) B = 0 , (2.92a) O(x) ∂ t E -∇ x × O(x) B = - h (f α ) , ∇ x • O(x) E = ρ h (f α ) , (2.92b)
where ρ h (f α ) and  h (f α ) can be specified by using (Hp1) and (2.88). With integral operators ρ(•) and J (•) as in (2.81), this furnishes:

ρ h (f α )(t, x) := - 1 ε ρ(f 1 ) + N α=2 ρ(f α ) , (2.93a)  h (f α )(t, x) := - 1 ε J (1; f 1 ) + N α=2 J (ε; f α ) . (2.93b)

Hot plasma dispersion relations

The dispersion relations inform about various properties of wave propagation. They say if a wave can propagate. By looking at complex frequencies, they can indicate if a wave is damped or amplified. They furnish the phase velociy, the group velocity and the refractive index. They allow to determine the eikonal equation, and they are crucial in reflectometry [START_REF] Imbert-Gérard | Mathematical and numerical problems of some wave phenomena appearing in magnetic plasmas[END_REF]. They are a prerequisite to understand turbulence phenomena [START_REF] Cheverry | Mathematical perspectives in plasma turbulence[END_REF]. And the list of potential applications goes on.

Based on the Vlasov theory of hot collisionless and magnetized plasmas, several approaches have been proposed in order to obtain the dispersion relations. Derivations can be found in Trubnikov [START_REF] Trubnikov | Plasma Physics and the Problem of Controlled Thermonuclear Reactions[END_REF] (1959), Bekefi [START_REF] Bekefi | Radiation processes in plasmas[END_REF] (1966), Krall and Trivelpiece [START_REF] Krall | Principles of plasma physics[END_REF] (1973), Davidson [START_REF] Davidson | Handbook of plasma physics[END_REF] (1983), Swanson [START_REF] Swanson | Plasma waves[END_REF] (1989), etc. They give access to a preliminary treatment of wave propagation. There are more recent works dealing with the relativistic features [START_REF] Granata | A new representation of relativistic wave damping above the electron-cyclotron frequency[END_REF][START_REF] Lopez | Kinetic transverse dispersion relation for relativistic magnetized electron-positron plasmas with maxwelljuttner velocity distribution functions[END_REF] or with the numerical aspects [START_REF] Tomori | Numerical plasma dispersion relation solver[END_REF][START_REF] Xie | Pdrk: a general kinetic dispersion relation solver for magnetized plasma[END_REF]. Most of these contributions [START_REF] Bekefi | Radiation processes in plasmas[END_REF][START_REF] Davidson | Handbook of plasma physics[END_REF][START_REF] Krall | Principles of plasma physics[END_REF][START_REF] Trubnikov | Plasma Physics and the Problem of Controlled Thermonuclear Reactions[END_REF] are restricted to the case of a constant external magnetic field and also to the case of a homogeneous velocity distribution function. The improvements concerning the choice of more realistic functions fd α (•) have been principally related to the dependence on p of fd α (•). As a matter of fact, the behaviour of fd α (•) in p can be of quasi-Maxwellian type [START_REF] Fichtner | Exact algebraic dispersion relations for wave propagation in hot magnetized plasmas[END_REF] or of gyrotropic type [START_REF] Schlickeiser | General properties of small-amplitude fluctuations in magnetized and unmagnetized collision poor plasmas. i. the dielectric tensor[END_REF]. One of the advantages of Section 2 is to incorporate through (2.57) realistic variations in x of fd α (•) Many practical situations in space and laboratory plasmas [START_REF] Piel | Plasma physics: an introduction to laboratory, space and fusion plasmas[END_REF] involve variations in position x of the distribution fd α (•) and of the magnetic field Be (•) . These variations have an effect on the dispersion relations, and by this way they can modify the geometry of the propagation. They have an impact on ray tracing, and beyond they can induce caustics [START_REF] Carles | Geometric optics with caustic crossing for some nonlinear schrodinger equations[END_REF][START_REF] Joly | Nonlinear oscillations beyond caustics[END_REF]. They have first been taken into account through the Kinetic Theory of Drift Waves (KTDW), see for instance Paragraph 6.6.3 in [START_REF] Swanson | Plasma waves[END_REF]. This approach implies very specific assumptions (electrostatic approximation, modelling of the curvature effects through some gravitational potential, ...). In fact, the idea behind KTDW is to come back to the case of a constant external magnetic field Be (•) and to handle the variations in x as perturbations. This allows to expand the particle orbits around their trajectories, to integrate the unperturbed trajectories through explicit formulas, to perform a Fourier analysis of the linearized Vlasov equation, and to employ a fixed decomposition of the velocity p into two components p and p⊥ which are respectively parallel and perpendicular to the magnetic field.

For many technical reasons, the preceding procedures [START_REF] Bekefi | Radiation processes in plasmas[END_REF][START_REF] Davidson | Handbook of plasma physics[END_REF][START_REF] Krall | Principles of plasma physics[END_REF][START_REF] Swanson | Plasma waves[END_REF][START_REF] Sy | Wave propagation in hot nonuniform magnetized plasma[END_REF][START_REF] Trubnikov | Plasma Physics and the Problem of Controlled Thermonuclear Reactions[END_REF] do not apply appropriately in the presence of realistic inhomogeneities. On the one hand, they rely on hypotheses that could be questionable. On the other hand, they often use non local arguments in space or in time (especially when integrating the Vlasov equation), while the dispersion relations should emanate from a local space-time analysis. For all theses reasons, the approaches [START_REF] Bekefi | Radiation processes in plasmas[END_REF][START_REF] Davidson | Handbook of plasma physics[END_REF][START_REF] Krall | Principles of plasma physics[END_REF][START_REF] Swanson | Plasma waves[END_REF][START_REF] Sy | Wave propagation in hot nonuniform magnetized plasma[END_REF][START_REF] Trubnikov | Plasma Physics and the Problem of Controlled Thermonuclear Reactions[END_REF] bring answers that need to be completed. Indeed, they are not able to fully capture the underlying geometry, which is essential to really understand wave propagation. Now, of course, a dielectric tensor is a macroscopic notion. In some ways, it summarizes the average macroscopic outcome of the underlying kinetic effects. Thus, it should depend on t and x, but not on p. In the end, the momentum variable p should disappear. Some global analysis is needed, but only in p .

In contrast with [START_REF] Bekefi | Radiation processes in plasmas[END_REF][START_REF] Davidson | Handbook of plasma physics[END_REF][START_REF] Fichtner | Exact algebraic dispersion relations for wave propagation in hot magnetized plasmas[END_REF][START_REF] Krall | Principles of plasma physics[END_REF][START_REF] Swanson | Plasma waves[END_REF], and as required by tokamak configurations, the modelling and the dimensional analysis of Section 2 takes into account the concrete dependence on x of both Be (•) and fd α (•). They combine together the various physical data in order to evaluate their relative importance and to provide a coherent description of the phenomena. They allow to formulate the problem in terms of geometrical optics. This is a prerequisite which gives rise in this Section 3 to a complete understanding of the dispersion relations, valid in the presence of inhomogeneities.

3.1.

In the framework of geometric optics. From now on, we are interested in the asymptotic analysis (when the parameter ε goes to zero) of the oscillating solutions to the system (2.90)-• • • -(2.93). To this end, the tools of geometric optics [START_REF] Métivier | The mathematics of nonlinear optics[END_REF][START_REF] Rauch | Hyperbolic Partial Differential Equations and Geometric Optics[END_REF] are particularly well-suited. Being interested in the propagation of electromagnetic waves means to focus on oscillations of the self-consistent field t (E, B)(•), rather than on kinetic oscillations of the density distribution f (•) as is the case in [START_REF] Cheverry | Can One Hear Whistler Waves?[END_REF][START_REF] Cheverry | Anomalous transport[END_REF]. Since the function t (E, B)(•) depends only on (t, x), a key point is that only time-space oscillations can be involved at this level. With this in mind, we can introduce some smooth phase function:

φ ∈ C ∞ (M ; R) , M := [0, T ] × Ω , T ∈ R * +
depending on the macroscopic variable (t, x) ∈ M but not on the kinetic variable p ∈ R 3 .

Assumption 3.1. [non-stationary phase]

The function φ(•) is such that:

(3.1) ∀ (t, x) ∈ M , (∂ t φ, ∇ x φ)(t, x) = 0 .
Usually, the time evolution of t (E, B)(•) is studied in the framework of MHD descriptions, through fluid models based on Maxwell's equations, involving only the variables (t, x). This has the advantage of simplicity. But this also means various simplifying assumptions which are irrelevant when dealing with hot plasma phenomena out of equilibrium. As we will see, the dependence of f (•) on the variable p ∈ R 3 has a real impact. To take this aspect into account, it is necessary to come back to the original RVM system. To this end, given some M ∈ N * , select profiles Ǔj = t ( Fj,1 , • • • , Fj,N , Bj , Ěj ) such that:

(3.2) Ǔj ∈ C ∞ ([0, T ] × Ω × R 3 × T; R N +6 ) , j ∈ {0, • • • , M } , T := R/(2 π Z) .
In (3.2), the profiles Ǔj (t, x, p, θ) are periodic in the fast variable θ ∈ T. On the other hand, the coordinates inside (t, x, p) are considered as slow variables. When dealing with capital letters like U , the different font styles U , U and U will be used for expressions depending respectively on the variables (t, x, p, θ), (t, x, p) and (t, x, , ω). We look for approximate solutions u ε a to the system (2.90)-• • • -(2.93) in the form of monophase representations. More precisely, we consider expansions of the form: 

(3.3)       f ε a,1 (t, x, p) . . . f ε a,N (t, x, p) B ε a (t, x) E ε a (t, x)       = M j=0 ε j Ǔj t,
      , Fj,k (t, x, p, θ) .
With p represented in spherical coordinates as in (2.79), the functions Ũj (t, x, •, θ) and the functions Fj,k (t, x, •, θ) can be viewed as functions U j (t, x, •, θ) and F j,k (t, x, •, θ) of the variables ( , ω, r) ∈ T 2 × R + . Mark by y := (x, , ω, r) ∈ Ω × T × T × R + the spatialvelocity position. We can introduce the Fourier series expansion with respect to θ ∈ T of the profile U j (•) to obtain:

(3.4) U j (t, y, θ) = l∈Z U l j (t, y) e i l θ , U l j = t (F l j,1 , • • • , F l j,N , B l j , E l j ) ≡ Ū-l j .
It is understood that the function F l j,α (•) and its derivatives at all orders satisfy (2.80). Plugg the real valued function u ε a into (2.90)-• • • -(2.93). Collect the contributions having the same power of ε in factor, sorted in increasing order. By this way, we get:

(3.5) +∞ j=-1 ε j G j t, y, φ(t, x) ε = 0 , G j (t, y, θ) = l∈Z G l j (t, y) e i l θ , G l j ≡ Ḡ-l j .
It turns out that the expressions G j (•) depend only on terms U i with i ≤ j+1. In particular, for j = -1, we get the preliminary constraint:

(3.6) G -1 (t, y, θ, U 0 ) = 0 .
Then, an approximate solution u ε a can be derived by solving successively the conditions G j ≡ 0 for j = 0, j = 1 and so on, up to j = N -1. In this text, we focus on the initialization procedure, based on (3.6), which already requires a substantial amount of work. The condition (3.6) is interesting and difficult to solve. It includes especially the so-called eikonal equation which allows to determine φ, and which therefore governs the geometry of the propagation.

In Part 3.2, starting from (3.6), we give a precise definition of the characteristic variety sustaining wave propagation. The rigorous analysis of the dielectric tensor is performed in Part 3.3. Finally, Part 3.4 is devoted to the study of interesting special cases.

3.2. Description of the characteristic variety. The condition (3.6) is expressed in an abstract form. In Paragraph 3.2.1, we extract from (3.6) a simplified system of equations that is amenable to the Fourier analysis performed in Paragraph 3.2.2. As explained in Paragraph 3.2.3 and in coherence with basic concepts of wave-particle interactions [START_REF] Koch | Wave-particle interactions in plasmas[END_REF][START_REF] Tsurutani | Some basic concepts of wave-particle interactions in collisionless plasmas[END_REF], this yields a kinetic interpretation of electron cyclotron resonances. Then, Paragraph 3.2.4 gives an overview of the conductivity tensor which has to be studied carefully.

3.2.1.

A reduced system of equations. From (2.90)-(2.93), we can extract the equations composing (3.6). Since by assumption ∇ p φ ≡ 0, the term coming with ε -1 in factor after substitution of (3.3) inside (2.91) furnishes:

(3.7) ∂ t φ ∂ θ F 0,1 + 1 r O(x) p • ∇ x φ ∂ θ F 0,1 + b e (x) r ∂ ω F 0,1 -2 G d 1 Ψ(ρ, z) ∂ r F d 1 (r 2 ) p • E 0 = 0 . For α ∈ {2, • • • , N },
the equations inside (2.90) give rise to:

(3.8) ∂ t φ ∂ θ F 0,α + 2 G d α Ψ(ρ, z) ∂ r F d α (r 2 ) p • E 0 = 0 . The Maxwell's equations (2.92) provide: ∂ t φ ∂ θ B 0 + t O(x)∇ x φ × ∂ θ E 0 = 0 , (3.9a) ∂ t φ ∂ θ E 0 -t O(x)∇ x φ × ∂ θ B 0 = J 1 F 0,1 (t, x, •) , (3.9b)
together with:

(3.10) t O(x)∇ x φ • ∂ θ B 0 = 0 , t O(x)∇ x φ • ∂ θ E 0 = -ρ F 0,1 (t, x, •) .
In view of (2.93), with dp = r 2 d dω dr, we find that:

J 1 F 0,1 := ˆR3 p r F 0,1 dp , ρ F 0,1 = ˆR3 F 0,1 dp .
Consider the expansion in Fourier series of U 0 (t, y, •), as in (3.4). The situation under study is dispersive. After adjusting φ in order to obtain G l -1 ≡ 0 (and therefore Ḡ-l -1 ≡ 0) for some l ∈ Z * , the other conditions G -1 ≡ 0 (with = |l|) are in general not verified (except for the trivial choice U 0 ≡ 0). This is why, at leading order, only one Fourier coefficient will be switched on.

Assumption 3.2. [presence of a non-trivial monochromatic electromagnetic oscillation]

There is some non-zero integer l ∈ N * such that:

(3.11) (E l 0 , B l 0 ) ≡ ( Ē-l 0 , B-l 0 ) ≡ 0 , U 0 ≡ 0 , ∀ ∈ Z \ {-l, l} .
With l ∈ Z * as in Assumption 3.2, introduce:

τ := l ∂ t φ(t, x) ∈ R , ξ := l t O(x) ∇ x φ(t, x) ∈ R 3 .
Then, from equations (3.7) and (3.8), we can extract:

(3.12) i τ + i 1 r p • ξ + b e r ∂ ω F l 0,1 = 2 r G d 1 (Ψ(ρ, z)) ∂ r F d 1 (r 2 ) p • E l 0 .
On the other hand, from equation (3.8), we get:

(3.13) ∀ α ∈ {2, • • • , N } , i τ F l 0,α = -2 G d α (Ψ(ρ, z)) ∂ r F d α (r 2 ) p • E l 0 .
Moreover, the Maxwell's equations (3.9)-(3.10) reduce to:

τ B l 0 + ξ × E l 0 = 0 , ξ × B l 0 -τ E l 0 = i J 1 (F l 0,1 ) , (3.14a) ξ • B l 0 = 0 , ξ • E l 0 = i ρ(F l 0,1 ) . (3.14b)
Lemma 3.1. Fix τ = 0 and assume that (F l 0,1 , E l 0 , B l 0 ) satisfies (3.12) and (3.14a). Then, the two equations of (3.14b) are satisfied.

Proof. Knowing that τ = 0, the scalar product with ξ of the first equation in (3.14a) yields directly ξ • B l 0 = 0. Using the second equation of (3.14a), we get:

(3.15) -τ ξ • E l 0 = i ξ • J 1 (F l 0,1
) . Integrate (3.12) with respect to p in order to obtain: (3.16), since τ = 0, we get the second equation of (3.14b).

(3.16) τ ρ(F l 0,1 ) + ξ • J 1 (F l 0,1 ) = 0 . Combining (3.15) and
In view of Lemma 3.1, we can forget about the condition (3.14b). On the other hand, we can eliminate B l 0 from (3.14a) to retain:

(3.17) (τ 2 -|ξ| 2 ) Id + ξ t ξ E l 0 = -i τ J 1 (F l 0 )
. Observe that the functions F l 0,α with α = 1 are not present at the level of (3.12)- (3.17). Knowing what E l 0 is, we can deduce the expressions F l 0,α from (3.13). The relation (3.13) just says that the presence of a non trivial electric field E l 0 is associated with prescribed oscillations at the level of the ions's kinetic distribution functions. We now concentrate on the remaining system (3.12)-(3.17) on (F l 0,1 , E l 0 ). To simplify the notations, we drop the subscript 1 (related to electrons). We use the notations G d , F d and

F l 0 instead of G d 1 , F d 1 and F l 0,1 .
The spherical coordinates which are associated with the direction ξ ∈ R 3 are:

ξ = t (ξ 1 , ξ 2 , ξ 3 ) = |ξ| (cos ω ξ sin ξ , sin ω ξ sin ξ , cos ξ ) := (ξ ⊥ cos ω ξ , ξ ⊥ sin ω ξ , ξ ) ,
where ξ ⊥ := |ξ| sin ξ and ξ := |ξ| cos ξ . Another preliminary step is to reduce the discussion to the case where ω ξ = 0 (or ξ 2 = 0). This can be done by rotation of both ξ and p. Select an orthogonal matrix R ∈ SO(3) which is such that:

R ξ = (ξ ⊥ , 0, ξ ) , p := R p = |p| cos(ω -ω ξ ) sin , sin(ω -ω ξ ) sin , cos . 
Introduce:

(3.18) Fl 0 (t, x, p) := F l 0 (t, x, t R p) ≡ F l 0,1 (t, x, t R p) , Ȇl 0 (t, x) := R E l 0 (t, x) .
Lemma 3.2. The couple ( Fl 0 , Ȇl 0 ) is a solution to (3.12)-(3.17) with ξ = (ξ ⊥ , 0, ξ ). Proof. The equation (3.12) amounts to the same thing as:

i τ + i 1 r Rp • Rξ + b e r ∂ ω F l 0 (t, x, p) = 2 r G d Ψ(ρ, z) ∂ r F d (r 2 ) Rp • RE l 0 .
Replace p by t R p to recover (3.12) for ( Fl 0 , Ȇl 0 )(t, x, p), this time with ξ = (ξ ⊥ , 0, ξ ). On the other hand, apply the matrix R to the left of (3.17) to find:

(τ 2 -|R ξ| 2 ) Id + (R ξ) t (R ξ) R E l 0 = -i τ R J 1 (F l 0 )
. Now, to obtain (3.17) for ( Fl 0 , Ȇl 0 ), it suffices to remark that:

R J 1 (F l 0 ) = ˆR3 p |p| F 0,1 (t, x, t R p) dp = J 1 ( Fl 0 ) .
The system (3.12)-(3.17) will be studied with ξ = (ξ ⊥ , 0, ξ ). The general situation can be obtained by coming back from ( Fl 0 , Ȇl 0 ) to (F l 0 , E l 0 ) through (3.18). From now on, we will assume that ω ξ = 0.

3.2.2.

Fourier analysis through the Jacobi-Anger identity. Define the scalar function:

(3.19) ζ ≡ ζ(x, r, , ξ ⊥ ) := r ξ ⊥ sin b e (x) -1 .
Knowing that ω ξ = 0, the equation (3.12) is translated into:

(3.20) i τ +i b e ζ r cos ω+i r ξ cos r + b e r ∂ ω F l 0 = 2 r G d Ψ(ρ, z) ∂ r F d (r 2 ) p•E l 0 .
This can be viewed as a first order differential equation with respect to ω ∈ T, where the variables x, , r, τ and ξ play the part of parameters. Now, we want to remove the variable coefficient in ω from the differential operator which in the equation (3.20) is inside brackets. This means concretely to eliminate the presence of "cos ω". This can be achieved by replacing F l 0 by: (3.21)

F l 0 (t, x, p) := exp(i ζ sin ω) F l 0 (t, x, p) . Then, the equation (3.20) becomes:

(3.22) i τ + i r ξ cos r + b e r ∂ ω F l 0 = 2 r G d (Ψ(ρ, z)) ∂ r F d (r 2 ) p•E l 0 exp (i ζ sin ω) .
By this way, the discussion is reduced to the study of a linear differential equation in ω with constant coefficients. The counterpart is that all the Fourier coefficients (with respect to ω) of the right hand side of (3.22) are non zero. But now, we can solve (3.22) through a Fourier analysis in ω. To this end, decompose F l 0 (•) according to:

F l 0 (t, x, , ω, r) = m∈Z F l,m 0 (t, x, , r) e i m ω .
Lemma 3.3. The condition (3.22) is satisfied if and only if, for all m ∈ Z, we have:

(3.23) i [τ + τ m ] F l,m 0 = 2 r r G d (Ψ(ρ, z)) ∂ r F d (r 2 )   m ζ -1 J m (ζ) sin -i J m (ζ) sin J m (ζ) cos   • E l 0 ,
where:

(3.24) τ m (x, p, ξ) ≡ τ m (x, r, , ξ) := r -1 (r ξ cos + m b e ) = -τ -m (x, r, π -, ξ) .
Proof. It suffices to compute the Fourier coefficient in ω of the right hand side of (3.22).

To do so, recall the Jacobi-Anger identity:

(3.25) exp(i ζ sin ω) = m∈Z J m (ζ) e i m ω , ∀ (ζ, ω) ∈ R × T ,
where J m (•) denotes the m-th Bessel function of the first kind. The formula (3.23) is a consequence of (3.25) together with the wellknown relations: On the other hand, their guiding centers move with the drift velocity v G = r cos e 3 (x) where e 3 (•) is the unit vector field pointing in the magnetic direction. Looking at ξ as a wave vector k ∈ R 3 , we have v G • k = r ξ cos . Seen in this way, the function τ + τ m can be interpreted as a (relativistic) gyroballistic dispersion function.

J m+1 (ζ) + J m-1 (ζ) = 2 m ζ -1 J m (ζ) , (3.26a) J m+1 (ζ) -J m-1 (ζ) = -2 J m (ζ) . (3.26b) 3.2.
The important role of τ + τ m results naturally from the preceding asymptotic analysis. In view of (3.23), as long as τ + τ m = 0, the expression F l,m 0 can easily be expressed in terms of E l 0 . However, difficulties arise when τ + τ m = 0. Below, such special values are set aside. Definition 3.1. [notion of kinetic resonance] Given (x, p, ξ, m) ∈ Ω × R 3 × R 3 × Z, the resonant time frequency is given by -τ m (x, r, , ξ). Equivalently, it is the time frequency τ satisfying the condition:

(3.27) r τ + r ξ cos + m b e (x) = 0 .
In (3.27), the quantity r τ + r ξ cos can be viewed as a Doppler shifted frequency [START_REF] Koch | Wave-particle interactions in plasmas[END_REF].

Since the right-hand term of (3.23) is divided by τ + τ m with τ + τ m 0 near resonances, it can be said [START_REF] Tsurutani | Some basic concepts of wave-particle interactions in collisionless plasmas[END_REF] that the interactions between the waves and the charged particles become strong when the particles sense the Doppler-shifted wave at its cyclotron frequency (m = 1) or its harmonics (m ∈ Z with m = 1). The special case m = 0 corresponds to the wellknown Landau resonance.

Given (x, r, , ξ) and m, there exists obviously one and only one resonance, which is given by τ = -τ m (x, r, , ξ) = 0. Another issue is whether all values τ ∈ R are resonant, and under what conditions. Proof. The condition τ + τ m = 0 is equivalent to:

(3.28) r 2 (τ 2 -ξ 2 cos 2 ) -2 r m b e ξ cos + τ 2 -m 2 b 2 e = 0 . -First, if τ 2 = ξ 2 cos 2 =
0, just take m = 0. Then, any value r ∈ R + can be selected.

-Secondly, if τ 2 = ξ 2 cos 2 = 0, to solve (3.28), it suffices to obtain r(m) ≥ 0 with:

r(m) = ξ 2 cos 2 -m 2 b 2 e 2 m b e ξ cos = - m b e 2 ξ cos + O 1 m .
Now, either for m → -∞ or for m → +∞, we find that r(m) ≥ 0.

-Thirdly, if τ = 0 and ξ 2 cos 2 = 0, the second order polynomial (3.28) has a double root which is given by r(m) = -m b e /(ξ cos ). Again, either for m → -∞ or for m → +∞, we have r(m) ≥ 0.

-Finally, assume that τ = 0 and τ 2 = ξ 2 cos 2 . The condition (3.28) is a quadratic equation to be solved for r,

with discriminant ∆ = 4 τ 2 ξ 2 cos 2 + m 2 b 2 e -τ 2 .
Since, b e (x) > 0, the number ∆ is sure to become positive for all m ∈ Z sufficiently large. Then, the two roots r ± (m) of (3.28) are:

r -(m) := 2 m b e ξ cos - √ ∆ 2 (τ 2 -ξ 2 cos 2 ) , r + (m) := 2 m b e ξ cos + √ ∆ 2 (τ 2 -ξ 2 cos 2 )
.

In particular, when |m| goes to infinity, there remains:

r ± (m) := - m b e |ξ cos | ∓ |τ | + O 1 m .
For m → -∞, we find r -(m) ≥ 0, and the value r -(m) is suitable. Either for m → -∞ or for m → +∞, the selection of r + (m) is also relevant.

A number of differences between the cold case (see [START_REF] Cheverry | Dispersion relations in cold magnetized plasmas[END_REF]) and the hot case (3.22) deserve to be emphasized. Theses aspects are commented below.

• Cold situation. In [START_REF] Cheverry | Dispersion relations in cold magnetized plasmas[END_REF], only three Fourier coefficients (F l,-1 0 , F l,0 0 and F l,1 0 ) were involved, and the set of resonances (namely τ = 0 and τ = ±b e ) was finite, simple and localized in the usual (time-space) cotangent space.

• Hot situation. When dealing with (3.22), all Fourier coefficients F l,m 0 (with m ∈ Z) make some non trivial contribution. Moreover, the structure of resonances is much more complicated. It is based on kinetic features, in the sense that the velocity p plays a role through special choices of and r. As revealed by Lemma 3.4, all values of τ are affected (for some p) by a (kinetic) resonance.

Technically, the implementation of all the coefficients F l,m 0 comes from the change (3.21). In practice, this reveals the impact on the dispersion relations of fast (hot) beams of particles, as it can be achieved through the advection term (v • ∇ x )f . For the same reasons, in the hot case, the time resonant frequency τ m has come to depend on (r, ). In some ways, the velocities v contribute to resonances that are dispatched in a continuum of time-space frequencies, instead of being focused on special positions. The above discussion reveals that the resonances come from the interaction between an electromagnetic wave represented in (3.23) by E l 0 (t, x) and a population of particles that is associated with F l,m 0 (t, x, , r), where (m, r) is adjusted as in Lemma 3.4. This is consistent with the basic concepts of wave-particle interactions in collisionless plasmas [START_REF] Tsurutani | Some basic concepts of wave-particle interactions in collisionless plasmas[END_REF]. In the hot case, as a consequence of the kinetic aspects, the approach of [START_REF] Cheverry | Dispersion relations in cold magnetized plasmas[END_REF] cannot be implemented. Another method must be found. This starts in the next Paragraph 3.2.4 with formal computations. This continues in Section 3.3 with a rigorous work of justification.

3.2.4. Formal resolution of the system (3.12)- (3.17). In view of (3.21)- (3.22), the density coefficient F l 0 can be viewed as a linear function of E l 0 through:

(3.29) F l 0 (t, x, p) = exp (-i ζ sin ω) F l 0 (t, x, p) = V (t, x, p, τ, ξ) • E l 0 (t, x)
, where V (•) is the vector valued function which can be obtained by inverting the relations contained in (3.23). This furnishes:

(3.30) V (t, x, p, τ, ξ) ≡ V (x, r, , τ, ξ ⊥ , ξ ) := 2 r r G d Ψ(ρ, z) ∂ r F d (r 2 ) × (m,n)∈Z 2 J n (ζ) i (τ + τ m )   m ζ -1 J m (ζ) sin -i J m (ζ) sin J m (ζ) cos   e i (m-n) ω .
Due to the factor (τ + τ m ) -1 , it must be clear that the formula (3.30) has no sense at resonant time frequencies. Still, the relation (3.29) with V (•) as in (3.30) can be exploited in order to express J 1 (F l 0 ) in terms of E l 0 . Lemma 3.5. The vector J 1 (F l 0 ) can be determined through J 1 (F l 0 ) = σ(x, τ, ξ) E l 0 where the conductivity tensor σ(•) is given by:

(3.31) σ(x, τ, ξ) := -4 π i G d Ψ(ρ, z) n∈Z ˆ+∞ 0 ˆπ 0 r 4 ∂ r F d (r 2 ) r 2 (τ + τ n ) T n dr d .
At the level of (3.31), with ζ and τ n as in (3.19) and (3.24), the " T n " symbol stands for the skew-symmetric matrix:

T n :=        n 2 J 2 n (ζ) ζ 2 sin 3 i n J n (ζ) J n (ζ) ζ sin 3 n J 2 n (ζ) ζ cos sin 2 - i n J n (ζ) J n (ζ) ζ sin 3 (J n (ζ)) 2 sin 3 -i J n (ζ) J n (ζ) cos sin 2 n J 2 n (ζ) ζ cos sin 2 i J n (ζ) J n (ζ) cos sin 2 J 2 n (ζ) cos 2 sin       
.

A first remark is about the general form of (3.31). There are some similarities with models already proposed. For instance, just replace v ⊥ and v respectively by r sin and r cos in the formulas (3.4) and (3.5) of [START_REF] Fichtner | Exact algebraic dispersion relations for wave propagation in hot magnetized plasmas[END_REF]. The novelty here is the relativistic context and the influence of the magnetic surfaces (through the function Ψ). In addition, the formula (3.31) has been justified through a rigorous approach, from basic principles. At this stage, the definition (3.31) of σ(•) is only formal. Indeed, the denominator τ + τ n vanishes at the resonances. At first sight, nothing guarantees that the improper integrals of (3.31) converge. On the other hand, in (3.31), the convergence (with respect to n ∈ N) of the series could be problematic.

Proof. Recall that:

J 1 (F l 0 ) = ˆ+∞ 0 ˆπ 0 ˆπ -π r 3 r cos ω sin sin ω sin cos F l 0 (t, x, , ω, r) sin dr d dω .
With (3.26), (3.29) and (3.30), we get the result by direct calculation.

Applying Lemma 3.5, the system (3.17) reduces to:

(3.32) N(x, τ, ξ)E l 0 = 0 , N(x, τ, ξ) := ξ t ξ + (τ 2 -|ξ| 2 ) Id + i τ σ(x, τ, ξ) .
We now define a notion of characteristic variety associated with hot magnetized plasmas.

Definition 3.2 (characteristic variety). The characteristic variety which is associated with

hot magnetized plasmas is the subset V of the cotangent bundle T * M composed of:

(3.33) V := (t, x, τ, ξ) ∈ [0, T ] × Ω × (R 4 \ {0}) ; det N(x, τ, ξ) = 0 .
The relation det N(x, τ, ξ) = 0 depends on x ∈ Ω, on τ ∈ R, on |ξ| ∈ R + and on the angle ξ ∈ [0, π]. But, it neither involves the time t ∈ [0, T ] nor implies the angle ω ξ ∈ [0, 2π]. By the way, note that (τ, ξ) ∈ V implies (-τ, -ξ) ∈ V. On the other hand, for some subset V(x, ) of the half-space R × R + , we have:

(3.34) V := (t, x, τ, ξ) ∈ [0, 1] × Ω × (R 4 \ {0}) ; τ, |ξ| ∈ V(x, ξ ) .
Locally, in the neighbouhood of a regular point of V , the characteristic variety can be parameterized as follows:

V = (x, τ, ξ) ∈ Ω × (R 4 \ {0}) ; D M (x, τ, ξ) = 0 ,
where D M (•) stands for the dispersion relation of electromagnetic waves. Note that the gyroballistic dispersion function D m = τ + τ m is constitutive of the definition (3.31), and therefore of D M (•). There have been many interpretations of wave-particle interaction. A way of doing things is to suppose that the dispersion relation D M (•) is given a priori. Then, it is to locate the positions (x, τ, ξ) where D M (x, τ, ξ) = 0 and D m (x, p, τ, ξ) = 0 (for some p), and to consider that it is where the exchanges of energy take place through gyroresonant wave conversion [START_REF] Cook | Wave Conversion in Phase Space and Plasma Gyroresonance[END_REF]. We adopt here a different approach since the effects of D m (•) are directly incorporated inside D M (•). As a byproduct, when defining D M (•), we are faced with new difficulties (of convergence and summability), which are solved in the next Part 3.3. The questions about active power transfer will not be investigated in this article. It is the next step, related to the transport equations on the amplitudes.

Analysis of the conductivity tensor σ(•).

In the cold case [START_REF] Cheverry | Dispersion relations in cold magnetized plasmas[END_REF], exact algebraic dispersion relations are available. In contrast, in the hot case, the formula (3.31) cannot be solved analytically. Due to the resonances, it is even not clear whether the matrix σ(•) makes sense. In most texts on plasma physics, this last difficulty is simply avoided by working in the upper half of the complex plane, that is with Im τ > 0. In this Part 3.3, we will define the coefficients of σ(•) for τ ∈ R. This means to verify that the improper integrals involved at the level of (3.31) are convergent for all n ∈ Z, and also that (3.31) gives rise to a convergent series with respect to n ∈ N. To our knowledge, the following analysis is original. We will consider the general situation, that is when ξ = 0 and ξ ⊥ = 0. The discussion starts in Paragraph 3.3.1 with a change of variables allowing to transform (3.31) in a usable way. This allows to highlight the role of the Hilbert transform, which is introduced in Paragraph 3.3.2.

A change of variables. Consider the transformation:

Φ : ]0, +∞[ × ]0, π[ -→ D (r, ) -→ (y, z) := r cos , r ,
where:

D := z ∈ ]1, +∞[ , y ∈ -z 2 -1, z 2 -1 .
The Jacobian of the transformation Φ is given by

(3.35) J Φ (Φ -1 (y, z)) := z -1 z 2 -1 z 2 -1 -y 2 .
On the other hand, with F d (•) as in (2.60) and F d (•) as indicated below, we have:

(3.36) 2 (∂ r F d )(r 2 ) = z -1 ∂ z F d (z) , F d (z) := F d (z 2 -1) = F d (r 2 ) .
Using (3.35) and (3.36), the matrix σ(•) can be rewritten:

(3.37) σ(x, τ, ξ) := -2 π i G d Ψ(ρ, z) × m∈Z ˆ+∞ 1 ˆ√z 2 -1 - √ z 2 -1 T m (y, z) τ z + ξ y + m b e dy ∂ z F d (z) z dz .
In (3.37), T m (y, z) is the skew-symmetric matrix whose coefficients are given by:

T 1,1 m := m 2 J 2 m (ζ) ζ 2 (z 2 -1 -y 2 ) , T 1,2 m := i m J m (ζ) J m (ζ) ζ (z 2 -1 -y 2 ) , (3.38a) T 1,3 m := m J 2 m (ζ) ζ y z 2 -1 -y 2 , T 2,1 m := -i m J m (ζ) J m (ζ) ζ (z 2 -1 -y 2 ) , (3.38b) T 2,2 m := J m (ζ) 2 (z 2 -1 -y 2 ) , T 2,3 m := -i J m (ζ) J m (ζ) y z 2 -1 -y 2 , (3.38c) T 3,1 m := m J 2 m (ζ) ζ y z 2 -1 -y 2 , T 3,2 m := i J m (ζ) J m (ζ) y z 2 -1 -y 2 , (3.38d) T 3,3 m := J 2 m (ζ) y 2 . (3.38e)
In (3.38), the symbol ζ must be viewed as a function of (y, z) as indicated below:

(3.39) ζ = ξ ⊥ b e (x) -1 z 2 -1 -y 2 .
3.3.2. The Hilbert transform. Consider the improper integral which at the level of (3.37) is inside brackets, that is:

ˆ√z 2 -1 - √ z 2 -1 T m (y, z) τ z + ξ y + m b e dy = ˆR T m (y, z) τ z + ξ y + m b e 1 ]- √ z 2 -1, √ z 2 -1[ (y) dy .
Changing y into ỹ with τ z + ξ y + m b e = ξ ỹ, this becomes:

(3.40)

ˆ√z 2 -1 - √ z 2 -1 T m (y, z) τ z + ξ y + m b e dy = 1 ξ I 0 (z) , I 0 (z) := ˆR T m (ỹ, z) ỹ dỹ ,
where we have introduced:

(3.41) T m (y, z) := T m y - (τ z + m b e ) ξ , z 1 ]- √ z 2 -1, √ z 2 -1[ y - (τ z + m b e ) ξ .
We have to specify a prescription for dealing with the singular denominator in the integral on the right hand side of (3.40). To this end, a standard procedure is to push the singularity above the real ỹ-axis, in order to recover a well-defined contour integral. Given a small parameter η ∈ R * + , this amounts to look at:

Ĩη (z) := ˆR T m (ỹ, z) ỹ -i η dỹ , Ĩ0 (z) := lim η -→ 0+ Ĩη (z) .
The Plemelj formula allows to define Ĩ0 (z) as a complex number whose real part I 0 (z) is: 

(3.43) H f (x) := lim ε -→ 0+ H ε f (x) , H ε f (x) := ˆ|x-y|≥ε f (y)
x -y dy .

The quantity I 0 (z) is usually associated with a phase, whereas the imaginary part of Ĩ0 (z) could be interpreted as inducing some damping or amplification effect on the amplitude of the waves. Now, the perspective of our WKB hierarchy is to look successively at the terms with different powers of ε in factor. In this process, the eikonal equation (ε -1 ) is listed first, whereas the transport equation (ε 0 ) is displayed after. From this standpoint, the primary step is to identify the geometry of the phase. In this respect, the definition (3.42) with T m as in (3.41) is what comes first. This is why it is selected in what follows.

Of course alternative definitions of I 0 (z) may be considered. But they will be ignored here, because the aim of this article is to focus on dispersion relations. Furthermore, as will be seen below, the formula (3.42) makes perfectly sense.

As a matter of fact, the Hilbert transform of the function f (•) is well-defined provided the integral (3.43) exists as a Cauchy principal value. Intuitively, the contributions related to the negative and positive values of ỹ can compensate when determining I 0 (z) through the integral of (3.40). On the one hand, the function T m (•, z) of (3.41) has compact support. It is piecewise continuously differentiable, with two possible jumps. On the other hand, the operator H is an isometry on L 2 (R). It also maps bounded functions to the Banach space of bounded mean oscillation classes, denoted by

BM O(R). Since T m (•, z) ∈ (L 2 ∩ L ∞ )(R)
both arguments can be used to define I 0 (z). Coming back to the initial formulation (3.37), with (3.40) and (3.42) in mind, we can rewrite (3.37) in the form:

(3.44) σ(x, τ, ξ) := 2 π i G d Ψ(ρ, z) ξ ˆ+∞ 1 H (T (•, z)) (0) ∂ z F d z dz ,
where:

(3.45) T(y, z) := m∈Z T m (y, z) ,
The discussion about a rigorous definition of the dielectric tensor σ(•) is not finished.

Supplementary estimates on H (T (•, z)) (0) are needed to be sure that, inside (3.44), the integral with respect to z is convergent. A functional framework that is suitable for that purpose is exhibited below.

Lemma 3.6. Fix x ∈ R and η > 0. Assume that the function f (•) is in L 1 (R) and that it is Lipschitz on the interval [x -η, x + η] with Lipschitz constant:

f Lip([x-η,x+η]) := sup x-η≤s<t≤x+η |f (s) -f (t)| |s -t| .
Then, the improper integral H f (x) is well-defined. Moreover, we have:

(3.46) |H f (x)| ≤ 2 η f Lip([x-η,x+η]) + η -1 f L 1 (R) .
Proof. The expression H ε f (x) makes sense and we have

|H ε f (x)| ≤ ε -1 f L 1 (R) .
Using the fact that t -1 is an odd function, we can split the integral of (3.43) according to:

H ε f (x) = ˆε<|t|<η f (x -t) -f (x) t dt + ˆ|t|≥η f (x -t) t dt .
Then a rough estimate gives rise to:

|H ε f (x)| ≤ ˆε<|t|<η f Lip([x-η,x+η]) dt + η -1 ˆ|t|≥η |f (x -t)| dt .
By passing to the limit (ε → 0), we easily get the result from Lemma 3.6.

The series (3.45) is in fact finite, with a number of terms depending on y and z. For m ∈ Z and 1 ≤ i, j ≤ 3, we denote by T i,j m the coefficient of index (i, j) inside T m . The matter in the next Paragraphs 3.3.3 and 3.3.4 is to show that, at least for (m, i, j) = (0, 3, 3), the functions T i,j m (•, z) satisfy the assumptions of Lemma 3.6 for x = 0 and η = 1. The more singular case of T 3,3 0 is handled separately. It is addressed in Paragraph 3.3.4.

Lipschitz estimates.

We focus here on the Lipschitz condition of Lemma 3.6.

Proposition 3.1. For all (m, i, j) ∈ Z × 1, 3 2 \ {(0, 3, 3)} and z ∈]1, +∞[, the function T i,j m (•, z) is Lipschitz on R. For all (i, j) ∈ 1, 3 2 \ {(3, 3)}, there exists a polynomial P i,j (•) ∈ R[X] such that:

(3.47) ∀ z ∈ ]1, +∞[ , m∈Z T i,j m (•, z) Lip([-1,1]) ≤ P i,j ( z 2 -1) .
There exists also a polynomial P 3,3 (•) ∈ R[X] such that:

(3.48) ∀ z ∈ ]1, +∞[ , m∈Z * T 3,3 m (•, z) Lip([-1,1]) ≤ P 3,3 ( z 2 -1) . Proof. Fix z ∈ [1, +∞[ and (m, i, j) ∈ Z × 1, 3 2 \ {(0, 3, 3)}. Then, the function T i,j m (•, z) is Lipschitz on R if and only if the function T i,j m (•, z) 1 ]- √ z 2 -1, √ z 2 -1[ (•) is Lipschitz on R. This function is clearly C 1 on R \ {± √ z 2 -1}.
Difficulties can arise at ± √ z 2 -1, due to the Heaviside step function. The idea is to compensate for this by the behaviour (vanishing when m = 0) of the functions J m (•) or by the z 2 -1 -y 2 factor that appears in almost all the coefficients of T m . The Taylor expansions near ζ = 0 of the Bessel functions are:

J 0 (ζ) = ζ→0 1 + O ζ 2 , J ±1 (ζ) = ζ→0 ± 1 2 ζ + O ζ 2 , (3.49a) J n (ζ) = ζ→0 O ζ 2 , ∀ n ∈ Z \ {0, ±1} . (3.49b)
It follows that, except for (m, i, j) = (0, 3, 3), all the coefficients T i,j m (•, z) of (3.38) vanish at the points ± √ z 2 -1. The functions T i,j m (•, z) are therefore continuous on R. To see why the functions T i,j m (•, z) are Lipschitz and why we have both (3.47) and (3.48), we need to be more specific. We first establish the Lipschitz property. Lemma 3.7. Fix (m, i, j) ∈ Z × 1, 3 2 \ {(0, 3, 3)} and z ∈ ]1, +∞[. Then:

(3.50) T i,j m (•, z) Lip(R) < +∞ .
Proof. Recall (3.39), and retain that z 2 -1 -

y 2 ∂ y ζ = -ξ ⊥ b e (x) -1 y with ξ ⊥ = 0. For |y| < √ z 2 -1, compute: ∂ y T 1,1 m (y, z) = -2 m 2 y J m (ζ) J m (ζ) ζ , (3.51a) ∂ y T 1,2 m (y, z) = -i m y J m (ζ) 2 + J m (ζ) J m (ζ) + J m (ζ) J m (ζ) ζ , (3.51b) ∂ y T 1,3 m (y, z) = m b e ξ ⊥ J 2 m (ζ) - 2 m ξ ⊥ b e y 2 J m (ζ) J m (ζ) ζ , (3.51c) ∂ y T 2,2 m (y, z) = -2 y ζ J m (ζ) J m (ζ) -2 y J m (ζ) 2 , (3.51d) ∂ y T 2,3 m (y, z) = -i b e ξ ⊥ ζ J m (ζ) J m (ζ) (3.52a) + i ξ ⊥ b e y 2 J m (ζ) 2 + J m (ζ) J m (ζ) + J m (ζ) J m (ζ) ζ , ∂ y T 3,3 m (y, z) = 2 y J 2 m (ζ) -y 2 ξ 2 ⊥ b 2 e J m (ζ) J m (ζ) ζ . (3.52b)
Since the matrix ∂ y T m is skew-symmetric, we have also:

∂ y T 2,1 m = ∂ y T 1,2 m , ∂ y T 3,1 m = ∂ y T 1,3 m , ∂ y T 3,2 m = ∂ y T 2,3 m .
As long as m = 0, in view of (3.49a) and (3.49b), all the quantities ∂ y T m remain bounded when ζ goes to zero, or equivalently when y goes to (∓ √ z 2 -1)±. When m = 0, the same applies because J 0 (ζ) = O(ζ). Thus, the following one sided limits exist and are finite:

(3.53) lim y→(∓ √ z 2 -1) ± ∂ y T i,j m (y, z) < +∞ .
On the other hand, from the definition (3.41), we can infer that:

(3.54) T i,j m (•, z) Lip(R) = ∂ y T i,j m (•, z) L ∞ (]- √ z 2 -1, √ z 2 -1[) .
Since the function T we have:

i,j m (•, z) is of class C 1 on the interval ] - √ z 2 -1, √ z 2 -1[, combining (3 
∀ y ∈ [-1, 1] , | y -ξ -1 (τ z + m b e ) | ≥ z 2 -1 . Retain that ∀ |m| ≥ M (z) , ∀ y ∈ [-1, 1] ,
T i,j m (y, z) = 0 . Therefore, for all (i, j) ∈ 1, 3 2 \ {(3, 3)}, we have:

(3.56) m∈Z T i,j m (•, z) Lip([-1,1]) = |m|≤M (z) T i,j m (•, z) Lip([-1,1]) ≤ |m|≤M (z) ∂ y T i,j m (•, z) L ∞ (]- √ z 2 -1, √ z 2 -1[) .
Similarly:

(3.57)

m∈Z * T 3,3 m (•, z) Lip([-1,1]) ≤ 0<|m|≤M (z) ∂ y T 3,3 m (•, z) L ∞ (]- √ z 2 -1, √ z 2 -1[) .
For all m ∈ N, the Bessel function of the first kind can be defined over the integral:

(3.58) J -m (ζ) = (-1) m J m (ζ) , J m (ζ) = 1 2 π ˆ2 π 0 cos (ζ sin t -m t) dt .
From (3.58) for k = 0 and from (3.26b) for k ∈ {1, 2}, we easily get:

(3.59) ∀ m ∈ Z , ∀ ζ ∈ R , ∀ k ∈ {0, 1, 2} , |J (k) m (ζ)| ≤ 1 .
Then, using (3.26a), we can obtain:

(3.60) ∀ m ∈ Z * , ∀ ζ ∈ R , ζ -1 J m (ζ) ≤ 1 .
For m = 0, looking at (3.58), we can assert that:

(3.61) ζ -1 J 0 (ζ) ≤ 1 .
Combining (3.58), (3.59), (3.60) and (3.61) at the level of (3.52), we see that:

|∂ y T i,j m (y, z)| ≤ C (1 + ζ 2 + m 2 + |y| 3
) , where the constant C is uniform with respect to the variables (ζ, m, y). On the domains under consideration, we have:

|y| ≤ √ z 2 -1 , |ζ| ≤ |ξ ⊥ | b e (x) -1 √ z 2 -1 , |m| ≤ |M (z)| ≤ C (1 + √ z 2 -1) 2 .
Thus, looking at (3.56), we can recover (3.47) and (3.48).

3.3.4. L 1 -estimates. We focus here on the L 1 -bound required by Lemma 3.6.

Proposition 3.2. Fix (m, i, j) ∈ Z × 1, 3 2 and z ∈ ]1, +∞[. Then, T i,j m (•, z) ∈ L 1 (R). More precisely, we have:

(3.62) ∀ z ∈ ]1, +∞[ , m∈Z T i,j m (•, z) L 1 (R) ≤ 2 (z 2 -1) 3/2 .
Proof. The function T i,j m (•, z) is bounded on R with compact support. It is therefore integrable on R. Moreover:

(3.63) T i,j m (•, z) L 1 (R) = ˆ√z 2 -1 - √ z 2 -1
T i,j m (y, z) dy .

Observe that the matrix T m has the following structure:

T n =   a 2 sin 3 i a b sin 3 a c cos sin 2 -i a b sin 3 b 2 sin 3 -i b c cos sin 2 a c cos sin 2 i b c cos sin 2 c 2 cos 2 sin   , with (a, b, c) = m ζ -1 J m (ζ), J m (ζ), J m (ζ)
. Thus, using the elementary case of Young's inequality, the off-diagonal coefficients can be controlled by the diagonal ones:

(3.64) ∀ (i, j) ∈ 1, 3 2 , T i,j m (•, z) L 1 (R) ≤ 2 -1 T i,i m (•, z) L 1 (R) + T j,j m (•, z) L 1 (R) .
To get (3.62), it suffices to prove the result for T i,i m (•, z) L 1 (R) with 1 ≤ i ≤ 3. To do so, recall the following addition theorem on the Bessel functions of the first kind ( [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF], p.358):

(3.65) ∀ (r, s, θ) ∈ R 2 × T , m∈Z J m (r) J m (s) e -imθ = J 0 r 2 + s 2 -2 r s cos θ .
Looking at (3.65) for r = s and θ = 0, taking two derivatives of (3.65) with respect to θ at r = s and θ = 0, and then applying ∂ r and ∂ s at r = s and θ = 0, we find successively:

(3.66) ∀ r ∈ R , m∈Z J 2 m (r) = 1 , m∈Z m 2 J 2 m (r) = r 2 2 , m∈Z J m (r) 2 = 1 2 .
Combining (3.38) and (3.66), we get:

∀ i ∈ 1, 3 , ∀ y ∈ ] -z 2 -1, z 2 -1[ , sup |y|≤ √ z 2 -1 m∈Z T i,i m (y, z) ≤ z 2 -1 .
In view of (3.63), this estimate leads directly to (3.62).

3.3.5. Study of the most singular coefficient. The expression T 3,3 0 (y, z) does contribute at the level of (3.44). However, it cannot be treated as before. As a matter of fact, since J 0 (0) = 1, for all z > 1, the function issued from (3.38e) and (3.41), say:

y -→ T 3,3 0 y + τ z ξ , z = y 2 J 2 0 ξ ⊥ b e z 2 -1 -y 2 1 ]- √ z 2 -1, √ z 2 -1[ (y) , is discontinuous at y = ± √ z 2 -1.
Thus, another argument must be put forward. Proof. The idea is to remove from T 3,3 0 (•, z) the singular part. To this end, introduce the following decomposition of T 3,3 0 (y, z), which reveals the auxiliary function T 3,3 0 (y, z) :

(3.67)

T 3,3 0 (y, z) := T 3,3 0 (y, z) -(z 2 -1) 1 ]- √ z 2 -1, √ z 2 -1[ y - τ z ξ .
In view of (3.49a), the function T 3,3 0 (•, z) is continuous on R with compact support. The information (3.52b), (3.59) and (3.61) 

indicates that ∂ y T 3,3 0 (•, z) is bounded on the interval ] - √ z 2 -1, √ z 2 -1[. It follows that T 3,3 0 (•, z) is Lipschitz on R. Moreover, there exists a polynomial P 3,3 0 (•) ∈ R[X] such that: (3.68) ∀ z ∈ [1, +∞[ , T 3,3 0 (•, z) Lip([-1,1]) ≤ P 3,3 0 ( z 2 -1) .
From Lemma 3.2, we know that T 3,3 0 (•, z) belongs to L 1 (R). To define H T 3,3 0 (•, z) (0), we can apply Lemma 3.6. We now turn to the remaining (more singular) part on the right hand side of (3.67). The Hilbert transform of the characteristic function 1

[a,b] (•) is: ∀ t ∈ R \ {a, b} , H 1 [a,b] (•) (t) = ln t -a t -b .
Thus, for almost every z ∈ ]1, +∞[, we have: 

(3.69) H (z 2 -1) 1 ]- √ z 2 -1, √ z 2 -1[ • - τ z ξ (0) = (z 2 -1) ln ξ -1 τ z + √ z 2 -1 ξ -1 τ z - √ z 2 -
= ± ξ -1 (τ 2 -ξ 2 )
1/2 can be problematic. However, the logarithmic behaviour near the (potentially ) singular points z ± is compatible with L 1 loc -estimates. Retain also that the asymptotic behaviour of (3.69) when z → ±∞ is controlled by C (z 2 -1) for some constant C ∈ R + . Lemma 3.9. Assume that ξ = 0 and ξ ⊥ = 0. Then, the conductivity tensor σ(x, τ, ξ) is well-defined through (3.44).

Proof. It suffices to show that the Lebesgue integral inside (3.44) makes sense and is finite. For (i, j) = (3, 3), applying (3.46) with Lemmas 3.1 and 3.2, we obtain that H T i,j (•, z) (0) is locally bounded with respect to z ∈ ]1, +∞[. It is therefore locally integrable. In view of (3.48) and Lemma 3.8, the coefficient H T 3,3 (•, z) (0) is also locally integrable. Now, recall that F d (•) ∈ S(R + ; R). Thus, the controls (3.47), (3.48), (3.62) and (3.68), by at most some polynomial growth in z is compensated by the rapid decreasing of 

∂ z F d (•). The integrand inside (3.44) is in L 1 (]1, +∞[).
(3.70) χ ±1 (0) = 1 2 , χ m (0) = 0 , ∀ m ∈ Z \ {-1, +1} .
It follows that the matrices T n of Lemma 3.5 are zero except if n ∈ {-1, 0, +1}. We find: still valid in the case ξ = 0. However, the interpretation of σ(•) as in (3.44) does not hold. To get around this difficulty, the idea is to use Fubini's theorem at the level of (3.37) in order to recognize some Hilbert transform issued from an integration with respect to z (instead of y). The equation (3.37) then becomes: Proof. Fix m ∈ Z and (i, j) ∈ 1, 3 2 . Then:

(3.71) σ(x, τ, ξ) = -4 π i G d Ψ(ρ, z) |n|≤1 ˆ+∞ 0 ˆπ 0 r 4 ∂ r F d (r 2 ) r 2 (τ + τ n ) T n dr d . = -4 π i G d Ψ(ρ, z) ˆ+∞ 0 ˆπ 0 r 4 ∂ r F d (r 2 ) r T ( 
(3.79) T i,j m (z) = 1 ]1,+∞[ (z)

∂ z F d (z) z ˆ1 -1 z 2 -1 T i,j m ( z 2 -1 y, z) dy .
Note that T i,j m (1-) = T i,j m (1+) = 0. The function T i,j m (•) is therefore continuous on R. To prove Proposition 3.3, it suffices now to prove Lemma 3.10 below. Lemma 3.10. For all (m, i, j) ∈ Z × 1, 3 2 and z ∈ ]1, +∞[, the derivative ∂ z T i,j m (z) exists. Moreover, we have: Fix (m, i, j) ∈ Z × 1, 3 2 . We will drop the reference to (m, i, j) when it is not necessary to mention it. On the interval ]1, +∞[, the function z -→ z -1 ∂ z F d (z) is of class C ∞ . Thus, at the level of (3.82), it suffices to look at the parameter-dependent integral: ]1, +∞[ z -→ ˆ1 -1 f i,j m (z, y) dy .

In order be able to apply the Leibniz's rule for differentiation under the integral sign, we can check the following conditions: Lemma 3.11. For all m ∈ Z and for all (i, j) ∈ 1, 3 2 , the functions T i,j m (•) is in L 1 (R). For all (i, j) ∈ 1, 3 2 , there exists a polynomial Q i,j ∈ R[X] such that:

(3.90) m∈Z m 4 T i,j m L 1 (R) ≤ ˆ+∞ 1 Q i,j ( z 2 -1) ∂ z F d (z) dz < +∞ .
Proof. Use again (3.64) to reduce the discussion to the case i = j. At the level of (3.65), apply the derivatives ∂ θ , ∂ r and ∂ s . Then, take r = s and θ = 0. By this way, we can obtain the existence of polynomials (P i ) 1≤i≤3 ∈ R[X] 3 such that, for all r ∈ R and j ∈ {2, 3}:

(3.91) m∈Z m 2 j J 2 m (r) = P j (r) , m∈Z m 4 (J m (r)) 2 = P 4 (r) .

Combining (3.82) and (3.85), we can see that:

∃ C ∈ R + ; |T i,j m (z)| ≤ C 1 ]1,+∞[ (z) |∂ z F d (z)| z (1 + m 3 + z 3 ) .
Knowing that F d (•) ∈ S(R), this gives T i,j m (•) ∈ L 1 (R). Then, it suffices to exploit (3.91) together with (3.85) in the sum of (3.90) in order to recover (3.90).

In view of Lemmas 3.3 and 3.11, for all η ∈ R * + , we can apply Lemma 3.6. This yields:

(3.92) |H(T i,j m )(-

m b e τ )| ≤ 2 η ∂ z T i,j m ∞ + η -1 T i,j m L 1 (R) .
In (3.92), select η = (m 4 + 1) -1 . Take the sum over m ∈ Z. In view of (3.78) and (3.90), the corresponding series is absolutely convergent. Coming back to (3.75), this implies that the matrix σ x, τ, (ξ ⊥ , 0, 0) is well-defined.

3.4.3. Perspectives. It would be interesting to study V through numerical computations. This would allow to produce concrete representations of V , similar to the ones obtained in [START_REF] Cheverry | Dispersion relations in cold magnetized plasmas[END_REF]. Note that there are some recent works dealing with the numerical aspects [START_REF] Tomori | Numerical plasma dispersion relation solver[END_REF][START_REF] Xie | Pdrk: a general kinetic dispersion relation solver for magnetized plasma[END_REF] but they are restricted to the rough case where the external magnetic field is constant and where the Maxwell-Boltzmann distribution function depends only on p.

In the same way, our model (3.31) can help to improve computations in reflectometry [START_REF] Imbert-Gérard | Mathematical and numerical problems of some wave phenomena appearing in magnetic plasmas[END_REF]. Indeed, it allows to detect some relevant impacts induced by the spatial variations of the external magnetic field and of the equilibrium distribution function.

Besides, our analysis is a prerequisite for further mathematical developments. It would be interesting to complete the WKB analysis for times t ∼ 1, and beyond for times t ∼ ε -1 . From a physics point of view, questions about wave-particle interactions [START_REF] Koch | Wave-particle interactions in plasmas[END_REF][START_REF] Tsurutani | Some basic concepts of wave-particle interactions in collisionless plasmas[END_REF], anomalous transport [START_REF] Cheverry | Anomalous transport[END_REF], or confinement properties could thereby benefit from new perspectives [START_REF] Cheverry | Mathematical perspectives in plasma turbulence[END_REF].

,

  where J n (•) denotes the n-th Bessel function of the first kind. Introduce b e (•) as in (2.20). The function b e (•) takes into account the variations of the external magnetic field. The scalar functions τ n (•) in (1.2) and ζ(•) in T n are given by: τ n (x, r, , ξ) := r -1 (r ξ cos + n b e ) , ζ(x, r, , ξ ⊥ ) := r ξ ⊥ sin b e (x) -1 .

First, in Paragraph 3 . 3 . 1 ,

 331 we perform a change of variables. Secondly, in Paragraph 3.3.2, we introduce the Hilbert transform and we study its action through Lipschitz estimates (Paragraph 3.3.3) and through L 1 -estimates (Paragraph 3.3.4). Finally, the particular cases of perpendicular and parallel propagation are adressed in Part 3.3.2. The formula (1.2) is new. It shows through the variations of the functions G d (•), F d (•), Ψ(•) and b e

  x) := |B e (x)| .

Figure 1 .

 1 Figure 1. Axisymmetric configuration.

Figure 2 .Discussion 2 . 1 .

 221 Figure 2. Toroidal coordinates.

Figure 3 .

 3 Figure 3. Cross sections.

Assumption 2 . 7 .

 27 [the cross sections C ψ are concentric circles] The external magnetic field Bp e (•) takes the form: (2.36) Bp e (r, θ) = b e r q(r) -1 (R 0 + r cos θ) -1 e θ , Ψ(r) = b e ˆr 0 s ı(s) ds ,

Figure 4 .

 4 Figure 4. Spherical coordinates of p ∈ R 3 after straigntening.

  r) r 2 sin dr d dω , (2.81a) J (θ; f ) := ˆ+∞ 0 ˆπ 0 ˆπ -π r 3 θ r cos ω sin sin ω sin cos f ( , ω, r) sin dr d dω . (2.81b) After straightenning, we obtain:

  Hp3) : For all α ∈ {2, • • • , N }, the dominant stationary part fd α (•) is given by the shifted Maxwell-Boltzmann KDF (2.58) ; -(Hp4) : For α = 1, the dominant stationary part fd 1 (•) is given by (2.57) with (2.61) ; -(Hp5) : The perturbation in (2.63) is such that ν = ε ; -(Hp6) : We have µ := |µ 1 | = 1 and µ

3 .

 3 Kinetic interpretation of electron cyclotron resonances. Recall the definition (3.24) of τ m . The expression τ + τ m depends on the position x ∈ Ω, the momentum p ∈ R 3 with norm r ∈ R + and pitch angle ∈ [0, π], the direction ξ ∈ R 3 , the Fourier mode m ∈ Z, and the time frequency τ ∈ R. The electrons gyrate with the local gyrofrequency b e (x).

Lemma 3 . 4 .

 34 [Infinite set of resonances] Fix (x, ξ) ∈ Ω × R 3 \ {0} as well as ∈ [0, π]and τ ∈ R. There exists infinitely many (m, r) ∈ Z × R + such that τ + τ m (x, r, , ξ) = 0.

( 3 .Definition 3 . 3 (

 333 42)I 0 (z) := Re Ĩ0 (z) = H (T m (•, z) (0) ,where the linear operator H is determined as indicated below. Hilbert transform). Given f : R -→ R in the Schwartz space S(R), the Hilbert transform H f (•) of f (•) is the function given by:

1 e|ξ | 1 + z 2 - 1 +

 1121 .53) and (3.54), we get (3.7).To complete the proof of Lemma 3.1, we have to show the upper bounds (3.47) and (3.48). To this end, an important argument is that only a finite number of m ∈ Z contribute in the series (3.47) and (3.48). As a matter of fact, for m ∈ Z sufficiently large, namely: (3.55) |m| ≥ M (z) := b -|τ | z ,

Lemma 3 . 8 .

 38 Except possibly for two values of z ∈ [1, +∞[, the expression H T 3,3 0 (•, z) (0) makes sense. Moreover, it is locally integrable with respect to z ∈ [1, +∞[.

3. 4 .

 4 Interesting case studies. It was shown in Section 3.3 that the matrix σ(•) is welldefined for all ξ such that ξ = 0 and ξ ⊥ = 0. The case of a parallel propagation (ξ ⊥ = 0) is considered in Paragraph 3.4.1. The case of a perpendicular propagation (ξ = 0) is studied in Paragraph 3.4.2. Looking at the number of resonances to be taken into account, that is the number of nonzero terms in the sum (3.31), the following may be noted. There is a growing complexity when passing from the parallel case (involving m = -1, m = 0 and m = 1), to the generic case of Section 3.3 (implying a finite number of m), up to the perpendicular case (giving rise to the selection of an infinite number of m ∈ Z).

3. 4 . 1 .

 41 Parallel propagation (ξ ⊥ = 0 and ξ = 0). When ξ ⊥ = 0, as indicated in (3.39), we simply find ζ = 0. Now, in many formulas such as (3.30) or (3.38), the term ζ -1 appears in factor. However, this singularity is compensated by m J m (ζ). Indeed, the relation (3.26a) is valid for all values of m ∈ Z and ζ ∈ R. The function χ m : ζ → m ζ -1 J m (ζ) can be extended to some analytic function on R satisfying:

+ rξ cos sin 3 2 r τ + rξ cos 2 -b 2 e-i b e sin 3 2 r τ + rξ cos 2 -b 2 e 0 i b e sin 3 2 r τ + rξ cos 2 -b 2 e r τ + rξ cos sin 3 2 r τ + rξ cos 2 .

 323203232 par) dr d .In(3.71), the matrix T (par) is obtained by summing up what comes from T -1 , T 0 and T 1 :When ξ ⊥ = 0, the condition det N(x, τ, ξ) = 0 reduces to Λ L Λ - T Λ + T = 0. To simplify, introduce κ ≡ κ(x) := 4 π G d Ψ(ρ, z) .The connected components of V can be determined by looking at the three conditions:Λ L (x, τ, ξ ) := τ 2 + κ τ ˆ+∞ 0 ˆπ 0 r 4 ∂ r F d (r 2 ) cos 2 sin r r τ + rξ cos dr d = 0 , (3.72a) Λ - T (x, τ, ξ ) := τ 2 -ξ 2 -κ τ ˆ+∞ 0 ˆπ 0 r 4 ∂ r F d (r 2 ) sin 3 2 r r τ + rξ cos -b e dr d = 0 , (3.72b) Λ + T (x, τ, ξ ) := τ 2 -ξ 2 -κ τ ˆ+∞ 0 ˆπ 0 r 4 ∂ r F d (r 2 ) sin 3 2 r r τ + rξ cos + b e dr d = 0 . (3.72c)a) Transverse waves. We find two components V + T (x, 0) and V - T (x, 0) which are:V - T (x, 0) = (τ, |ξ|) ∈ R × R + ; Λ - T (x, τ, |ξ |) = 0 , (3.73a) V + T (x, 0) = (τ, |ξ|) ∈ R × R + ; Λ + T (x, τ, |ξ |) = 0 . (3.73b)b) Longitudinal waves. We find only one component:(3.74) V L (x, 0) = (τ, |ξ|) ∈ R × R + ; Λ L (x, τ, |ξ |) = 0 .3.4.2. Perpendicular propagation (ξ = 0 and ξ ⊥ = 0). The content of Paragraph 3.3.1 is

( 3 . 1 T- 1 - √ z 2 - 1 TProposition 3 . 3 .

 3112133 75) σ x, τ, (ξ ⊥ , 0, 0) := -2 π i G d Ψ(ρ, z) m (y, z) τ z + m b e dy ∂ z F d (z) τ, (ξ ⊥ , 0, 0) = 2 π i G d Ψ(ρ, z) T m (z) := 1 ]1,+∞[ (z) ∂ z F d (z) z ˆ√z 2 m (y, z) dy ,and T m (y, z) is the skew-symmetric matrix given by(3.38). For all m ∈ Z, the function T m (•) is Lipschitz on R. Moreover, there exists a constant C > 0 such that:(3.78) ∀ m ∈ Z , ∂ z T m ∞ := sup z∈R sup 1≤i,j≤3|∂ z T i,j m (z)| ≤ C (m 2 + 1) .

( 3 .√ z 2 - 1 -y 2 ,

 3212 80) ∃ C ∈ R + ; ∀ m ∈ Z , sup z∈ ]1,+∞[ sup 1≤i,j≤3 |∂ z T i,j m (z)| ≤ C (m 2 + 1) .Proof. Recall (3.79). Consider the auxiliary function:(3.81) f i,j m : ]1, +∞[×] -1, 1[ -→ R (z, y) -→ f i,j m (z, y) := √ z 2 -1 T i,j m ( 1 y, z) ,so that:(3.82) T i,j m (z) = 1 ]1,+∞[ (z) ∂ z F d (z) z ˆ1 -1 f i,j m (z, y) dy .With y = √ z 2 -1 y, we find:(3.83) ζ ≡ ζ(z, y) = ξ ⊥ b e (x) -1 z 2 -1 m (ζ) J m (ζ) (z 2 -1) 1 -y 2 , m (z, y) = J m (ζ) 2 (z 2 -1) 3/2 (1 -y 2 ) , (3.85a) f 2,3 m (z, y) = -i J m (ζ) J m (ζ) (z 2 -1) 3/2 y 1 -y 2 , (3.85b) f 3,3 m (z, y) = J 2 m (ζ) (z 2 -1)3/2 y 2 . (3.85c)

z m 2 +2 z z 2 - 2 ( 1 - 2 - 1 ) 2 (b e z (z 2 - 1 ) 1 -y 2 .

 22212122112 (i) For all z > 1, the function y -→ f(z, y) is integrable on ] -1, 1[ ; (ii) For all y ∈ ] -1, 1[, the function z -→ f(z, y) is of class C 1 on ]1, +∞[ ; (iii) The function (z, y) -→ ∂ z f(z, y) is bounded on every set of the form K×] -1, 1[, where K is a compact subset of ]1, +∞[. Below, we perform the verification work step by step. (i) Fix z ∈ ]1, +∞[. In view of (3.38) and (3.39), the function T i,j m (•, z) is continuous on the interval ] -1, 1[. In view of (3.81), this also holds true for f i,j m (z, •). (ii) Fix y ∈ ] -1, 1[. On the one hand, the function ζ(•, y) is smooth. On the other hand, the Bessel function J m (•) is analytic on R. In view of (3.85), the function z -→ f(z, y) is therefore of class C 1 on ]1, +∞[. (iii) We have to compute D i,j m (z, y) := ∂ z f i,j m (z, y). Since the matrix D is skew-symmetric, it is enough to compute D i,j m when i ≤ j. Use (3.83) and (3.85) in order to obtain:J m (ζ) J m (ζ) 1 -y 2 , (3.86a) D 1,2 m (z, y) = 2 i b e ξ ⊥ z m J m (ζ) J m (ζ) 1 -y 2 (3.86b) + i z z 2 -1 m J m (ζ) 2 + J m (ζ) J m (ζ) (1 -y 2 ) , 1 m J m (ζ) J m (ζ) y 1 -y 2 , D 2,2 m (z, y) = 3 z z 2 -1 J m (ζ) J m (ζ) J m (ζ) (1 -y 2 ) 3/2 , D 2,3 m (z, y) = -3 i z z 2 -1 J m (ζ) J m (ζ) y 1 -y 2 (3.87a) -i ξ ⊥ b e z (z 2 -1) J m (ζ) 2 + J m (ζ) J m (ζ) y (1 -y 2 ) , D 3,3 m (z, y) = 3 z z 2 -1 J 2 m (ζ) y J m (ζ) J m (ζ) y 2All these functions D i,j m (•) are clearly bounded on K×] -1, 1[, at least if K is compact which is contained in ]1, +∞[. Since the three conditions (i), (ii) and (iii) are satisfied, we can assert that:(3.88) ∂ z ˆ1 -1 f i,j m (z, y) dy = ˆ1 -1 D i,j m (z, y) dy .It follows that:(3.89) ∃ C ∈ R + ; ∀ z ∈ ]1, +∞[ , |∂ z T i,j m (z)| ≤ C sup (z,y)∈ ]1,+∞[×]-1,1[ |D i,j m (z, y)| .Exploit (3.59) to control the J (k) m (ζ) uniformy with respect to m ∈ Z. In view of (3.87), as indicated in (3.80), the growth in m is at most m 2 . When z goes to 1+, the only term which may be problematic is D 1,1 m (z, y), see (3.86a). For m = 0, there is nothing to do. For |m| = 1, exploit (3.49a) together with (3.83) to see that |D 1,1 m (z, y)| remains bounded. For |m| > 1, the expression |D 1,1 m (z, y)| simply tends to zero when z goes to 1+. By this way, we recover (3.80).

  Fluid equilibria in magnetized plasmas. Magnetohydrodynamics (MHD) or (in the presence of strong external electromagnetic fields) neoclassical models are what is meant by fluid theories. By virtue of their relative simplicity, these approaches constitute the most frequently used frameworks to deal with plasma equilibria. They are valid when the plasma is in a quiescent state. They require a minimum level of collisionality, that is an assumption of maxwellianity.

	The first condition in (2.10) implies a link between d := ( fd α ) and Be . Taking into account
	the relations inside (2.32), this furnishes:	
	(2.38)	d = dt + dp ,	dt := -0 c 2 0	ρ-1 ∆ * Ψ e φ ,	dp := 0 c 2 0 ∇g × ∇ φ ,
	where the vector field d is decomposed into a toroidal component dt and a poloidal
	component dp , and where ∆ * is the differential operator:
	(2.39)			∆ * :=	ρ ∂ ∂ ρ	1 ρ ∂ ∂ ρ	+	∂ 2 ∂ z2 .
	At this stage, the axisymmetric magnetic field Be (•) is entirely determined by the two
	functions g(•) and Ψ(•). Additionnal requirements on g(•) and Ψ(•) are coming from (2.9)
	and (2.38) when specifying the kinetic distribution function	fd α (•). The determination of
	fd α (•) is achieved in the two next Paragraphs 2.3.2 and 2.3.3.
	2.3.2.					
		(2.37a)					x, p) dp ,
					N		ˆR3
		(2.37b)	d := ( fd α ) =	d α ,	d α :=	e α ṽα (p)	fd α ( t, x, p) dp .
					α=1	

  • • • , N }, we can define the flow velocity ũd α and the pressure tensor Pd α of the α th species as indicated below:

	(2.40a)	ũd α ≡ ũd α ( fd α )(x) :=	1 ñd α (x) ˆR3 ˆR3	ṽα	fd α (x, p) dp ,
	(2.40b)	Pd α ≡ Pd α ( fd α )(x) := m α	ṽα -ũd α ⊗ ṽα -ũd α	fd α (x, p) dp .
	Introduce also the charge density ρd		

α := e α ñd α and the current density d α := e α ñd α ũd α of the α th species. Lemma 2.1. Assume that the distribution function fd α (•) is of the form:

  On the other hand, the part fd α can take into account cold, warm or hot aspects (see Paragraph 2.2.1). It separates the cooler vessel wall from the plasma core. The core region contains a hotter plasma, but not that much. We find T e 5 keV, and we still have θ d .46) is satisfied and the fluid approach of Paragraph 2.3.2 does make sense. Now, the model (2.58) is not sure to apply when dealing with electrons. As a matter of fact, as revealed by (2.2), electrons are much lighter than ions and neutral atoms. This has two main consequences[START_REF] Cremaschini | Kinetic description of rotating tokamak plasmas with anisotropic temperatures in the collisionless regime[END_REF][START_REF] Kuiroukidis | Vlasov tokamak equilibria with shearad toroidal flow and anisotropic pressure[END_REF]:-First, the electrons can faster reach high energies. Thus, a certain level of flexibility must be achieved concerning fd

	When adjusting	fd α (•), it is important to look at the physical data.
	Discussion 2.2. [about the dominant stationnary part	fd α ] Tokamaks involve special values
	of temperatures. Two regions can be distinguished. The edge region implies a diluted plasma
	with T e	50 eV, so that θ d 1	10 -2 whereas θ d α 1 for α = 1. α θ d θ d 1 10 -1 for α = 1.	•
	Taking into account these observations, we can point out the following.
	Assumption 2.8. [ions in a state of local cold thermodynamic equilibrium] For all α = 1,
	we impose (2.58) with θ d α ≤ 10 -3 .
	The shifted Maxwell-Boltzmann distribution Therefore, for α = 1, the pressure tensor Pd	fd α (•) of (2.58) is clearly subjected to (2.41).
					to
	better localize the support or the properties of the function	fd 1 (•) ;
	-Secondly, the electrons are more sensitive to perturbations. Such disturbances are induced
	for instance by the injection of neutral beams or radio waves. They can induce anisotropic
	effects with respect to the variable |p -m α	ũd α (x)|. The corresponding aspects are not
	detected by (2.58) which involves only |p -m α the level of fs	ũd α (x)|. They can be taken into acount at

α is diagonal. It is of the form Pd α = pd α Id, where pd α is some scalar pressure. For α = 1, the equation (21 (•). It is preferable to use (2.57) instead of (2.58). This allows α (•). They can also be incorporated (albeit partially) through (2.57). Assumption 2.9. [electrons in a state of transient kinetic equilibrium] The distribution function fd 1 (•) is chosen as indicated in (2.57), with expressions F d 1 (•) and G d 1 (•) adjusted in order to achieve the quasi-neutrality condition:

  Dimensionless equations. The aim here is to obtain a dimensionless form of the system satisfied by the perturbation fs α (•). This means first to perform a stability analysis in the vicinity of fd α (•) (Paragraph 2.4.1). In Paragraph 2.4.2, we define rescaled unknowns and variables. Then, it is useful to straighten the field lines (Paragraph 2.4.3). Moreover, in connection with the application to the tokamak's context, it is important to give (Paragraph 2.4.4) a precise description of (the relative sizes of) the various physical parameters.2.4.1. Perturbation theory.To grasp plasma instabilities or plasma processes which are not in thermal equilibrium, we can perform a stability analysis in the vicinity of fd

					•) is
	fixed as indicated in (2.32), and the kinetic distribution functions	fd α (•) are adjusted as in
	Assumptions 2.8 and 2.9.		
	2.4. α (•). This
	amounts to add a small term ν	fs α (•) with ν	1 to the exact solution	fd α (•). In other words,
	the solution	fk α (•) to (2.7) is broken into:
	(2.63)	fk α ( t, x, p) =	fd α (x, p) + ν	fs
	With a dominant stationary part (2.58) or by the tokamak transient distribution (2.57), the extra part fd α (•) given by the shifted Maxwell-Boltzmann distribution fs

α ( t, x, p) , ( t, x, p) ∈ R + × Ω × R 3 . α (•) is governed by:

  76b) 2.4.3. Straightening the field lines. Equation (2.73) is not yet in a suitable form. Still, we need to straighten out the field lines. Recall (2.22)-(2.24) so that:

  Discussion 2.6. [about the size of ν] We adjust ν in such a way that ν ∼ ε. By this way, we can stay in a perturbative regime, even if θ d 1 1. Indeed: -Smallness of B in comparison with Be : In view of (2.69c), the condition B 1 implies B ν θ d 1 b e ε b e . With (2.19), we can be sure that | B| ε | Be |. The hot asymptotic regime. The framework specified below is intended to describe what happens in fusion devices. This requires to fix the size of the various parameters in function of ε. Of course, this can be done only under simplifying assumptions that make the model tractable. In the light of Paragraph 2.4.4, we can retain the following choices:

	-Smallness of ν	fs α in comparison with	fd α : When computing	fk α (•) through (2.5), the
	part ν the parameter θ d fs α (•) appears as a small modification of α is, small or large. Indeed, the amplitude of fd α (•). This makes sense whatever fs α (•) as prescribed by
	(2.69b) with f α 1 is equivalent to the amplitude of	fd α (•) given by (2.57) or (2.58).
	2.5.			

  1 .

	More precisely, (3.69) is well-defined for all z ∈ ]1, +∞[ when |τ | > when |τ | ≤ √ 2 |ξ |, only the two values z ±	√	2 |ξ |. On the contrary,