
HAL Id: hal-01596179
https://hal.science/hal-01596179v1

Submitted on 27 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Normalization by evaluation for sized dependent types
Andreas Abel, Andrea Vezzosi, Théo Winterhalter

To cite this version:
Andreas Abel, Andrea Vezzosi, Théo Winterhalter. Normalization by evaluation for sized dependent
types. Proceedings of the ACM on Programming Languages, 2017, 1, pp.33. �10.1145/3110277�.
�hal-01596179�

https://hal.science/hal-01596179v1
https://hal.archives-ouvertes.fr

33

Normalization by Evaluation for Sized Dependent Types

ANDREAS ABEL, Gothenburg University, Sweden

ANDREA VEZZOSI, Chalmers University of Technology, Sweden

THEO WINTERHALTER, École normale supérieure Paris-Saclay, France

Sized types have been developed to make termination checking more perspicuous, more powerful, and more
modular by integrating termination into type checking. In dependently-typed proof assistants where proofs
by induction are just recursive functional programs, the termination checker is an integral component of the
trusted core, as validity of proofs depend on termination. However, a rigorous integration of full-fledged sized
types into dependent type theory is lacking so far. Such an integration is non-trivial, as explicit sizes in proof
terms might get in the way of equality checking, making terms appear distinct that should have the same
semantics.

In this article, we integrate dependent types and sized types with higher-rank size polymorphism, which is
essential for generic programming and abstraction. We introduce a size quantifier ∀ which lets us ignore sizes
in terms for equality checking, alongside with a second quantifier Π for abstracting over sizes that do affect the
semantics of types and terms. Judgmental equality is decided by an adaptation of normalization-by-evaluation
for our new type theory, which features type shape-directed reflection and reification. It follows that subtyping
and type checking of normal forms are decidable as well, the latter by a bidirectional algorithm.

CCS Concepts: • Theory of computation→ Type theory; Type structures; Program verification; Opera-
tional semantics;

Additional Key Words and Phrases: dependent types, eta-equality, normalization-by-evaluation, proof irrele-

vance, sized types, subtyping, universes.

ACM Reference Format:

Andreas Abel, Andrea Vezzosi, and Theo Winterhalter. 2017. Normalization by Evaluation for Sized Dependent
Types. Proc. ACM Program. Lang. 1, ICFP, Article 33 (September 2017), 30 pages.
https://doi.org/10.1145/3110277

1 INTRODUCTION

Dependently-typed programming languages and proof assistants, such as Agda [2017] and Coq [IN-
RIA 2016], require programs to be total, for two reasons. First, for consistency: since propositions
are just types and proofs of a proposition just programs which inhabit the corresponding type,
some types need to be empty; otherwise, each proposition would be true. However, in a partial
language with general recursion, each type is inhabited by the looping program f = f . Secondly,
totality is needed for decidability of type checking. Since types can be the result of a computation,
we need computation to terminate during type checking, even for open terms, i. e., terms with free
variables.

Consequently, the aforementioned languages based on Type Theory come with a termination
checker, which needs to reject all non-terminating programs, and should accept sufficiently many

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2017 Copyright held by the owner/author(s).
2475-1421/2017/9-ART33
https://doi.org/10.1145/3110277

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3110277
https://doi.org/10.1145/3110277

33:2 Andreas Abel, Andrea Vezzosi, and Theo Winterhalter

terminating programs to allow the user to express her algorithms. In current termination checkers,
programs are required to terminate by structural descent [Giménez 1995]; the structural order may
be extended to a lexicographic [Abel and Altenkirch 2002] or size-change termination criterion
[Lee et al. 2001; Wahlstedt 2007]. This is not a fundamental limitation, since Type Theory allows
many functions to be expressed in a structurally recursive manner, if needed by the help of a
well-founded relation [Nordström 1988], inductive domain predicates [Bove and Capretta 2005],
or inductive descriptions of the function graph [Bove 2009]. However, the syntactic termination
check is very sensitive to reformulations of the program and hostile to abstraction [Abel 2012].

Sized types [Hughes et al. 1996] delegate the checking for structural descent to the type system
by annotating data types with a size parameter. The type checker can then ensure that in recursive
calls the size goes down, certifying termination. In the simplest setting [Abel 2008; Barthe et al.
2004], the size is just an upper bound on the tree height of the data structure; however, more
sophisticated size annotations have also been considered [Blanqui 2004; Xi 2002]. Most sized type
systems are non-dependent [Abel and Pientka 2016; Amadio and Coupet-Grimal 1998; Barthe
et al. 2008a,b; Blanqui and Riba 2006; Lago and Grellois 2017], yet the combination of sized and
dependent types has been studied as well [Barthe et al. 2006; Blanqui 2005; Grégoire and Sacchini
2010; Sacchini 2013, 2014]. However, to the best of our knowledge, no study combines higher-rank
size polymorphism with full-fledged dependent types.1

Higher-rank size quantification takes termination checking to the next level; it is necessary for
abstraction and generic programming. For instance, it allows us to write a generic tree traversal
which applies a user-given preprocessor on subtrees before recursively descending into these trees,
and a postprocessor after surfacing from the descent. The condition is that preprocessing does
not increase the size of the subtree; otherwise, termination could not be guaranteed. Concretely,
assume a type T i of trees of size < i with a constructor node : ∀i . List (T i) → T (i + 1) which takes
a finite list of subtrees to form a new tree. In the following definition of trav, the preprocessing
pre : ∀i . T i → T i can be safely applied to input tree t because the type of pre bounds the size of
pre t by the size of t . In case pre t = node ts, the trees in the list ts are still guaranteed to be of
strictly smaller size than t , thus, the recursive call to trav, communicated via the map function for
lists, is safe.

trav : (pre : ∀i . Ti → Ti) (post : T∞ → T∞) → ∀i . T i → T∞
trav pre post t = post (case pre t of { node ts → node (map (trav pre post) ts) })

The display shows the Curry-style program as provided by the user, but state-of-the-art type
checkers elaborate the program from surface syntax into an internal Church-style syntax with
explicit type abstractions and type applications.2 With implicit type and size applications elaborated,
trav would look as follows:

trav pre post i t =
post (case pre i t of { node j ts → node∞(map (T j) (T∞) (trav pre post j) ts)})

Church-style syntax is the basis for all program analyses and transformations to follow and
should be considered as the true syntax. However, from a dependent-type perspective, explicit size
applications in terms can be problematic when the type checker compares terms for equalityÐwhich
is necessary as types can depend on values. Inferred sizes may not be unique, as we have subtyping
T i ≤ T j for i ≤ j: we can always weaken an upper bound. For instance, given ts : List (T i), any of
the terms node i ts, node (i + 1) ts, . . . , node∞ ts has type T∞. Yet semantically, all these trees are
equal, thus, the syntactic equality check should ignore the size argument to node. Similarly, in the

1Xi [2002] has first-class size polymorphism, but only indexed types, no universes or large eliminations.
2Agda, Coq, Idris [Brady 2013], and Haskell [Sulzmann et al. 2007] all have Church-style internal languages.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

Normalization by Evaluation for Sized Dependent Types 33:3

application pre i t the size argument i should be ignored by the equality check. Yet pre i : T i → T i

and pre j : T j → T j have different types for i , j , and moreover these function types are not in the
subtyping relation due to the mixed-variant occurrence of the size parameter. It seems that during
equality checking we have to consider terms of different types, at least for a while. Once we apply
pre i and pre j to the same tree t : Tk , which determines i = j = k , we are back to safety. However,
allowing types to differ during an equality check needs special consideration, especially when the
equality-check is type directed.
Consider the analogous situation for the polymorphic lambda calculus System F, be it the

predicative variant or not, extended by a unit type 1. For Church-style, we can give a type-directed
βη-equality test which equates all terms at the unit type. The most interesting rules are the η-rules
for unit and function type and the congruence rule for type application:

Γ ⊢ t = t ′ : 1

Γ,x :A ⊢ t x = t ′ x : B

Γ ⊢ t = t ′ : A → B

Γ ⊢ t = t ′ : ∀X .B

Γ ⊢ t A = t ′A : B[A/X]

The Curry-style version replaces the last conclusion by Γ ⊢ t = t ′ : B[A/X] where the type
A to instantiate X has to be guessed. However, in Curry-style more terms are equated than in
Church-style, as for instance the Church-style terms t A (λx : A. x) and t B (λx : B. x) map to
the same Curry-style term t (λx . x). How would we adapt the algorithm for Church-style such
that it equates all terms that are equal in Curry-style? The conclusion of the last rule could be
changed to Γ ⊢ t A = t ′A′ : B[A/X], but then the second term t ′A′ does not have the ascribed
type B[A/X], and η-laws applied to this term would be unsound. For instance, the algorithm
would yield t 1x = t (A → A)y even for x , y. We could also consider a heterogeneous check
(Γ ⊢ t : A) = (Γ′ ⊢ t ′ : A′) where each term is paired with its own type and context, but this leaves
us with the dilemma of explaining the meaning of this judgement when A and A′ are incompatible.

Does the literature offer a solution to this problem? In fact, a Church-style calculus with Curry-
style equality has been studied before, it is ICC∗ [Barras and Bernardo 2008; Mishra-Linger and
Sheard 2008] based on Miquel’s Implicit Calculus of Constructions [2001]. In ICC∗, equality is
checked by erasing all type abstractions and applications, and comparing the remaining untyped
terms for βη-equality. While this works for η-laws that can be formulated on untyped terms, such as
η-contraction of functions λx . t x −→η t (when x not free in t), it does not extend to type-directed
η-laws such as extensionality for the unit type. Further, ICC∗ is not a type theory formulated with
a typed equality judgement, which makes it hard to define its models [Miquel 2000]Ðwe wish not
to go there, but stay within the framework of Martin-Löf Type Theory [1975].
Now, if the types of compared Curry-style terms are not equal, can they be sufficiently related

to give a proper meaning to the algorithmic equality judgement? It has already been observed
that for a type-directed equality check the precise type is not necessary, a shape or skeleton is
sufficient. The skeleton informs the algorithm whether the terms under comparison are functions,
inhabitants of the unit type, or something else, to possibly apply the appropriate η-law. For the
Logical Framework (LF), the simplest dependent lambda-calculus, the skeletons are simple types
that can be obtained from the original dependent types by erasing the dependencies: dependent
function types map to non-dependent ones and indexed data types to simple data types. Harper
and Pfenning [2005] present such an equality check for LF which is directed by simple types, and
their technique should scale to other type theories that admit dependency erasure.3

By large eliminations [Werner 1992] we refer to types computed by case distinction over values;
they occur in type theories that feature both universes and data types. In the presence of large

3For instance, the types of the Calculus of Constructions erase to Fω -types [Geuvers 1994], and the latter could be used to
direct the equality check. Lovas and Pfenning [2010] consider also refinement types for logical frameworks which can be
erased to simple types.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

33:4 Andreas Abel, Andrea Vezzosi, and Theo Winterhalter

eliminations, dependency erasure fails, and it is not clear what the skeleton of a dependent type
should be. For instance consider the type (n :N) → A → · · · → A

︸ ︷︷ ︸

n

→ A of n-ary functions; its shape

is dependent on the value of n, thus cannot be determined statically. Thus, the łskeletonž idea is
also not directly applicable.
Going beyond the standard syntax-directed equality check, there is a technique that can deal

with dynamic η-expansion. It is a type-directed normalization function inspired by normalization-
by-evaluation (NbE) that computes η-long normal forms [Berger and Schwichtenberg 1991; Danvy
1999]. We can check the computed normal forms for identity and, thus, decide definitional equality.
NbE has proven to be a robust method to decide equality in powerful type theories with non-trivial
η-laws. It scales to universes and large eliminations [Abel et al. 2007], topped with singleton types
or proof irrelevance [Abel et al. 2011], and even impredicativity [Abel 2010]. At its heart there
are reflection ↑T and reification ↓T functions directed by type T and orchestrating just-in-time
η-expansion. Reflection ↑Tx maps variables x into the realm of values of typeT and lets us compute
with open terms. Reification ↓Ta takes a value a of type T and computes its long normal form. For
instance, the normal form of a closed function f : U → T would be λx . ↓T (f (↑U x)), and for its

dependently-typed variant f : (x :U) → T [x] it would be λx . ↓T [↑
U x](f (↑U x)).

The central technical observation is that reflection and reification do not need the precise type
T , they work the same for any shape S of T . We managed, while not introducing a new syntax
for shapes, to define a relation T ⊏∼ S on type values stating that type S qualifies as shape for
type T . Shapes unfold dynamically during reflection and reification. For example, when reflecting
a variable x into the polymorphic function type ∀i . F i where F i = Nat i → Nat i , we obtain
(↑∀i .F ix) i = ↑F i (x i) for size i and (↑∀i .F ix) j = ↑F j (x j) for size j. The new types F i and F j we
reflect at are no longer equal (and they are not subtypes of each other), but they still have the
same shape, Nat _ → Nat _. This means they will still move in lock-step in respect to η-expansion,
which is sufficient to prove NbE correct for judgmental equality. We call the enabling property of F
shape irrelevance, meaning that for any pair i , j of legal arguments, F i and F j have the same shape.
Whenever we form a irrelevant function type ∀x :U .T [x], we requireT [x] to be shape-irrelevant in
x . This is the middle ground between ICC∗, where no restriction is placed on T but η for unit types
is out of reach (at least for the moment), and Pfenning’s [2001] irrelevance modality, adapted to full
dependent types by Abel and Scherer [2012], which requires T to be irrelevant in x and, thus, has
type equality T [i] = T [j].
For the time being, we do not (and cannot) develop a general theory of shape irrelevance. We

confine ourselves to size-irrelevant function types ∀i .T [i]. This relieves us from defining a special
shape-irrelevance modality, since all size-indexed typesT [i] are shape irrelevant in i , simply because
there is no case distinction on size, and sizes appear relevantly only under a sized type constructor
such as Nat. Our technique would not extend to the polymorphic types ∀X . B[X] of System F. Even
though there is no case distinction on types, shape irrelevance of B[X] fails in general, as X could
appear as a type on the top-level, e.g. in B[X] = X → X , and then B[1] and B[A → A] would have
distinct shapes.
To summarize, this article makes the following novel contributions:

(1) We present the first integration of a dependent type theory with higher-rank size polymor-
phism. Concretely, we consider a type theory à la Martin-Löf with dependent function types,
cumulative universes, subtyping, a judgmental equality with η-laws, a sized type of natural
numbers and two size quantifiers: an irrelevant one (∀) for binding of sizes in irrelevant
positions, and a relevant one (Π) for binding of sizes in shape-irrelevant positions (Section 3).
Judgmental equality features a łCurry-stylež rule for irrelevant size application which ignores

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

Normalization by Evaluation for Sized Dependent Types 33:5

the size arguments, and consequently, the corresponding typing rule will also ignore the size
argument. (In the following rules, a, a′, and b stand for arbitrary size expressions.)

Γ ⊢ t = t ′ : ∀i .T

Γ ⊢ t a = t ′ a′ : T [b/i]

Γ ⊢ t : ∀i .T

Γ ⊢ t a : T [b/i]

Γ ⊢ t = t ′ : Πi .T

Γ ⊢ t a = t ′ a : T [a/i]

Γ ⊢ t : Πi .T

Γ ⊢ t a : T [a/i]

Our substitution theorem distinguishes term- from type-side substitutions.
(2) We adapt normalization-by-evaluation (NbE) to sized types and size quantification and show

that it decides judgmental equality (sections 4 and 5). The novel technical tool is a relation
T ⊏∼ S which relates a type T to its possible shapes S . This approximation relation allows
reflection and reification at size-polymorphic types ∀i .T . As usual for the meta-theory of
Type Theory with large eliminations, the machinery is involved, but we just require the
usual two logical relations: First, a PER model to define the semantics of types and prove the
completeness of NbE (Section 4). Secondly, a relation between syntax and semantics to prove
soundness of NbE (Section 5).

(3) We present an bidirectional type checking algorithm [Coquand 1996] which takes the irrele-
vant size argument as reliable hint for the type checker (sections 6 and 7). It is complete for
normal forms which can be typed with the restricted rule for ∀-elimination:

Γ ⊢ t : ∀i .T

Γ ⊢ t a : T [a/i]

The algorithm employs the usual lazy reduction for types, i. e., just-in-time weak-head
evaluation, in type and sub-type checker [Huet 1989]. In this, it improves on Fridlender and
Pagano [2013] which instruments full normalization (NbE) at every step.

This article is accompanied by a prototypical type checker Sit which implements the type system
and type checking algorithm as described in the remainder of the paper. But before going into the
technical details, we will motivate our type system from a practical perspective: reasoning about
programs involving sized types in Agda.

2 SIZE IRRELEVANCE IN PRACTICE

In this section, we show how the lack of size irrelevance prevents us from reasoning naturally
about programs involving sized types in Type Theory. We focus on Agda, at the time of writing the
only mature implementation of Type Theory with an experimental integration of sized types.
The problem of the current implementation of sized types in Agda can be demonstrated by a

short example. Consider the type of sized natural numbers.

data Nat : Size→ Set where

zero : ∀ i → Nat (i + 1)

suc : ∀ i → Nat i→ Nat (i + 1)

The predecessor function is size preserving, i. e., the output can be assigned the same upper
bound i as the input. In the code to follow, the dot on the left hand side, preceding (i + 1), marks
an inaccessible pattern. Its value is determined by the subsequent match on the natural number
argument, no actual matching has to be carried out on this argument.

pred : ∀ i → Nat i → Nat i

pred .(i + 1) (zero i) = zero i

pred .(i + 1) (suc i x) = x

Note that in the second clause, we have applied subtyping to cast x from Nat i to Nat (i + 1).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

https://hackage.haskell.org/package/Sit

33:6 Andreas Abel, Andrea Vezzosi, and Theo Winterhalter

We now define subtraction x .− y on natural numbers, sometimes called the monus function,
which computes max(0,x − y). It is defined by induction on the size j of the second argument y,
while the output is bounded by size i of the first argument x . The input-output relation of monus

is needed for a natural implementation of Euclidean divison.
There are several ways to implementmonus, we have chosen a tail-recursive variant which treats

the first argument as accumulator. It computes the result by applying the predecessor function y
times to x .

monus : ∀ i→ Nat i→ ∀ j → Nat j → Nat i

monus i x .(j + 1) (zero j) = x

monus i x .(j + 1) (suc j y) = monus i (pred i x) j y

To document subgoals in proof terms, we introduce a mixfix version of the identity function
with a visible type argument:

prove_by_ : (A : Set)→ A→ A

prove A by x = x

We now wish to prove that subtracting x from itself yields 0, by induction on x . The case x = 0
should be trivial, as x .− 0 = x by definition, hence, 0 .− 0 = 0. As simple proof by reflexivity should
suffice. In case x + 1, the goal 0 ≡ (x + 1) .− (x + 1) should reduce to 0 ≡ x .− x , thus, an application
of the induction hypothesis should suffice. The following display shows that partial proofs, leaving
holes {! ... !} already filled with the desired proof terms.

monus-diag : ∀ i→ (x : Nat i) → zero ∞ ≡ monus i x i x

monus-diag .(i + 1) (zero i) = prove zero∞ ≡ zero i by {! refl !}

monus-diag .(i + 1) (suc i x) = prove zero∞ ≡ monus (i + 1) x i x by {! monus-diag i x !}

Unfortunately, in Agda our proof is not accepted, as sizes get in the way. In the first goal, there
is a mismatch between size ∞ and size i , the latter coming from the computation of monus (i +
1) (zero i) (i+1) (zero i). In the second goal, there is a mismatch between size i+1 in termmonus (i+
1)x i x of the reduced goal and size i of the respective term monus i x i x from the induction
hypothesis we wish to apply.
The proof would go through if Agda ignored sizes where they act as type argument, i. e., in

constructors and term-level function applications, but not in types where they act as regular
argument, e. g., in Nat i .

The solution we present in this article already works in current Agda,4 but the implementation
is not perfect. Thus, it is hidden under a scarcely documented flag:

{-# OPTIONS --experimental-irrelevance #-}

We mark the size argument of Nat as shape irrelevant by preceding the binder with two dots. In
a future implementation, we could treat all data type parameters as shape irrelevant by default.
In the types of the constructors, we mark argument i as irrelevant by prefixing the binder with a
single dot. This is sound because i occurs in subsequent parts of the type only in shape-irrelevant
positions.

data Nat : ..(i : Size)→ Set where

zero : ∀ .i→ Nat (i + 1)

suc : ∀ .i→ Nat i→ Nat (i + 1)

4https://github.com/agda/agda, development version of 2017-02-27.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

https://github.com/agda/agda

Normalization by Evaluation for Sized Dependent Types 33:7

Similarly, łtypež argument i to pred is irrelevant. Agda checks that it only occurs shape-
irrelevantly in the type and irrelevantly in the term. The latter is the case since i is also an
irrelevant argument to the constructors zero and suc; otherwise, we would get a type error.

pred : ∀ .i → Nat i→ Nat i

pred .(i + 1) (zero i) = zero i

pred .(i + 1) (suc i x) = x

The two size arguments i and j tomonus are also irrelevant. In this case, type checking succeeds
since the size argument to pred has been declared irrelevant.

monus : ∀ .i→ Nat i→ ∀ .j → Nat j → Nat i

monus i x .(j + 1) (zero j) = x

monus i x .(j + 1) (suc j y) = monus i (pred i x) j y

Now, with sizes being ignored in the involved terms, we can complete the proof of our lemma:

monus-diag : ∀ .i → (x : Nat i)→ zero∞ ≡ monus i x i x

monus-diag .(i + 1) (zero i) = prove zero∞ ≡ zero i by refl

monus-diag .(i + 1) (suc i x) = prove zero ∞ ≡ monus (i + 1) x i x by monus-diag i x

3 A TYPE SYSTEMWITH IRRELEVANT SIZE APPLICATION

In this section, we give the syntax and the declarative typing, equality, and subtyping judgements.
The typing relation Γ ⊢ t : T will not be decidable; instead, we present algorithmic typing
Γ ⊢ t ⇔ T in Section 7. However, equality and subtyping will be decidable for well-formed input,
see sections 4ś6.
We present our type theory as (domain-free) pure type system [Barendregt 1991] with extra

structure. The sorts s are drawn from an infinite predicative hierarchy of universes Setℓ for ℓ ∈ N.
Universes provide us with polymorphism and the capability to define types by recursion on values.
Whether we have just two universes Set0 and Set1 or infinitely many, does not matter for the
technical difficulty of the meta theory. The present setup have the advantage that every sort has
again a sort since Setℓ : Setℓ+1, thus, we do not have to introduce a separate judgement Γ ⊢ T for
well-formedness of types, we can define it as ∃s . Γ ⊢ T : s .

Sort ∋ s ::= Setℓ (ℓ ∈ N) sort (universe)
Ann ∋ ⋆ ::= ÷ | : annotation (irrelevant, relevant)
Exp ∋ t ,u,T ,U ::= w | t e expressions
Whnf ∋ w,W ::= n | s | Size | Π⋆U T | λt | Nata | c weak head normal forms
Data ∋ c ::= zero⟨a⟩ | suc⟨a⟩t constructed data
NeExp ∋ n ::= vi | n e neutral expressions
Elim ∋ e ::= t | a | ⟨a⟩ | caseℓ T tz ts | fixℓ T t eliminations
SizeExp ∋ a,b ::= ∞ | o | vi + o (o ∈ N) size expressions
Cxt ∋ Γ,∆ ::= () | Γ.:T | Γ.÷Size contexts
Subst ∋ η, ρ,σ ,τ , ξ ::= () | (σ , t) substitutions

Fig. 1. Syntax.

For the expression syntax (see Fig. 1), we use de Bruijn [1972] indices vi to represent variables. The
index i ∈ N points to the ith enclosing binder of variable vi . Binders are lambda abstraction λt and

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

33:8 Andreas Abel, Andrea Vezzosi, and Theo Winterhalter

dependent function types Π⋆U T , which bind the 0th index in t and T , resp. For instance, the term
λx . x (λz. z) (λy. x y) with named variables x ,y, z has de Bruijn representation λ. v0 (λ. v0) (λ. v1 v0).
The notation Π

⋆U T is an umbrella for three kinds of function types, where ⋆ ∈ {÷, :} is a
relevance annotation borrowed fromPfenning [2001].Π:U T is the ordinary dependent function type,
Π
:SizeT is relevant size quantification, andΠ÷SizeT is irrelevant size quantification.We omit the ł:ž-

markers from Π by default (and also in contexts Γ) and write ∀T for Π÷SizeT . Examples for relevant
size quantification Π SizeT are Π Size Set0 and Π SizeΠ (Nat v0) Set0. In a syntax with named
variables and non-dependent function type they could be written as Size → Set0 and (z :Size) →
Nat z → Set0, resp. An instance of irrelevant quantification ∀T would be ∀.Π (Nat v0) (Nat v1)
which is ∀z.Nat z → Nat z in a named syntax. Herein, Nat z denotes the type of natural numbers
below z. The expression Size is a possible instance ofU in Π

⋆U T , or a possible type of a variable in
a typing context Γ, but not a first-class type, i. e., we cannot construct our own functions on sizes.

Canonical natural numbers c are constructed by zero⟨a⟩ and suc⟨a⟩t . A size expression a is either
a constant o ∈ N, a variable vi + o possibly with increment o, or the limit ordinal ∞ which stands
for ω. The size argument a in the constructors zero and suc is a suggestion for the type checker but
bears no semantic significance. For example, in the declarative typing presented here, we can have
⊢ zero⟨5⟩ : Nat 1. In the algorithmic typing however, ⊢ zero⟨5⟩ ⇔ Nat 1 will be an error. Note,
however, that ⊢ zero⟨a⟩ : Nat 0 is impossible for any a, as zero is not strictly below 0 (when both
term and size are interpreted as natural numbers).

Regular application t u, relevant size application t a, and irrelevant size application t ⟨a⟩ eliminate
functions t and are subsumed under the form t e with e ::= u | a | ⟨a⟩. We have two further
eliminations, which make sense when t stands for a natural number. These are case distinction
e = caseℓ T tz ts and recursive function application e ′ = fixℓ′ T

′ t ′. Application of case distinction
zero⟨a⟩ e will reduce to the zero-branch tz , and application (suc⟨a⟩t) e to the instantiation ts t

of the successor branch. The type annotation T in case allows us to infer the type of the whole
case statement t e as T t . The function call c e ′ for a canonical number c and elimination e ′ =

fixℓ′ T
′ t ′ reduces to t ′ (λx . x e ′) c where we allowed ourselves the use of a named abstraction in

the presentation to the reader. The unfolding of fixed-points is thus restricted to application to
canonical numbers; this is the usual reduction strategy which converges for terminating functions
[Barthe et al. 2004].

For ordinary β-reduction we employ substitutions σ . These are simply lists of terms that provide
one term as replacement for each free de Bruijn index in a term t . We write tσ for the appli-

cation of substitution σ to term t which is defined as usual. Let lifting �
k
m be the substitution

(vk+m−1, . . . , vk+1, vk)which accepts a term withm free indices and increases each of them by k . We

write �m for the lifting �
1
m and idm for the identity substitution �

0
m . In general, we refer to liftings

by letter ξ . The substitution [u]m = (idm ,u) replaces free index v0 by term u and decrements the

otherm free indices by 1. We drop subscriptm from liftings and substitutions when clear from the
context. Substitution composition στ is the pointwise application of substitution τ to the list of
terms σ . In the proofs to follow, we freely use the following identities:

t id ≡ t (tσ)τ ≡ t(στ) σ id ≡ σ idτ ≡ τ (ρσ)τ ≡ ρ(στ)

v0(σ , t) ≡ t �(σ , t) ≡ σ [t]σ ≡ (σ , tσ) �[t] ≡ id

As already done in some examples, we may use a named dependent function type notation as
syntactic sugar for the corresponding de Bruijn representation. For instance, (z :Size) → Nat z →

Setℓ is sugar for Π SizeΠ (Nat v0) Setℓ . We abbreviate this type by FixK ℓ , and let FixTT stand
for ∀z. ((x : Nat z) → T z x) → (x : Nat (z + 1)) → T (z + 1)x . Similarly to for Π, we use named

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

Normalization by Evaluation for Sized Dependent Types 33:9

lambda abstraction as sugar for de Bruijn abstraction. Named abstraction takes care of proper
lifting of de Bruijn indices, for instance, λx . tx = λ.(t�) v0 if t is outside the scope of x . We may
also use names when we construct concrete contexts, for instance, if T is well-formed in context Γ,
we may write T z x in context Γ.z :Size.x :Nat z to mean T�

2 v1 v0 in context Γ.Size.Nat v0.

Inductively defined judgements (mutual).

⊢ Γ context Γ is well-formed
Γ(i) = ⋆T in context Γ, de Bruijn index i has type T and annotation ⋆
Γ ⊢ a : Size in context Γ, size expression a is well-formed
Γ ⊢ t : T in context Γ, term t has type T
Γ ⊢ t = t ′ : T in context Γ, terms t and t ′ are equal of type T
Γ ⊢ T ≤ T ′ in context Γ, type T is a subtype of T ′

Γ ⊢ σ : ∆ σ is a valid substitution for ∆
Γ ⊢ σ = σ ′ ≓ τ : ∆ σ /σ ′/τ are a equal term/term/type-level substitutions for ∆

Derived judgements.

Γ ⊢ T :⇐⇒ Γ ⊢ T : s for some s
Γ ⊢ T = T ′ :⇐⇒ Γ ⊢ T = T ′ : s for some s
Γ ⊢ a = b : Size :⇐⇒ Γ ⊢ a : Size and a = b
Γ ⊢ a ≤ b : Size :⇐⇒ Γ ⊢ a : Size and Γ ⊢ b : Size and a ≤ b

Γ ⊢ T : Adm ℓ :⇐⇒ Γ ⊢ T : FixK ℓ and Γ.z :Size.x :Nat z ⊢ T z x ≤ T ∞x

ξ : Γ ≤ ∆ :⇐⇒ Γ ⊢ ξ : ∆ and ξ = �
k
m withm = |∆| and k = |Γ | −m

Fig. 2. Judgements.

In typing contexts Γ, we distinguish relevant (:) and irrelevant (÷) bindings. When type checking
a variable, it needs to be bound in the context relevantly. However, when entering an irrelevant
position, for instance when checking size a in term suc⟨a⟩t we declare previously irrelevant
variables as relevant. This operation on the context has been coined resurrection by Pfenning [2001];

formally Γ
⊕ removes the ł÷ž-markers from all bindings in Γ, i. e., replaces them by ł:ž-markers.

Note that, trivially, resurrection is idempotent: Γ⊕⊕
= Γ

⊕ .

Size increment a + o′ for o′ ∈ N extends addition by∞+o′ = ∞ and (vi +o)+o′ = vi + (o +o
′).

Sizes are partially ordered; size comparison a ≤ b holds as expected if either b = ∞ or o ≤ o′

where either a = o and b = o′ or a ∈ {o, vi + o} and b = vi + o′. Different size variables are
incomparable.
Fig. 2 lists the inductive and derived judgements of our type theory and figures 3 and 4 the

inference rules. We have boxed the rules dealing with irrelevant size application. Fig. 5 adds
the typing and equality rules for case distinction and recursion on natural numbers. Judgement
Γ ⊢ T : Adm ℓ characterizes the valid type annotationsT in recursion fixℓ T t . The type constructor
T has to be monotone in the size argument; this is a technical condition for type-based termination

[Barthe et al. 2004]. We will make use of it in Section 4.7. We write D :: J to express that D is a
derivation of judgement J .
In the typing judgement Γ ⊢ t : T , the term t is in scope of Γ, i. e., may not mention irrelevant

variables in relevant positions. However, the typeT is in scope of the resurrected context Γ⊕ , hence,
can mention all variables declared in Γ. The other judgements are organized similarly. To understand
this distinction, consider judgement z ÷ Size ⊢ Nat z. This would mean that z is irrelevant in Nat z

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

33:10 Andreas Abel, Andrea Vezzosi, and Theo Winterhalter

⊢ Γ (implies ⊢ Γ
⊕) and Γ(i) = ⋆T (implies Γ⊕ ⊢ T if ⊢ Γ).

⊢ ()

⊢ Γ Γ
⊕ ⊢ T

⊢ Γ.T

⊢ Γ

⊢ Γ.⋆Size (Γ.⋆T)(0) = ⋆T�

Γ(i) = ⋆T

(Γ._)(i + 1) = ⋆T�

Γ ⊢ a : Size (implies ⊢ Γ and Γ
⊕ ⊢ a : Size).

⊢ Γ

Γ ⊢ ∞ : Size

⊢ Γ

Γ ⊢ o : Size
o ∈ N

⊢ Γ Γ(i) = :Size

Γ ⊢ vi + o : Size
o ∈ N

Γ ⊢ t : T (implies ⊢ Γ and Γ
⊕ ⊢ T [and Γ

⊕ ⊢ t : T]. Note: no rule for Γ ⊢ Size : s .)

⊢ Γ

Γ ⊢ Setℓ : Setℓ′
ℓ<ℓ

′
Γ ⊢ U : s Γ.U ⊢ T : s

Γ ⊢ ΠU T : s

Γ.Size ⊢ T : s

Γ ⊢ Π⋆SizeT : s

Γ ⊢ a : Size

Γ ⊢ Nata : Set0

⊢ Γ Γ(i) = :T

Γ ⊢ vi : T
T , Size

Γ.⋆U ⊢ t : T

Γ ⊢ λt : Π⋆U T

Γ ⊢ t : ΠU T Γ ⊢ u : U

Γ ⊢ t u : T [u]

Γ ⊢ t : Π SizeT Γ ⊢ a : Size

Γ ⊢ t a : T [a]

Γ ⊢ t : ∀T Γ
⊕ ⊢ a,b : Size

Γ ⊢ t ⟨a⟩ : T [b]

Γ
⊕ ⊢ a,b : Size

Γ ⊢ zero⟨a⟩ : Nat (b + 1)

Γ
⊕ ⊢ a : Size Γ ⊢ t : Natb

Γ ⊢ suc⟨a⟩t : Nat (b + 1)

Γ ⊢ t : T Γ
⊕ ⊢ T ≤ T ′

Γ ⊢ t : T ′

Γ ⊢ T ≤ T ′ (implies Γ ⊢ T ,T ′)

⊢ Γ ℓ≤ℓ′

Γ ⊢ Setℓ ≤ Setℓ′

Γ ⊢ a ≤ b : Size

Γ ⊢ Nata ≤ Natb

Γ ⊢ T = T ′

Γ ⊢ T ≤ T ′

Γ ⊢ U ′ ≤ U Γ.U ′ ⊢ T ≤ T ′

Γ ⊢ ΠU T ≤ ΠU ′T ′

Γ.Size ⊢ T ≤ T ′

Γ ⊢ Π⋆SizeT ≤ Π⋆SizeT ′

Γ ⊢ T1 ≤ T2 Γ ⊢ T2 ≤ T3

Γ ⊢ T1 ≤ T3

Γ ⊢ τ : ∆ (implies ⊢ Γ and ⊢ ∆ [and Γ
⊕ ⊢ τ : ∆] and Γ

⊕ ⊢ τ : ∆⊕).

⊢ Γ

Γ ⊢ () : ()

Γ ⊢ τ : ∆ ∆
⊕ ⊢ T Γ ⊢ t : Tτ

Γ ⊢ (τ , t) : ∆.T

Γ ⊢ τ : ∆ Γ ⊢ a : Size

Γ ⊢ (τ ,a) : ∆.Size

Γ ⊢ τ : ∆ Γ
⊕ ⊢ a : Size

Γ ⊢ (τ ,a) : ∆.÷Size

Γ ⊢ σ = σ ′ ≓ τ : ∆ (implies ⊢ Γ and ⊢ ∆ and Γ ⊢ τ : ∆ and Γ ⊢ σ ′
= σ ≓ τ : ∆).

⊢ Γ

Γ ⊢ () = () ≓ () : ()

Γ ⊢ σ = σ ′ ≓ τ : ∆ ∆
⊕ ⊢ T Γ ⊢ u = u ′

= t : Tτ

Γ ⊢ (σ ,u) = (σ ′,u ′) ≓ (τ , t) : ∆.T

Γ ⊢ σ = σ ′ ≓ τ : ∆ Γ ⊢ a = a′ = b : Tτ

Γ ⊢ (σ ,a) = (σ ′,a′) ≓ (τ ,b) : ∆.Size

Γ ⊢ σ = σ ′ ≓ τ : ∆ Γ
⊕ ⊢ a,a′,b : Tτ

Γ ⊢ (σ ,a) = (σ ′,a′) ≓ (τ ,b) : ∆.÷Size

Fig. 3. Typing, subtyping, and substitution judgements.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

Normalization by Evaluation for Sized Dependent Types 33:11

Computation rules.

Γ.U ⊢ t : T Γ ⊢ u : U

Γ ⊢ (λt)u = t[u] : T [u]

Γ.Size ⊢ t : T Γ ⊢ a : Size

Γ ⊢ (λt)a = t[a] : T [a]

Γ.÷Size ⊢ t : T Γ
⊕ ⊢ a,b : Size

Γ ⊢ (λt) ⟨a⟩ = t[a] : T [b]

Extensionality rules.

Γ ⊢ t : ΠU T

Γ ⊢ t = λx .t x : ΠU T

Γ ⊢ t : ∀T Γ
⊕ .Size ⊢ a : Size

Γ ⊢ t = λx .t ⟨a⟩ : ∀T

Congruence rules.
⊢ Γ

Γ ⊢ Setℓ = Setℓ : Setℓ′
ℓ<ℓ

′
Γ ⊢ a : Size

Γ ⊢ Nata = Nata : Set0

Γ ⊢ U = U ′ : s Γ.U ⊢ T = T ′ : s

Γ ⊢ ΠU T = ΠU ′T ′ : s

Γ.Size ⊢ T = T ′ : s

Γ ⊢ Π⋆SizeT = Π⋆SizeT ′ : s

⊢ Γ Γ(i) = :T

Γ ⊢ vi = vi : T
T , Size

Γ.⋆U ⊢ t = t ′ : T

Γ ⊢ λt = λt ′ : Π⋆U T

Γ ⊢ t = t ′ : ΠU T Γ ⊢ u = u ′ : U

Γ ⊢ t u = t ′u ′ : T [u]

Γ ⊢ t = t ′ : Π SizeT Γ ⊢ a : Size

Γ ⊢ t a = t ′ a : T [a]

Γ ⊢ t = t ′ : ∀T Γ
⊕ ⊢ a,a′,b : Size

Γ ⊢ t ⟨a⟩ = t ′⟨a′⟩ : T [b]

Γ
⊕ ⊢ a,a′,b : Size

Γ ⊢ zero⟨a⟩ = zero⟨a′⟩ : Nat (b + 1)

Γ
⊕ ⊢ a,a′ : Size Γ ⊢ t = t ′ : Natb

Γ ⊢ suc⟨a⟩t = suc⟨a′⟩t ′ : Nat (b + 1)

Γ ⊢ t = t ′ : T Γ
⊕ ⊢ T ≤ T ′

Γ ⊢ t = t ′ : T ′

Equivalence rules.
Γ ⊢ t : T

Γ ⊢ t = t : T

Γ ⊢ t = t ′ : T

Γ ⊢ t ′ = t : T

Γ ⊢ t1 = t2 : T Γ ⊢ t2 = t3 : T

Γ ⊢ t1 = t3 : T

Fig. 4. Definitional equality Γ ⊢ t = t ′ : T (implies Γ⊕ ⊢ T and Γ ⊢ t , t ′ : T [and Γ
⊕ ⊢ t = t ′ : T]).

and thus, Γ ⊢ Nata = Nata′ for all sizes Γ⊕ ⊢ a,a′ : Size. But this is exactly wrong! However,
judgement z ÷ Size ⊢ zero⟨z⟩ : Nat (z + 1) is fine, it implies Γ ⊢ zero⟨a⟩ = zero⟨a′⟩ : Nat (b + 1) for
all Γ⊕ ⊢ a,a′,b : Size.

Our substitution theorem needs to reflect the distinct scope of things left of the colon vs. things
right of the colon. In the last example we have applied the substitution triple Γ ⊢ [a] = [a′] ≓ [b] :
(z ÷ Size) to judgement z ÷ Size ⊢ zero⟨z⟩ : Nat (z + 1). The first two substitutions apply to the
term side while the third substitution applies to the type side. The fact that we replace an irrelevant
variable z allows a,a′,b to refer to irrelevant variables from Γ, thus, they are in scope of Γ⊕ .

Typing requires from annotations ⟨a⟩ in a term only that they are well-scoped size expressions,

i. e., just mention relevant size variables. Let t∞ denote the erasure of term t , meaning that we

replace all annotations ⟨a⟩ in t by ⟨∞⟩. Let t ≈ u relate terms that only differ in their annotations,
i. e., t ≈ u :⇐⇒ t∞ = u∞. Erasure does not change the term modulo judgmental equality:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

33:12 Andreas Abel, Andrea Vezzosi, and Theo Winterhalter

Case distinction.

Γ
⊕ ⊢ T : Nat (a+1) → Setℓ

Γ ⊢ u : Nat (a+1) Γ ⊢ tz : T (zero⟨a⟩) Γ ⊢ ts : (x : Nata) → T (suc⟨a⟩x)

Γ ⊢ u caseℓ T tz ts : T u

Γ
⊕ ⊢ T = T ′ : Nat (a + 1) → Setℓ

Γ ⊢ u = u ′ : Nat (a + 1) Γ ⊢ tz = t ′z : T (zero⟨a⟩) Γ ⊢ ts = t ′s : (x : Nata) → T (suc⟨a⟩x)

Γ ⊢ u caseℓ T tz ts = u ′ caseℓ T ′ t ′z t
′
s : T u

Γ
⊕ ⊢ a,b : Size Γ

⊕ ⊢ T : Nat (b + 1) → Setℓ
Γ ⊢ tz : T (zero⟨b⟩) Γ ⊢ ts : (x : Natb) → T (suc⟨b⟩x)

Γ ⊢ (zero⟨a⟩) caseℓ T tz ts = tz : T zero⟨b⟩

Γ
⊕ ⊢ a : Size Γ ⊢ t : Natb Γ

⊕ ⊢ T : Nat (b + 1) → Setℓ
Γ ⊢ tz : T (zero⟨b⟩) Γ ⊢ ts : (x : Natb) → T (suc⟨b⟩x)

Γ ⊢ (suc⟨a⟩t) caseℓ T tz ts = ts t : T (suc⟨b⟩t)

Recursion.

Γ ⊢ u : Nata Γ
⊕ ⊢ T : Adm ℓ Γ ⊢ t : FixTT

Γ ⊢ u fixℓ T t : T au

Γ ⊢ u = u ′ : Nata Γ
⊕ ⊢ T = T ′ : Adm ℓ Γ ⊢ t = t ′ : FixTT

Γ ⊢ u fixℓ T t = u ′ fixℓ T ′ t ′ : T au

Γ ⊢ c : Natb Γ
⊕ ⊢ a : Size Γ

⊕ ⊢ T : Adm ℓ Γ ⊢ t : FixTT

Γ ⊢ c fixℓ T t = t ⟨a⟩(λx .x fixℓ T t) c : T b c

Fig. 5. Rules for case distinction and recursion.

Lemma 3.1 (Erasure and similarity).

(1) If Γ ⊢ t : T then Γ ⊢ t = t∞ : T .
(2) If Γ ⊢ t ,u : T and t ≈ u then Γ ⊢ t = u : T .

We should remark here that we have neither type unicity nor principal types due to the irrelevant
size application rule. In the following, we list syntactic properties of our judgements. To this end,
let J match a part of a judgement.

Lemma 3.2 (Context well-formedness).

(1) If ⊢ Γ.∆ then ⊢ Γ

(2) If Γ ⊢ J then ⊢ Γ.

All types in a context are considered in the resurrected context, which justifies the first statement
of the following lemma. A resurrected context is more permissive, as it brings more variable into
scope. As such, it is comparable to an extended context or a context where types have been replaced
by subtypes. This intuition accounts for the remaining statements but (4). The latter is a defining
property of substitutions: only replacement for irrelevant sizes may refer to irrelevant size variables.

Lemma 3.3 (Resurrection).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

Normalization by Evaluation for Sized Dependent Types 33:13

(1) ⊢ Γ iff ⊢ Γ
⊕ . Then Γ

⊕ ⊢ id : Γ, which can be written id : Γ⊕ ≤ Γ.
(2) If Γ ⊢ J then Γ

⊕ ⊢ J .
(3) If Γ ⊢ σ : ∆⊕ then Γ ⊢ σ : ∆.
(4) If Γ ⊢ σ : ∆ then Γ

⊕ ⊢ σ : ∆⊕ .

Lemma 3.4 (Substitution).

(1) If Γ ⊢ σ : ∆ and ∆ ⊢ J then Γ ⊢ Jσ .
(2) If Γ ⊢ σ = σ ′ ≓ τ : ∆ and ∆ ⊢ t : T then Γ ⊢ tσ : Tτ and Γ ⊢ tσ ′ : Tτ .

Lemma 3.5 (Specific substitutions).

(1) If ⊢ Γ.∆ then Γ.∆ ⊢ �
|∆ |

|Γ |
: Γ. If ⊢ Γ.T then Γ.T ⊢ � : Γ.

(2) If ⊢ Γ then Γ ⊢ id : Γ.
(3) If Γ ⊢ u : U then Γ ⊢ [u] : Γ.U .

The relation Γ ⊢ σ = σ ′ ≓ τ : ∆ is a partial equivalence relation (PER) on term-side substitutions
σ ,σ ′. Note that usually we cannot resurrect this judgement to Γ

⊕ ⊢ σ = σ ′ ≓ τ : ∆⊕ . For instance,
z1÷Size. z2÷Size ⊢ [z1] = [z2] ≓ [∞] : z÷Size holds but z1:Size. z2:Size ⊢ [z1] = [z2] ≓ [∞] : z:Size
clearly not.

Lemma 3.6 (Substitution eqality).

(1) Conversion: If Γ ⊢ σ = σ ′ ≓ τ1 : ∆ and Γ
⊕ ⊢ τ1 = τ2 ≓ τ : ∆⊕ then Γ ⊢ σ = σ ′ ≓ τ2 : ∆.

(2) Reflexivity: If Γ ⊢ σ : ∆ then Γ ⊢ σ = σ ≓ σ : ∆.
(3) Symmetry: If Γ ⊢ σ = σ ′ ≓ τ : ∆ then Γ ⊢ σ ′

= σ ≓ τ : ∆.
(4) Transitivity: If Γ ⊢ σ1 = σ2 ≓ τ : ∆ and Γ ⊢ σ2 = σ3 ≓ τ : ∆ then Γ ⊢ σ1 = σ3 ≓ τ : ∆.
(5) Functionality: Let Γ ⊢ σ = σ ′ ≓ τ : ∆.
(a) If ∆ ⊢ t : T then Γ ⊢ tσ = tσ ′ : Tτ .
(b) If ∆ ⊢ t = t ′ : T then Γ ⊢ tσ = t ′σ ′ : Tτ .
(c) Corollary: If ∆ ⊢ T ≤ T ′ then Γ ⊢ Tσ ≤ Tσ ′.

Lemma 3.7 (Inversion of typing).

(1) If Γ ⊢ vi : T
′ then Γ(i) = :T and Γ

⊕ ⊢ T ≤ T ′ for some T .
(2) If Γ ⊢ λt : T ′ then either Γ.U ⊢ t : T and Γ

⊕ ⊢ ΠU T ≤ T ′ for some U ,T or Γ.⋆Size ⊢ t : T
and Γ

⊕ ⊢ Π
⋆SizeT ≤ T ′ for some T .

(3) If Γ ⊢ t u : T ′ then Γ ⊢ t : ΠU T and Γ ⊢ u : U and Γ
⊕ ⊢ T [u] ≤ T ′ for someU , T .

(4) If Γ ⊢ t a : T ′ then Γ ⊢ t : Π SizeT and Γ ⊢ a : Size and Γ
⊕ ⊢ T [a] ≤ T ′ for some T .

(5) If Γ ⊢ t ⟨a⟩ : T ′ then Γ ⊢ t : ∀T and Γ
⊕ ⊢ a,b : Size and Γ

⊕ ⊢ T [b] ≤ T ′ for some T , b.
(6) ... Analogous properties for the remaining term and type constructors.

Proof. Each by induction on the typing derivation, gathering applications of the conversion
rule via transitivity of subtyping. □

4 SEMANTICS AND COMPLETENESS OF NORMALIZATION BY EVALUATION

In this section we present an operational semantics of our language, define the NbE algorithm,
construct a PER model, and demonstrate that NbE is complete for definitional equality, i. e., if
Γ ⊢ t = t ′ : T , then t and t ′ have the same normal form up to annotations.

Ne ∋ m ::= vi | mv | ma | m ⟨a⟩ | m caseℓ V vz vs | m fixℓ V v neutral n.f.
Nf ∋ v ::= m | λv | zero⟨a⟩ | suc⟨a⟩v | Setℓ | Nata | ΠVu Vt | Π

⋆SizeV normal form

For the operational semantics, instead of defining a separate language of values, we extend the
syntax of expressions by de Bruijn levels xk to be used as generic values (unknowns), and type

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

33:14 Andreas Abel, Andrea Vezzosi, and Theo Winterhalter

Semantics (β) f ∈ D

↓A

��
Semantics (βη) d ∈ DNf

Rk

��

n ∈ DNe

Rne
k

��

↑A

cc

j ∈ Level
xoo

OO

k .−(1+_)

��
Syntax t ∈ Exp

_η

@@

v ∈ Nf
⊇oo m ∈ Ne

⊇oo i ∈ Index
voo

Fig. 6. Type-assignment NbE in locally nameless style.

annotations ↑An and ↓At for lazy realizations of the reflection and reification operations of NbE.

Terms are expressions that do not contain these new expression forms. Values f ,д,A,B, F ∈ D

are expressions with no free de Bruijn indices, where each neutral n is under a reflection marker
↑An. The types A that direct reflection ↑An and reification ↓A f also live in the value world.

NeExp ∋ n ::= · · · | xk de Bruijn level k
Up ∋ N ::= ↑An reflection of neutral term n as value of type A
Whnf ∋ w ::= · · · | N reflected neutral is weak head normal
Exp ∋ t ::= · · · | ↓A f reification of value f at type A

De Bruijn levels are the mirror images of de Bruijn indices. While de Bruijn indices index the context
from the right, i. e., v0 refers the last type that entered the context, de Bruijn levels index it from
the left, i. e., x0 refers to the first type in the context. This way, de Bruijn levels are stable under
context extensions, and suitable to represent unknowns.

Size values α , β ∈ Size are size expressions that use de Bruijn levels instead of de Bruijn indices.

Comparison of size values α ≤ β is analogous to comparison of size terms a ≤ b. In the following,
we will reuse letter a for a value if it cannot be confused for a size term.

Finally, we identify two expression classes for NbE. Neutralsn ∈ DNe are the ones that will appear
in values under the reflection marker ↑A. Reified values d ∈ DNf are values under a reification
marker ↓A.

DNe ∋ n ::= vi | nd | n α | n ⟨α⟩ | n caseℓ Ddz ds | n fixℓ Dd unreflected neutral value
DNf ∋ d ::= ↓A f reified value

Figure 6, adapted from Abel [2013] summarized the syntactic categories and main operations
involved in NbE in what is called locally nameless style. The red path Exp → D → Dnf → Nf

decomposes βη-normalization into three steps.

(1) First, we close the term t with an environment η that maps the free de Bruijn indices of t
to reflected de Bruijn levels. Reflection of de Bruijn levels follows the blue path Level →
DNe → D: Levels embed via constructor x into semantic neutrals DNe which are labeled
with their type A ∈ D to become an element ↑Axj ∈ D.

(2) Then, we label value tη ∈ D with its type A to obtain ↓Atη ∈ DNf.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

Normalization by Evaluation for Sized Dependent Types 33:15

(3) Finally, read back Rk↓
Atη produces a long normal form v ∈ Nf, converting de Bruijn levels

back to indices. Herein, k should be the length of the context the original term t lived in. If
this is the case, each de Bruijn level encountered during read back is below k and can be
safely converted to a de Bruijn index.

4.1 Weak Head Reduction

We define the operational semantics of our language by the weak head evaluation relation t ↘ w

which is defined on expressions, thus works on values as well as on terms. It is defined mutually

with auxiliary relation w @ e ↘ w ′ stating that weak head normal form w is eliminated by e

into weak head normal formw ′.
t ↘ w and w @ e ↘ w ′

w ↘ w

t ↘ w w @ e ↘ w ′

t e ↘ w ′

t[u] ↘ w

(λt) @ u ↘ w

t[α] ↘ w

(λt) @ α ↘ w

t[α] ↘ w

(λt) @ ⟨α⟩ ↘ w

tz ↘ w

(zero⟨α⟩) @ caseℓ T tz ts ↘ w

ts t ↘ w

(suc⟨α⟩t) @ caseℓ T tz ts ↘ w

t ⟨α⟩ (λx . x fixℓ T t) c ↘ w

c @ fixℓ T t ↘ w
c ∈ {zero⟨α⟩, suc⟨α⟩u}

For NbE, we add evaluation rules that deal with elimination of delayed reflection:

A′ ↘ ΠAB

(↑A
′
n) @ u ↘ ↑B[u](n ↓Au)

A ↘ Π SizeB

(↑An) @ α ↘ ↑B[α](n α)

A ↘ ∀B

(↑An) @ ⟨α⟩ ↘ ↑B[α](n⟨α⟩)

(↑An) @ caseℓ B fz fs ↘ ↑B (↑An) n caseℓ (↓Nat∞→SetℓB) (↓B zero⟨∞⟩ fz) (↓(x :Nat∞)→B (suc⟨∞⟩x) fs)

(↑An) @ fixℓ B f ↘ n fixℓ (↓FixKB) (↓FixT B f)

4.2 Read Back

The read back phase of NbE [Grégoire and Leroy 2002] transforms a reified value d into a normal
form v . It is specified via an inductively defined relation Rk d ↘ v and several auxiliary relations.
The number k , will be instantiated by the length of the context Γ later. It allows us to transform
a de Bruijn level l into a de Bruijn index i , via the law i + l + 1 = k . At this point, we do not
ensure that the k is large enough to accommodate the de Bruijn levels in d . Levels l ≥ k which are
to big will simply be mapped to de Bruijn index 0. The correct k is later ensured by our logical
relation (Section 5). Even though read back operates on values in practice, formally it is defined on
expressions.

Rk d ↘ v Read back reified value d .

U ↘ s R
ty

k
T ↘ V

Rk ↓UT ↘ V

U ↘ Natα Rnat
k

u ↘ v

Rk ↓Uu ↘ v

U ↘ N R
up

k
u ↘m

Rk ↓Uu ↘m

U ↘ ΠAB Rk+1 ↓
B[↑Axk](f ↑Axk) ↘ v

Rk ↓U f ↘ λv

U ↘ Π SizeB Rk+1 ↓
B[xk](f xk) ↘ v

Rk ↓U f ↘ λv

U ↘ ∀B Rk+1 ↓
B[xk](f ⟨xk ⟩) ↘ v

Rk ↓U f ↘ λv

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

33:16 Andreas Abel, Andrea Vezzosi, and Theo Winterhalter

R
up

k
t ↘m Read back neutrals under annotation. (The annotation is ignored.)

t ↘ ↑Tn Rne
k
n ↘m

R
up

k
t ↘m

Rnat
k

t ↘ v Read back natural number value.

R
up

k
t ↘m

Rnat
k

t ↘m

t ↘ zero⟨α⟩ Rsize
k

α ↘ a

Rnat
k

t ↘ zero⟨a⟩

t ↘ suc⟨α⟩u Rsize
k

α ↘ a Rnat
k

u ↘ v

Rnat
k

t ↘ suc⟨a⟩v

Rsize
k

α ↘ a Read back size value α .

Rsize
k

∞ ↘ ∞ Rsize
k

o ↘ o Rsize
k

xj + o ↘ vk .−(1+j) + o

Rne
k
n ↘m and Relim

k
e ↘ ev Read back unreflected neutral.

Relim
k

ei ↘ evi for all i

Rne
k
xj ®e ↘ vk .−(1+j) ®ev

Rk d ↘ v

Relim
k

d ↘ v

Rsize
k

α ↘ b

Relim
k

α ↘ b

Rsize
k

α ↘ b

Relim
k

⟨α⟩ ↘ ⟨b⟩

Rk D ↘ V Rk dz ↘ vz Rk ds ↘ vs

Relim
k

(caseℓ Ddz ds) ↘ caseℓ V vz vs

Rk D ↘ V Rk d ↘ v

Relim
k

(fixℓ Dd) ↘ fixℓ V v

R
ty

k
T ↘ V Read back type value.

T ↘ Setℓ

R
ty

k
T ↘ Setℓ

T ↘ Natα Rsize
k

α ↘ b

R
ty

k
T ↘ Natb

R
up

k
T ↘m

R
ty

k
T ↘m

T ↘ ΠAB R
ty

k
A ↘ Va R

ty

k+1
B ↘ Vb

R
ty

k
T ↘ ΠVa Vb

T ↘ Π
⋆SizeB R

ty

k+1
B ↘ V

R
ty

k
T ↘ Π⋆SizeV

4.3 Partial Equivalence Relations

A typeT will be interpreted as a partial equivalence relation (PER)Aon terms, i. e., a relation which
is symmetric and transitive. The domain dom(A) of the relation can be thought of as the set of
terms which denotes the extension of the type; on dom(A) = {a | ∃a′. (a,a′) ∈ A} the relation A is
in fact an equivalence relation. We write a = a′ ∈ A for relatedness in Aand a ∈ A if a ∈ dom(A).

The PERsNe andNf characterize (neutral) normalizing values. For instance, two values n and n′

are related in Ne if at any k ∈ N they can be read back to neutral normal formsm andm′ which
are identical up to annotations.

n = n′ ∈ Ne :⇐⇒ Rne
k

n ↘m and Rne
k

n′ ↘m′ and m ≈m′ for all k

d = d ′ ∈ Nf :⇐⇒ Rk d ↘ v and Rk d ′ ↘ v ′ and v ≈ v ′ for all k

e = e ′ ∈ Elim :⇐⇒ Relim
k

e ↘ ev and Relim
k

e ′ ↘ e ′v and ev ≈ e ′v for all k

A = A′ ∈ Ty :⇐⇒ R
ty

k
A ↘ V and R

ty

k
A′ ↘ V ′ and V ≈ V ′ for all k

Oncewe have established useful closure properties of these PERs, they abstract most of the reasoning
about the read-back relation from our proofs. This idea is due to Coquand [Abel et al. 2009].

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

Normalization by Evaluation for Sized Dependent Types 33:17

Lemma 4.1 (Closure properties of Ne).

(1) xk = xk ∈ Ne.
(2) If n = n′ ∈ Ne and e = e ′ ∈ Elim then n e = n′ e ′ ∈ Ne.

Lemma 4.2 (Closure properties of Elim).

(1) If d = d ′ ∈ Nf then d = d ′ ∈ Elim.
(2) If α ∈ Size then α = α ∈ Elim.
(3) If α ,α ′ ∈ Size then ⟨α⟩ = ⟨α ′⟩ ∈ Elim.
(4) If A = A′ ∈ Ty and dz=d

′
z ∈ Nf and ds=d

′
s ∈ Nf then caseℓ Adz ds = caseℓ A

′d ′
z d

′
s ∈ Elim.

(5) If D = D ′ ∈ Nf and d = d ′ ∈ Nf then fixℓ Dd = fixℓ D
′d ′ ∈ Elim.

Now we define some PERs and PER constructors on values. All these PERs Aare closed under
weak head equality, meaning if a = b ∈ Aand a′ has the same weak head normal form as a, then
a′ = b ∈ A. (By symmetry, A is also closed under weak head equality on the second argument.)

PER NE interprets all neutral types.

t = t ′ ∈ NE :⇐⇒ t ↘ ↑Tn and t ′ ↘ ↑T
′

n′ and n = n′ ∈ Ne.

Nat(α) interprets Natα and is defined inductively by the following rules.

t = t ′ ∈ NE

t = t ′ ∈ Nat(β)

t ↘ zero⟨α⟩
t ′ ↘ zero⟨α ′⟩

t = t ′ ∈ Nat(β + 1)

t ↘ suc⟨α⟩u t ′ ↘ suc⟨α ′⟩u ′

u = u ′ ∈ Nat(β)

t = t ′ ∈ Nat(β + 1)

Size interprets Size and is a discrete PER of size values:

∞ = ∞ ∈ Size o = o ∈ Size xk + o = xk + o ∈ Size

Let A be a PER (including A = Size) and Fa family of PERs over A such that F(u) = F(u ′)
whenever u = u ′ ∈ A. We define

∏

AF :⇐⇒ {(t , t ′) | t u = t ′u ′ ∈ F(u) for all u = u ′ ∈ A}.

For a family Fover Size we also have the irrelevant function space

∀F :⇐⇒ {(t , t ′) | t ⟨α⟩ = t ′⟨α ′⟩ ∈ F(β) for all α ,α ′
, β ∈ Size}.

4.4 PER Model

Semantic types and their interpretation as PERs are now defined via a family of inductive-recursive
definitions [Dybjer 2000], one for each universe level ℓ. The construction follows Abel et al. [2007].

By induction on ℓ ∈ Nwe define the PER family _ = _ ∈ Setℓ of types together with the extension

EℓℓT (forT = T ′ ∈ Setℓ) which is a PER of values of typeT . The rules for T = T ′ ∈ Setℓ are listed
in Fig. 7. All relations involved here are closed under weak head equality.

Lemma 4.3 (Well-definedness). Let D :: T1 = T2 ∈ Setℓ .

(1) Symmetry: T2 = T1 ∈ Setℓ .
(2) Transitivity: If T2 = T3 ∈ Setℓ then T1 = T3 ∈ Setℓ .
(3) Extension: Eℓℓ(T1) = Eℓℓ(T2) and łbothž are PERs.

Lemma 4.4 (Derivation independence of extension). If D1 :: T = T1 ∈ Setℓ1 and D2 :: T2 =

T ∈ Setℓ2 then Eℓℓ1 (T) = Eℓℓ2 (T).

Since Eℓℓ(T) does not depend on ℓ nor the derivation that introduced T = T ′ ∈ Setℓ , we may
simply write t = t ′ ∈ Eℓ(T) or even t = t ′ ∈ T .

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

33:18 Andreas Abel, Andrea Vezzosi, and Theo Winterhalter

T = T ′ ∈ NE

T = T ′ ∈ Setℓ
Eℓℓ(T) =NE

T ↘ Nat α T ′ ↘ Nat α

T = T ′ ∈ Setℓ
Eℓℓ(T) =Nat(α)

T ↘ Setℓ′ T ′ ↘ Setℓ′

T = T ′ ∈ Setℓ
ℓ′<ℓ Eℓℓ(T) = Setℓ′

T ↘ ΠAB T ′ ↘ ΠA′ B′ A = A′ ∈ Setℓ
B[u] = B′[u ′] ∈ Setℓ for all u = u ′ ∈ Eℓℓ(A)

T = T ′ ∈ Setℓ
Eℓℓ(T) =

∏

(Eℓℓ(A), u 7→ Eℓℓ(B[u]))

T ↘ Π SizeB T ′ ↘ Π SizeB′

B[α] = B′[α] ∈ Setℓ for all α ∈ Size

T = T ′ ∈ Setℓ
Eℓℓ(T) =

∏

(Size, α 7→ Eℓℓ(B[α]))

T ↘ ∀B T ′ ↘ ∀B′

B[α] = B′[α] ∈ Setℓ for all α ∈ Size

T = T ′ ∈ Setℓ
Eℓℓ(T) = ∀(α 7→ Eℓℓ(B[α]))

Fig. 7. Semantic types and their interpretation.

4.5 Subtyping

The semantic types (PERs) admit subsumption:

Lemma 4.5 (Subsumption).

(1) If α ≤ β then Nat(α) ⊆ Nat(β).
(2) If F(α) ⊆ F

′(α) for all α ∈ Size, then ∀F⊆ ∀F
′.

(3) If A
′ ⊆ Aand F(u) ⊆ F

′(u) for all u ∈ A
′, then

∏

AF⊆
∏

A
′
F

′.
(4) If ℓ ≤ ℓ′ then Setℓ ⊆ Setℓ′ .

We define subtyping of type values T ≤ T ′ ∈ Type by induction on T ∈ Setℓ and T ′ ∈ Setℓ′ .

Simultaneously, we need to prove correctness, namely that T ≤ T ′ ∈ Type implies Eℓ(T) ⊆ Eℓ(T ′).
The correctness follows from Lemma 4.5 and we do not spell it out here.

T = T ′ ∈ NE

T ≤ T ′ ∈ Type

T ↘ Natα T ′ ↘ Natα ′ α ≤ α ′

T ≤ T ′ ∈ Type

T ↘ Setℓ0 T ′ ↘ Setℓ′0 ℓ0 ≤ ℓ
′
0

T ≤ T ′ ∈ Type

T ↘ ΠAB T ′ ↘ ΠA′ B′ A′ ≤ A ∈ Type B[u] ≤ B′[u ′] ∈ Type for all u = u ′ ∈ A′

T ≤ T ′ ∈ Type

T ↘ Π
⋆SizeB T ′ ↘ Π

⋆SizeB′ B[α] ≤ B′[α] ∈ Type for all α ∈ Size

T ≤ T ′ ∈ Type

Lemma 4.6 (Subtyping is a preorder).

(1) If T = T ′ ∈ Setℓ then T ≤ T ′ ∈ Type.
(2) If T1 ≤ T2 ∈ Type and T2 ≤ T3 ∈ Type then T1 ≤ T3 ∈ Type.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

Normalization by Evaluation for Sized Dependent Types 33:19

T ↘ N S ↘ N ′

T ⊏∼ S

T ↘ ΠAB S ↘ ΠA′ B′ A ⊏∼ A′ B[u] ⊏∼ B′[u ′] for all u = u ′ ∈ A

T ⊏∼ S

T ↘ Setℓ S ↘ Setℓ

T ⊏∼ S

T ↘ Π SizeB S ↘ Π SizeB′ B[α] ⊏∼ B′[α] for all α ∈ Size

T ⊏∼ S

T ↘ Natα S ↘ Nat β

T ⊏∼ S

T ↘ ∀B S ↘ ∀B′ B[α] ⊏∼ B′[α ′] for all α ,α ′ ∈ Size

T ⊏∼ S

Fig. 8. Type shapes T ⊏∼ S .

4.6 Type Shapes

Reflection and reification perform η-expansion so that we arrive at an η-long β-normal form. To
perform the η-expansion, the precise type is not needed, just the approximate shape, in particular,
whether it is a function type (do expand) or a base type (do not expand). For the logical framework,
the shape of a dependent type is just its underlying simple type [Harper and Pfenning 2005].
However, in the presence of universes and large eliminations, there is no underlying simple type.
Of course, we can take a type as its own shape, but we want at least that Natα and Nat β have the
same shape even for different α , β . Also all neutral types can be summarized under a single shape.

We make our intuition precise by defining a relation T ⊏∼ S between type values, to express that
S is a possible shape of type T . The asymmetry of this relation stems from the case for function
types. At function types ΠAB ⊏∼ Π R S , we take S to be a family over domain A, not R! We cannot
take R since we have to compare families B and S at a common domain, and A and R are not equal.

Fig. 8 defines T ⊏∼ S for T ∈ Setℓ . We call T the template and S one of its possible shapes. Note
that T ∈ Setℓ and T ⊏∼ S do not imply S ∈ Setℓ . Type shapes are not well-defined types in general.
For instance, assume a term F : Nat 0 → Set0 which diverges if applied to a successor term. Then
T := (x :Nat 0) → F x is a well-defined type; we haveT ∈ Set0. Now consider S := (x :Nat∞) → F x .
We have T ⊏∼ S , but S is not well-defined; S < Set0.

Lemma 4.7 (Types are their own shapes). If T = T ′ ∈ Setℓ then T ⊏∼ T
′.

Lemma 4.8 (Templates are up to eqality). If T = T ′ ∈ Setℓ and T
′ ⊏∼ S then T ⊏∼ S .

However, templates are not closed under subtyping in either direction because subtyping is
contravariant for function type domains but the shape relation is covariant.
Further, it is not true that equal types make equally good shapes. We do not have that T ⊏∼ S

and S = S ′ ∈ Setℓ imply T ⊏∼ S ′. This property fails for function types. Given ΠU T ⊏∼ Π R S and
Π R S = Π R′ S ′ ∈ Setℓ we would need to show that T [u] ⊏∼ S ′[u ′] for all u = u ′ ∈ U , but we only
have S[u] = S ′[u ′] ∈ Setℓ for all u = u ′ ∈ R, thus the induction does not go through. The fact that
U ⊏∼ R does not give us a handle on their inhabitants, we would need a stronger relation such as
U ≤ R ∈ Type. It is possible to construct an actual counterexample, usingΠ R′ S ′ = (x :Nat 0) → F x

from above and Π R S = (x :Nat 0) → G x such that G is defined on all of Nat∞ but agrees with F

only on x ∈ Nat 0. Then ΠU T = (x :Nat∞) → G x gives the desired counterexample.
Shapes are used to direct η-expansion when we reflect neutrals into semantic types and reify

semantic values to long normal forms. The following theorem is the heart of our technical develop-
ment.

Theorem 4.9 (Reflection and reification). Let T ∈ Setℓ and T ⊏∼ S1 and T ⊏∼ S2.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

33:20 Andreas Abel, Andrea Vezzosi, and Theo Winterhalter

(1) If n1 = n2 ∈ Ne then ↑S1n1 = ↑S2n2 ∈ T .
(2) If t1 = t2 ∈ T then ↓S1t1 = ↓S2t2 ∈ Nf .

Proof. By induction on T ∈ Setℓ and cases on T ⊏∼ S1 and T ⊏∼ S2.
Case T ↘ ∀B with B[α] ∈ Setℓ for all α ∈ Size

S1 ↘ ∀B1 B[α] ⊏∼ B1[α
′] for all α ,α ′ ∈ Size

T ⊏∼ S1

S2 ↘ ∀B2 B[α] ⊏∼ B2[α
′] for all α ,α ′ ∈ Size

T ⊏∼ S2

(1) To show ↑S1n1 = ↑S2n2 ∈ T assume arbitrary α1,α2 ∈ Size. Since n1⟨α1⟩ = n2⟨α2⟩ ∈ Ne by
Lemma 4.1, we obtain ↑B1[α1](n1⟨α1⟩) = ↑B2[α2](n2⟨α2⟩) ∈ B[α1] by induction hypothesis.
Thus, (↑S1n1)⟨α1⟩ = (↑S2n2)⟨α2⟩ ∈ B[α1] by weak head expansion, which entails the goal
by definition of Eℓ(T).

(2) Assume k ∈ N and note that xk = xk ∈ Size, hence, t1 ⟨xk ⟩ = t2 ⟨xk ⟩ ∈ B[xk]. Thus, by
induction hypothesis, Rk+1 ↓Bi [xk](ti ⟨xk ⟩) ↘ vi with v1 ≈ v2, and finally Rk ↓

Si ti ↘ λvi
by definition of read back. □

Corollary 4.10. Let T ∈ Setℓ .

(1) If n = n′ ∈ Ne then ↑Tn = ↑Tn′ ∈ T .
(2) If t = t ′ ∈ T then ↓T t = ↓T t ′ ∈ Nf .

4.7 Computation with Natural Numbers

In this section we show that the eliminations for natural numbers are accurately modeled.

Lemma 4.11 (Case). If a = a′ ∈ Nat (α + 1) and B = B′ ∈ Nat (α + 1) → Setℓ and fz = f ′z ∈
B (zero⟨β⟩) and fs = f ′s ∈ (x :Natα) → B (suc⟨γ ⟩x) then a caseℓ B fz fs = a′ caseℓ B

′ f ′z f ′s ∈ B a.

Proof. By induction on a = a′ ∈ Nat (α + 1). □

Lemma 4.12 (Nat is cocontinuous). Nat(∞) =
⋃

α<∞ Nat(α).

Proof. By induction on a = a′ ∈ Nat(∞), we can easily show a = a′ ∈ Nat(α) for some α < ∞.
For instance, α could be the number of uses of the successor rule plus one. □

As the semantic counterpart of judgement Γ ⊢ T : Adm ℓ, let us write B = B′ ∈ Adm ℓ iff B = B′ ∈
FixK ℓ and for all β ∈ Size and a ∈ Nat β we have B β a ≤ B∞a ∈ Type and B′ β a ≤ B′∞a ∈ Type.

Lemma 4.13 (Fix). Let д = a fixℓ B f and д′ = a′ fixℓ B
′ f ′. If a = a′ ∈ Natα and B = B′ ∈ Adm ℓ

and f = f ′ ∈ FixTB then д = д′ ∈ B α a.

Proof. By well-founded induction on α . □

4.8 Fundamental Theorem

In this section we show that the declarative judgements are sound, in particular, well-formed
syntactic types map to semantic types, and definitionally equal terms map to related values in the
PER model. The proof runs the usual course. First, we define inductively a PER of substitutions

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

Normalization by Evaluation for Sized Dependent Types 33:21

|= () :⇐⇒ true
|= Γ.⋆Size :⇐⇒ |= Γ

|= Γ.s :⇐⇒ |= Γ

|= Γ.T :⇐⇒ |= Γ and Γ
⊕ |= T

Γ |= s :⇐⇒ |= Γ

Γ |= T :⇐⇒ Γ |= T = T
Γ |= T = T ′ :⇐⇒ Γ |= T = T ′ : s for some s

Γ |= T : Adm ℓ :⇐⇒ Γ |= T : FixK ℓ and Tη = T ′η′ ∈ Adm ℓ for all η = η′ ≓ ρ ∈ Γ

Γ |= T ≤ T ′ :⇐⇒ Γ |= T and Γ |= T ′ and Tη ≤ T ′η′ ∈ Type for all η = η′ ≓ ρ ∈ Γ

Γ |= t : T :⇐⇒ Γ |= t = t : T

Γ |= t = t ′ : T :⇐⇒ |= Γ.T and tη = t ′η′ ∈ Tρ for all η = η′ ≓ ρ ∈ Γ

Γ |= σ : ∆ :⇐⇒ Γ |= σ = σ ≓ σ : ∆

Γ |= σ = σ ′ ≓ τ : ∆ :⇐⇒ |= Γ and |= ∆ and ση = σ ′η′ ≓ τ ρ ∈ ∆ for all η = η′ ≓ ρ ∈ Γ

Fig. 9. Semantic judgements.

η = η′ ≓ ρ ∈ Γ .

() = () ≓ () ∈ ()

η = η′ ≓ ρ ∈ Γ Tρ ∈ Setℓ u = u ′
= t ∈ Tρ

(η,u) = (η′,u ′) ≓ (ρ, t) ∈ Γ.T

η = η′ ≓ ρ ∈ Γ α ∈ Size

(η,α) = (η′,α) ≓ (ρ,α) ∈ Γ.Size

η = η′ ≓ ρ ∈ Γ α ,α ′, β ∈ Size

(η,α) = (η′,α ′) ≓ (ρ, β) ∈ Γ.÷Size

We write ρ ∈ Γ for ρ = ρ ≓ ρ ∈ Γ.

Lemma 4.14 (Resurrection). If η = η′ ≓ ρ ∈ Γ then ρ ∈ Γ
⊕ .

Then, in Fig. 9, we define semantic counterparts of our declarative judgements by recursion on the
length of the context.

Theorem 4.15 (Fundamental theorem).

(1) If ⊢ Γ then |= Γ.
(2) If Γ ⊢ J then Γ |= J .

Proof. Simultaneously, by induction on the derivation. □

4.9 Completeness of NbE

From the fundamental theorem, we harvest completeness of NbE in this section, i. e., we show that
definitionally equal terms have the same normal form. We may write simply Γ for its length |Γ |
when there is no danger of confusion, for instance in de Bruijn level xΓ or in read back RΓ . We
define the identity environment ρΓ by induction on Γ, setting ρ() = () and ρΓ.⋆Size = (ρΓ, xΓ) and

ρΓ.T = (ρΓ,↑
T ρΓxΓ).

Lemma 4.16 (Identity environment). If ⊢ Γ then ρΓ ∈ Γ.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

33:22 Andreas Abel, Andrea Vezzosi, and Theo Winterhalter

We now define the normalization relation nbeT
Γ
t ↘ v :⇐⇒ RΓ ↓

T ρΓ (tρΓ) ↘ v . Whenever

nbeT
Γ
t ↘ v , we may write nbeT

Γ
t for v .

Theorem 4.17 (Completeness of NbE). If Γ ⊢ t = t ′ : T then there are normal forms v ≈ v ′ such

that nbeT
Γ
t ↘ v and nbeT

Γ
t ′ ↘ v ′.

Proof. By the fundamental theorem,TρΓ ∈ Setℓ for some ℓ and tρΓ = t ′ρΓ ∈ TρΓ . By reification
(Cor. 4.10) we have ↓T ρΓ (tρΓ) = ↓T ρΓ (t ′ρΓ) ∈ Nf which implies the theorem by read back with
k = |Γ |. □

5 SOUNDNESS OF NORMALIZATION BY EVALUATION

In this section, we show that NbE is sound for judgmental equality, i.e., that same normal form
implies definitional equality. The proof follows Abel et al. [2007] and Fridlender and Pagano [2013]
and defines a Kripke logical relation Γ ⊢ t : T ® f ∈ A between a well-typed term Γ ⊢ t : T and a
value f ∈ A.

First, let us define some auxiliary judgements that relate a well-formed syntactic object to a value,
via read back. They will constitute the logical relation for base types, but need to be strengthened
for function types.

Γ ⊢ a � Rsize α :⇐⇒ ∀ξ : Γ′ ≤ Γ. Rsize
Γ′

α ↘ aξ

Γ ⊢ T � RtyA : s :⇐⇒ ∀ξ : Γ′ ≤ Γ. ∃V . R
ty

Γ′
A ↘ V and Γ

′ ⊢ Tξ = V : s

Γ ⊢ t � Rd : T :⇐⇒ ∀ξ : Γ′ ≤ Γ. ∃v . RΓ′ d ↘ v and Γ
′ ⊢ tξ = v : Tξ

Γ ⊢ t � Rne n : T :⇐⇒ ∀ξ : Γ′ ≤ Γ. ∃m. Rne
Γ′
n ↘m and Γ

′ ⊢ tξ =m : Tξ

By definition, these relations are closed under subsumption and weakening, e.g., if Γ ⊢ t � Rd : T

and Γ ⊢ T ≤ T ′ then Γ ⊢ t � Rd : T ′, and if ξ : Γ′ ≤ Γ then Γ
′ ⊢ tξ � Rd : Tξ .

Lemma 5.1 (Closure properties for neutrals).

(1) If Γ ⊢ t � Rne n : ΠU T and Γ ⊢ u � Rd : U then Γ ⊢ t u � Rne nd : T [u].
(2) If Γ ⊢ t � Rne n : Π SizeT and Γ ⊢ a � Rsizeα then Γ ⊢ t a � Rne n α : T [a].
(3) If Γ ⊢ t � Rne n : ∀T and Γ

⊕ ⊢ a,b : Size and α ∈ Size then Γ ⊢ t ⟨a⟩ � Rne n ⟨α⟩ : T [b].

Let Γ ⊢ T ↘W : s denote the conjunction of T ↘W and Γ ⊢ T =W : s . We simultaneously

define Γ ⊢ T ′ ® A′ ∈ s for Γ ⊢ T ′ : s and Γ ⊢ t : T ′ ® f ∈ A′ for Γ ⊢ t : T ′ and f ∈ A′ by

induction on A′ ∈ s .

Case A′ ↘ N neutral.

Γ ⊢ T ′ ® A′ ∈ s :⇐⇒ Γ ⊢ T ′ ↘ n : s for some neutral n and Γ ⊢ T ′
� RtyA′ : s .

Γ ⊢ t : T ′ ® f ∈ A′ :⇐⇒ Γ ⊢ t � R↓A
′
f : T ′.

Case A′ ↘ Natα .

Γ ⊢ T ′ ® A′ ∈ s :⇐⇒ Γ ⊢ T ′ ↘ Nata : s for some a and Γ ⊢ a � Rsizeα .
Γ ⊢ t : T ′ ® f ∈ A′ :⇐⇒ Γ

⊕ ⊢ T ′ ↘ Nata : s for some a and Γ
⊕ ⊢ a � Rsizeα

and Γ ⊢ t � R↓A
′
f : Nata.

Case A′ ↘ Setℓ′ .

Γ ⊢ T ′ ® A′ ∈ s :⇐⇒ Γ ⊢ T ′ ↘ Setℓ′ : s .

Γ ⊢ U : T ′ ® B ∈ A′ :⇐⇒ Γ
⊕ ⊢ T ′ ↘ Setℓ′ : s and Γ ⊢ U ® B ∈ Setℓ′ .

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

Normalization by Evaluation for Sized Dependent Types 33:23

Case A′ ↘ ΠAB.

Γ ⊢ T ′ ® A′ ∈ s :⇐⇒ Γ ⊢ T ′ ↘ ΠU T : s for someU ,T and Γ ⊢ U ® A ∈ s

and ∀ξ : Γ′ ≤ Γ. Γ′ ⊢ u : Uξ ® a ∈ A =⇒ Γ
′ ⊢ T (ξ ,u) ® B[a] ∈ s .

Γ ⊢ t : T ′ ® f ∈ A′ :⇐⇒ Γ
⊕ ⊢ T ′ ↘ ΠU T : s for someU ,T and Γ

⊕ ⊢ U ® A ∈ s

and ∀ξ : Γ′ ≤ Γ. Γ′ ⊢ u : Uξ ® a ∈ A =⇒ Γ
′ ⊢ tξ u : T (ξ ,u) ® f a ∈ B[a].

Case A′ ↘ Π SizeB.

Γ ⊢ T ′ ® A′ ∈ s :⇐⇒ Γ ⊢ T ′ ↘ Π SizeT : s for some T
and ∀ξ : Γ′ ≤ Γ. Γ′ ⊢ a � Rsizeα =⇒ Γ

′ ⊢ T (ξ ,a) ® B[α] ∈ s .

Γ ⊢ t : T ′ ® f ∈ A′ :⇐⇒ Γ
⊕ ⊢ T ′ ↘ Π SizeT : s for some T

and ∀ξ : Γ′ ≤ Γ. Γ′ ⊢ a � Rsizeα =⇒ Γ
′ ⊢ tξ a : T (ξ ,a) ® f α ∈ B[α].

Case A′ ↘ ∀B.

Γ ⊢ T ′ ® A′ ∈ s :⇐⇒ Γ ⊢ T ′ ↘ ∀T : s for some T
and ∀ξ : Γ′ ≤ Γ, Γ′ ⊢ b : Size, β ∈ Size. Γ′ ⊢ b � Rsizeβ =⇒ Γ

′ ⊢ T (ξ ,b) ® B[β] ∈ s .

Γ ⊢ t : T ′ ® f ∈ A′ :⇐⇒ Γ
⊕ ⊢ T ′ ↘ ∀T : s for some T

and ∀ξ : Γ′ ≤ Γ, Γ′⊕ ⊢ a,b : Size, α , β ∈ Size.
Γ
′⊕ ⊢ b � Rsizeβ =⇒ Γ

′ ⊢ tξ ⟨a⟩ : T (ξ ,b) ® f ⟨α⟩ ∈ B[β].

We may prove theorems łby induction on Γ ⊢ T ® A ∈ sž, even if in reality this will be proofs by

induction on A ∈ s and cases on Γ ⊢ T ® A ∈ s . We write Γ ⊢ T ® A if Γ ⊢ T ® A ∈ s for some
sort s . The logical relations are closed under weakening.

Theorem 5.2 (Into and out of the logical relation). Let Γ ⊢ T ® A ∈ s and A ⊏∼ S . Then:

(1) If Γ ⊢ t � Rne n : T then Γ ⊢ t : T ® ↑Sn ∈ A.
(2) If Γ ⊢ t : T ® f ∈ A then Γ ⊢ t � R↓S f : T .
(3) Γ ⊢ T � RtyA : s .

Proof. Simultaneously by induction on Γ ⊢ T ® A ∈ s . □

Lemma 5.3 (Semantic implies judgmental subtyping [Fridlender and Pagano 2013]).

(1) If Γ ⊢ a � Rsizeα and Γ ⊢ b � Rsizeβ and α ≤ β then a ≤ b.
(2) If Γ ⊢ T ® A and Γ ⊢ T ′ ® A′ and A ≤ A′ ∈ Type then Γ ⊢ T ≤ T ′.

Lemma 5.4 (Subsumption for the logical relation [Fridlender and Pagano 2013]). If
Γ ⊢ T ® A and Γ ⊢ T ′ ® A′ and A ≤ A′ ∈ Type then Γ ⊢ t : T ® f ∈ A implies Γ ⊢ t : T ′ ® f ∈ A′.

⊢ Γ

Γ ⊢ () ≓ () : () ® () ≓ ()

Γ ⊢ σ ≓ τ : ∆ ® η ≓ ρ Γ ⊢ a : Size Γ ⊢ a � Rsizeα

Γ ⊢ (σ ,a) ≓ (τ ,a) : ∆.Size ® (η,α) ≓ (ρ,α)

Γ ⊢ σ ≓ τ : ∆ ® η ≓ ρ Γ
⊕ ⊢ a,b : Size α , β ∈ Size Γ

⊕ ⊢ b � Rsizeβ

Γ ⊢ (σ ,a) ≓ (τ ,b) : ∆.÷Size ® (η,α) ≓ (ρ, β)

Γ ⊢ σ ≓ τ : ∆ ® η ≓ ρ ∆
⊕ ⊢ T Γ ⊢ u = t : Tτ Γ ⊢ t : Tτ ® f ∈ Tρ f = д ∈ Tρ

Γ ⊢ (σ ,u) ≓ (τ , t) : ∆.T ® (η, f) ≓ (ρ,q)

Fig. 10. Logical relation for substitutions Γ ⊢ σ ≓ τ : ∆ ® η ≓ ρ .

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

33:24 Andreas Abel, Andrea Vezzosi, and Theo Winterhalter

Fig. 10 defines a logical relation for substitutions Γ ⊢ σ ≓ τ : ∆ ® η ≓ ρ .Wewrite Γ ⊢ τ : ∆ ® ρ

for Γ ⊢ τ ≓ τ : ∆ ® ρ ≓ ρ.
The following judgements are used to state the fundamental theorem of typing.

Γ ⊩ t : T :⇐⇒ Γ
′ ⊢ tσ : Tτ ® tη ∈ Tρ for all Γ′ ⊢ σ ≓ τ : Γ ® η ≓ ρ

Γ ⊩ σ0 : ∆ :⇐⇒ Γ
′ ⊢ σ0σ ≓ σ0τ : ∆ ® σ0η ≓ σ0ρ for all Γ′ ⊢ σ ≓ τ : Γ ® η ≓ ρ

Theorem 5.5 (Fundamental theorem of typing).

(1) If Γ ⊢ t : T then Γ ⊩ t : T .
(2) If Γ ⊢ σ : ∆ then Γ ⊩ σ : ∆.

Proof. Each by induction on the derivation. □

Lemma 5.6 (Identity environment). If ⊢ Γ then Γ ⊢ id : Γ ® ρΓ .

Corollary 5.7 (Soundness of NbE).

(1) If Γ ⊢ t : T then Γ ⊢ t = nbeT
Γ
t : T .

(2) If Γ ⊢ t , t ′ : T and nbeT
Γ
t ≈ nbeT

Γ
t ′ then Γ ⊢ t = t ′ : T .

Proof. (1) For the identity environment Γ ⊢ id : Γ ® ρΓ (Lemma 5.6) the Fundamental Theorem
for Typing gives Γ ⊢ t : T ® tρΓ ∈ TρΓ . This implies RΓ ↓

(T ρΓ)(tρΓ) ↘ v for some normal formv and
Γ ⊢ t = v : T by Thm. 5.2. Then (2): From (1), using Lemma 3.1: Γ ⊢ t = nbeT

Γ
t = nbeT

Γ
t ′ = t ′ : T . □

Corollary 5.8 (Decidability of judgemental eqality). If Γ ⊢ t , t ′ : T then the test whether

nbeT
Γ
t ≈ nbeT

Γ
t ′ terminates and decides Γ ⊢ t = t ′ : T .

From correctness of NbE and the logical relations we can further prove injectivity of type
constructors, inversion of subtyping, and subject reduction. The proofs follow roughly Fridlender
and Pagano [2013], for details, see the long version of this article.

6 ALGORITHMIC SUBTYPING

Fig 11 defines an incremental subtyping algorithm Γ ⊢ T <: T ′ . Neutral types are subtypes iff
they are equal, which is checked using NbE.

T ↘ n T ′ ↘ n′ NbeΓn ≈ NbeΓn
′

Γ ⊢ T <: T ′

T ↘ Setℓ T ′ ↘ Setℓ′

Γ ⊢ T <: T ′
ℓ ≤ ℓ′

T ↘ Nata T ′ ↘ Nata′

Γ ⊢ T <: T ′
a ≤ a′

T ′
1 ↘ Π

⋆SizeT1 T ′
2 ↘ Π

⋆SizeT2 Γ.Size ⊢ T1 <: T2

Γ ⊢ T ′
1 <: T

′
2

T ′
1 ↘ ΠU1T1 T ′

2 ↘ ΠU2T2 Γ ⊢ U2 <: U1 Γ.U2 ⊢ T1 <: T2

Γ ⊢ T ′
1 <: T

′
2

Fig. 11. Algorithmic subtyping Γ ⊢ T <: T ′ .

Lemma 6.1 (Soundness of algorithmic subtyping). If Γ ⊢ T <: T ′ then Γ ⊢ T ≤ T ′.

Proof. By induction on Γ ⊢ T <: T ′, soundness of NbE, and subject reduction. □

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

Normalization by Evaluation for Sized Dependent Types 33:25

Lemma 6.2 (Semantic subtyping implies algorithmic subtyping).

If Γ ⊢ T ® A and Γ ⊢ T ′ ® A′ and A ≤ A′ ∈ Type then Γ ⊢ T <: T ′.

Proof. By induction on Γ ⊢ T ® A and Γ ⊢ T ′ ® A′ and cases on A ≤ A′ ∈ Type. □

Corollary 6.3 (Completeness of algorithmic subtyping). If Γ ⊢ T ≤ T ′ then Γ ⊢ T <: T ′.

Proof. By the fundamental theorems Γ ⊢ T ® TρΓ and Γ ⊢ T ′ ® T ′ρΓ and TρΓ ≤ T ′ρΓ ∈ Type.
By Lemma 6.2, Γ ⊢ T <: T ′. □

Lemma 6.4 (Termination of algorithmic subtyping). If Γ ⊢ T ® A and Γ ⊢ T ′ ® A′ then the
query Γ ⊢ T <: T ′ terminates.

Proof. By induction on A ∈ s and A′ ∈ s ′ and cases on Γ ⊢ T ® A and Γ ⊢ T ′ ® A′. □

Theorem 6.5 (Decidability of subtyping). If Γ ⊢ T ,T ′, then Γ ⊢ T ≤ T ′ is decided by the query
Γ ⊢ T <: T ′.

Proof. By the fundamental theorem of typing, Γ ⊢ T ® A and Γ ⊢ T ′ ® A′, thus, the query
Γ ⊢ T <: T ′ terminates by Lemma 6.4. If successfully, then Γ ⊢ T ≤ T ′ by soundness of algorithmic
equality. Otherwise Γ ⊢ T ≤ T ′ is impossible by completeness of algorithmic equality. □

7 TYPE CHECKING

In this section, we show that type checking for normal forms is decidable, and succeeds for those
which can be typed via the restricted rule for size polymorphism elimination:

Γ ⊢s t : ∀T Γ
⊕ ⊢ a : Size

Γ ⊢s t ⟨a⟩ : T [a]

We refer to the restricted typing judgement as Γ ⊢s t : T , and obviously, if Γ ⊢s t : T then Γ ⊢ t : T .
Figure 12 displays the rules for bidirectional typing of normal forms. Note that we could go

beyond normal forms, by adding inference rules for the Nat -constructors:

Γ
⊕ ⊢ a : Size

Γ ⊢ zero⟨a⟩ ⇒ Nat (a + 1)

Γ
⊕ ⊢ a : Size Γ ⊢ t ⇔ Nata

Γ ⊢ suc⟨a⟩t ⇒ Nat (a + 1)

Theorem 7.1 (Soundness of type checking). Let ⊢ Γ.

(1) If Γ
⊕ ⊢ T and D :: Γ ⊢ t ⇔ T then Γ ⊢s t : T .

(2) If D :: Γ ⊢ t ⇒ T then Γ
⊕ ⊢ T and Γ ⊢s t : T .

Lemma 7.2 (Weak head reduction of subtypes). Let D :: Γ ⊢ T <: T ′.

(1) If T ′ ↘ Nata′ then T ↘ Nata and Γ ⊢ a <: a′ : Size.
(2) If T ′ ↘ Setℓ′ then T ↘ Setℓ and ℓ <: ℓ

′.
(3) If T ′ ↘ ΠA′ B′ then T ↘ ΠAB and Γ ⊢ A′ <: A and Γ.A′ ⊢ B <: B′.
(4) If T ′ ↘ Π

⋆SizeB′ and T ↘ Π
⋆SizeB and Γ.Size ⊢ B <: B′.

Proof. By cases on D, since weak head evaluation is deterministic. □

This lemma also holds in the other direction of subtyping, i. e., when T <: T ′ and T weak head
evaluates, then T ′ weak head evaluates to a type of the same form.

Lemma 7.3 (Subsumption for type checking). Let id : Γ′ ≤ Γ.

(1) If D :: Γ ⊢ t ⇔ T and Γ
⊕ ⊢ T ≤ T ′ then Γ

′ ⊢ t ⇔ T ′.
(2) If D :: Γ ⊢ t ⇒ T then Γ

′ ⊢ t ⇒ T ′ and Γ
′⊕ ⊢ T ≤ T ′.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

33:26 Andreas Abel, Andrea Vezzosi, and Theo Winterhalter

Checking Γ ⊢ t ⇔ T . Input: Γ, t ,T . Output: yes/no.

T ′ ↘ s Γ ⊢ a : Size

Γ ⊢ Nata ⇔ T ′

T ′ ↘ Setℓ′ ℓ < ℓ′

Γ ⊢ Setℓ ⇔ T ′

T ′ ↘ s Γ ⊢ U ⇔ s Γ.U ⊢ T ⇔ s

Γ ⊢ ΠU T ⇔ T ′

T ′ ↘ s Γ.Size ⊢ T ⇔ s

Γ ⊢ Π⋆SizeT ⇔ T ′

T ′ ↘ Natb Γ
⊕ ⊢ a + 1 ≤ b : Size

Γ ⊢ zero⟨a⟩ ⇔ T ′

T ′ ↘ Natb Γ
⊕ ⊢ a + 1 ≤ b : Size Γ ⊢ t ⇔ Nata

Γ ⊢ suc⟨a⟩t ⇔ T ′

T ′ ↘ Π
⋆U T Γ.⋆U ⊢ t ⇔ T

Γ ⊢ λt ⇔ T ′

Γ ⊢ t ⇒ T Γ ⊢ T <: T ′

Γ ⊢ t ⇔ T ′

Inference Γ ⊢ t ⇒ T . Input: Γ, t . Output: T or no.

Γ(i) = :T

Γ ⊢ vi ⇒ T

Γ ⊢ t ⇒ T ′ T ′ ↘ ΠU T Γ ⊢ u ⇔ U

Γ ⊢ t u ⇒ T [u]

Γ ⊢ t ⇒ T ′ T ′ ↘ Π SizeT Γ ⊢ a : Size

Γ ⊢ t a ⇒ T [a]

Γ ⊢ t ⇒ T ′ T ′ ↘ Π
÷SizeT Γ

⊕ ⊢ a : Size

Γ ⊢ t ⟨a⟩ ⇒ T [a]

Γ ⊢ u ⇒ Nat (a + 1)
Γ
⊕ ⊢ T ⇔ Nat (a + 1) → Setℓ Γ ⊢ tz ⇔ T (zero⟨a⟩) Γ ⊢ ts ⇔ (x :Nata) → T (suc⟨a⟩x)

Γ ⊢ u caseℓ T tz ts ⇒ T u

Γ ⊢ u ⇒ Nata Γ
⊕ ⊢ T ⇔ FixK ℓ Γ ⊢ t ⇔ FixTT

Γ ⊢ u fixℓ T t ⇒ T au

Fig. 12. Bidirectional type-checking of normal forms.

Proof. Simultaneously by induction on D, using lemma 7.2 and soundness and completeness of
algorithmic subtyping. □

Theorem 7.4 (Completeness of type checking for normal terms).

(1) If D :: Γ ⊢s v : T then Γ ⊢ v ⇔ T .
(2) If D :: Γ ⊢s m : T then Γ ⊢m ⇒ U and Γ

⊕ ⊢ U ≤ T .

Proof. Simultaneously by induction on D, using (strong) inversion and Lemma 7.3. □

Lemma 7.5 (Termination of type checking). Let ⊢ Γ.

(1) The query Γ ⊢ t ⇒ ? terminates.
(2) If Γ

⊕ ⊢ T then the query Γ ⊢ t ⇔ T terminates.

Proof. By induction on t , using type weak head normalization and soundness of type checking,
to maintain well-formedness of types. And, of course, decidability of subtyping. □

Theorem 7.6 (Decidability of type checking for normal terms). Let ⊢ Γ and Γ
⊕ ⊢ T . Then

Γ ⊢s v : T is decided by Γ ⊢ v ⇔ T .

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

Normalization by Evaluation for Sized Dependent Types 33:27

8 DISCUSSION AND CONCLUSIONS

In this article, we have described the first successful integration of higher-rank size polymorphism
into a core type theory with dependent function types, a sized type of natural numbers, a predicative
hierarchy of universes, subtyping, andη-equality. This is an important stepping stone for the smooth
integration of sized types into dependently-typed proof assistants. In these final paragraphs, we
discuss some questions and insights that follow from our work and go beyond it.

It is now straightforward to add a unit type 1 with extensional equality t = ∗ : 1 for all t : 1. We
simply extend reification such that ↓1a = ∗. Further, 1 is a new type shape with rule 1 ⊏∼ 1.
In the long run, we wish for a type-directed equality check that does not do normalization in

one go, but interleaves weak head normalization with structural comparison. Such an equality test
is at the heart of Agda’s type checker and it generates constraints for meta variables involved in
type reconstruction [Norell 2007]. However, the usual bidirectional construction [Abel and Scherer
2012] does not seem to go through as we lack uniqueness of types (and even principal types).
For now, we have only exploited shape-irrelevance of sized types, but this directly extends

to universe levels. If we consider all universes as a single shape Setℓ1 ⊏∼ Setℓ2 , we can quantify
over levels irrelevantly, as Set is a shape-irrelevant type constructor. This is a stepping stone for
integrating universe cumulativity with Agda’s explicit universe-polymorphism. If levels are no
longer unique (because of subsumption), they will get in the way of proofs, analogously to sizes.
With an irrelevant quantifier we can ignore levels where they do not matter. We will still respect
them where they matter, thus, we keep consistency.

Our reflections on level irrelevance lead us to the question: can a type theory T with a stratified
universe hierarchy be understood as a sort of refinement of the inconsistent SystemU (Type:Type)?
Intuitively, when checking two terms of T for equality, could we ignore the stratification in the
type A which directs the equality check (thus, consider A coming from U)? Such a perspective
would put stratification in one pot with size assignment: Size annotations and levels are both just
annotations for the termination checker, but do not bear semantic relevance. We could switch the
universe checker temporarily off as we do with the termination checkerÐcf. the work of Stump
et al. [2010] on termination casts.
Finally, we would like a general theory of shape-irrelevance that extends beyond size-indexed

types. For instance, any data type constructor could be considered shape-irrelevant in all its indices,
with the consequence that index arguments in the data constructors could be declared irrelevant.
However, our notion of judgmental equality does not support irrelevant arguments of dependent
type. It works for the non-dependent type Size, but we also relied on having a closed inhabitant ∞
in Size. More research is needed to tell a more general story of shape-irrelevance.

ACKNOWLEDGMENTS

This material is based upon work supported by the Swedish Research Council (Vetenskapsrådet)
under Grant No. 621-2014-4864 Termination Certificates for Dependently-Typed Programs and Proofs
via Refinement Types. The first author is grateful for recent discussions with Thierry Coquand, Nils
Anders Danielsson, and Sandro Stucki which helped clarifying the thoughts leading to this work.
He also acknowledges past discussions with Christoph-Simon Senjak. The incentive to write this
article came during the EU Cost Action CA15123 EUTYPES meeting in Ljubljana in January 2017;
thanks to Andrej Bauer for organizing it.

REFERENCES

Andreas Abel. 2008. Semi-continuous Sized Types and Termination. Logical Methods in Computer Science 4, 2:3 (2008), 1ś33.
https://doi.org/10.2168/LMCS-4(2:3)2008

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

https://doi.org/10.2168/LMCS-4(2:3)2008

33:28 Andreas Abel, Andrea Vezzosi, and Theo Winterhalter

Andreas Abel. 2010. Towards Normalization by Evaluation for the βη-Calculus of Constructions. In Functional and

Logic Programming, 10th International Symposium, FLOPS 2010, Sendai, Japan, April 19-21, 2010. Proceedings (Lecture

Notes in Computer Science), Matthias Blume, Naoki Kobayashi, and Germán Vidal (Eds.), Vol. 6009. Springer, 224ś239.
https://doi.org/10.1007/978-3-642-12251-4_17

Andreas Abel. 2012. Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types. In
Proceedings of the 8th Workshop on Fixed Points in Computer Science (FICS 2012) (Electronic Proceedings in Theoretical

Computer Science), Dale Miller and Zoltán Ésik (Eds.), Vol. 77. 1ś11. http://dx.doi.org/10.4204/EPTCS.77.1
Andreas Abel. 2013. Normalization by Evaluation: Dependent Types and Impredicativity. Unpublished. http://www.tcs.ifi.

lmu.de/~abel/habil.pdf
Andreas Abel and Thorsten Altenkirch. 2002. A Predicative Analysis of Structural Recursion. Journal of Functional

Programming 12, 1 (2002), 1ś41. https://doi.org/10.1017/S0956796801004191
Andreas Abel, Thierry Coquand, and Peter Dybjer. 2007. Normalization by Evaluation for Martin-Löf Type Theory with

Typed Equality Judgements. In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw,

Poland, Proceedings. IEEE Computer Society Press, 3ś12. https://doi.org/10.1109/LICS.2007.33
Andreas Abel, Thierry Coquand, and Miguel Pagano. 2009. A Modular Type-Checking Algorithm for Type Theory with

Singleton Types and Proof Irrelevance. In Typed Lambda Calculi and Applications, 9th International Conference, TLCA

2009, Brasilia, Brazil, July 1-3, 2009, Proceedings (Lecture Notes in Computer Science), Pierre-Louis Curien (Ed.), Vol. 5608.
Springer, 5ś19. https://doi.org/10.1007/978-3-642-02273-9_3

Andreas Abel, Thierry Coquand, and Miguel Pagano. 2011. A Modular Type-Checking Algorithm for Type Theory with
Singleton Types and Proof Irrelevance. Logical Methods in Computer Science 7, 2:4 (2011), 1ś57. https://doi.org/10.2168/
LMCS-7(2:4)2011

Andreas Abel and Brigitte Pientka. 2016. Well-founded recursion with copatterns and sized types. Journal of Functional
Programming 26 (2016), 61. https://doi.org/10.1017/S0956796816000022

Andreas Abel and Gabriel Scherer. 2012. On Irrelevance and Algorithmic Equality in Predicative Type Theory. Logical
Methods in Computer Science 8, 1:29 (2012), 1ś36. https://doi.org/10.2168/LMCS-8(1:29)2012

AgdaTeam. 2017. The Agda Wiki. (2017). http://wiki.portal.chalmers.se/agda
Roberto M. Amadio (Ed.). 2008. Foundations of Software Science and Computational Structures, 11th International Conference,

FoSSaCS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,

Hungary, March 29 - April 6, 2008. Proceedings. Lecture Notes in Computer Science, Vol. 4962. Springer. https://doi.org/10.
1007/978-3-540-78499-9

Roberto M. Amadio and Solange Coupet-Grimal. 1998. Analysis of a Guard Condition in Type Theory (Extended Abstract)..
In Foundations of Software Science and Computation Structure, First International Conference, FoSSaCS’98, Held as Part of

the European Joint Conferences on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998,

Proceedings (Lecture Notes in Computer Science), Maurice Nivat (Ed.), Vol. 1378. Springer, 48ś62. https://doi.org/10.1007/
BFb0053541

Henk Barendregt. 1991. Introduction to Generalized Type Systems. Journal of Functional Programming 1, 2 (1991), 125ś154.
Bruno Barras and Bruno Bernardo. 2008. The Implicit Calculus of Constructions as a Programming Language with Dependent

Types, See [Amadio 2008], 365ś379. https://doi.org/10.1007/978-3-540-78499-9_26
Gilles Barthe, Maria João Frade, Eduardo Giménez, Luís Pinto, and Tarmo Uustalu. 2004. Type-Based Termination of Recursive

Definitions. Mathematical Structures in Computer Science 14, 1 (2004), 97ś141. https://doi.org/10.1017/S0960129503004122
Gilles Barthe, Benjamin Grégoire, and Fernando Pastawski. 2006. CICˆ: Type-Based Termination of Recursive Definitions in

the Calculus of Inductive Constructions. In Logic for Programming, Artificial Intelligence, and Reasoning, 13th International

Conference, LPAR 2006, Phnom Penh, Cambodia, November 13-17, 2006, Proceedings (Lecture Notes in Computer Science),
Miki Hermann and Andrei Voronkov (Eds.), Vol. 4246. Springer, 257ś271. https://doi.org/10.1007/11916277_18

Gilles Barthe, Benjamin Grégoire, and Colin Riba. 2008a. A Tutorial on Type-Based Termination. In LerNet ALFA Summer

School (Lecture Notes in Computer Science), Ana Bove, Luís Soares Barbosa, Alberto Pardo, and Jorge Sousa Pinto (Eds.),
Vol. 5520. Springer, 100ś152. https://doi.org/10.1007/978-3-642-03153-3_3

Gilles Barthe, Benjamin Grégoire, and Colin Riba. 2008b. Type-Based Termination with Sized Products. In Computer Science

Logic, 22nd International Workshop, CSL 2008, 17th Annual Conference of the EACSL, Bertinoro, Italy, September 16-19,

2008. Proceedings (Lecture Notes in Computer Science), Michael Kaminski and Simone Martini (Eds.), Vol. 5213. Springer,
493ś507. https://doi.org/10.1007/978-3-540-87531-4_35

Ulrich Berger and Helmut Schwichtenberg. 1991. An Inverse to the Evaluation Functional for Typed λ-calculus. In Sixth

Annual Symposium on Logic in Computer Science (LICS ’91), July, 1991, Amsterdam, The Netherlands, Proceedings. IEEE
Computer Society Press, 203ś211. https://doi.org/10.1109/LICS.1991.151645

Frédéric Blanqui. 2004. A Type-Based Termination Criterion for Dependently-Typed Higher-Order Rewrite Systems. In
Rewriting Techniques and Applications, 15th International Conference, RTA 2004, Aachen, Germany, June 3 ś 5, 2004,

Proceedings (Lecture Notes in Computer Science), Vincent van Oostrom (Ed.), Vol. 3091. Springer, 24ś39. https://doi.org/10.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

https://doi.org/10.1007/978-3-642-12251-4_17
http://dx.doi.org/10.4204/EPTCS.77.1
http://www.tcs.ifi.lmu.de/~abel/habil.pdf
http://www.tcs.ifi.lmu.de/~abel/habil.pdf
https://doi.org/10.1017/S0956796801004191
https://doi.org/10.1109/LICS.2007.33
https://doi.org/10.1007/978-3-642-02273-9_3
https://doi.org/10.2168/LMCS-7(2:4)2011
https://doi.org/10.2168/LMCS-7(2:4)2011
https://doi.org/10.1017/S0956796816000022
https://doi.org/10.2168/LMCS-8(1:29)2012
http://wiki.portal.chalmers.se/agda
https://doi.org/10.1007/978-3-540-78499-9
https://doi.org/10.1007/978-3-540-78499-9
https://doi.org/10.1007/BFb0053541
https://doi.org/10.1007/BFb0053541
https://doi.org/10.1007/978-3-540-78499-9_26
https://doi.org/10.1017/S0960129503004122
https://doi.org/10.1007/11916277_18
https://doi.org/10.1007/978-3-642-03153-3_3
https://doi.org/10.1007/978-3-540-87531-4_35
https://doi.org/10.1109/LICS.1991.151645
https://doi.org/10.1007/978-3-540-25979-4_2
https://doi.org/10.1007/978-3-540-25979-4_2

Normalization by Evaluation for Sized Dependent Types 33:29

1007/978-3-540-25979-4_2

Frédéric Blanqui. 2005. Decidability of Type-Checking in the Calculus of Algebraic Constructions with Size Annotations..
In Computer Science Logic, 19th International Workshop, CSL 2005, 14th Annual Conference of the EACSL, Oxford, UK,

August 22-25, 2005, Proceedings (Lecture Notes in Computer Science), C.-H. Luke Ong (Ed.), Vol. 3634. Springer, 135ś150.
https://doi.org/10.1007/11538363_11

Frédéric Blanqui and Colin Riba. 2006. Combining Typing and Size Constraints for Checking the Termination of Higher-
Order Conditional Rewrite Systems. In Logic for Programming, Artificial Intelligence, and Reasoning, 13th International

Conference, LPAR 2006, Phnom Penh, Cambodia, November 13-17, 2006, Proceedings (Lecture Notes in Computer Science),
Miki Hermann and Andrei Voronkov (Eds.), Vol. 4246. Springer, 105ś119. https://doi.org/10.1007/11916277_8

Ana Bove. 2009. Another Look at Function Domains. Electronic Notes in Theoretical Computer Science 249 (2009), 61ś74.
https://doi.org/10.1016/j.entcs.2009.07.084

Ana Bove and Venanzio Capretta. 2005. Modelling general recursion in type theory. Mathematical Structures in Computer

Science 15, 4 (2005), 671ś708. https://doi.org/10.1017/S0960129505004822
Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation. Journal

of Functional Programming 23, 5 (2013), 552ś593. https://doi.org/10.1017/S095679681300018X
Thierry Coquand. 1996. An Algorithm for Type-Checking Dependent Types, In Mathematics of Program Construction.

Selected Papers from the Third International Conference on the Mathematics of Program Construction (July 17ś21, 1995,
Kloster Irsee, Germany). Science of Computer Programming 26, 1-3, 167ś177. https://doi.org/10.1016/0167-6423(95)00021-6

Olivier Danvy. 1999. Type-Directed Partial Evaluation. In Partial Evaluation ś Practice and Theory, DIKU 1998 International

Summer School, Copenhagen, Denmark, June 29 - July 10, 1998 (Lecture Notes in Computer Science), John Hatcliff, Torben Æ.
Mogensen, and Peter Thiemann (Eds.), Vol. 1706. Springer, 367ś411. https://doi.org/10.1007/3-540-47018-2_16

N. G. de Bruijn. 1972. Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with
application to the Church-Rosser theorem. Indagationes Mathematicae 34 (1972), 381ś392.

Peter Dybjer. 2000. A General Formulation of Simultaneous Inductive-Recursive Definitions in Type Theory. The Journal of
Symbolic Logic 65, 2 (2000), 525ś549. https://doi.org/10.2307/2586554

Peter Dybjer, Bengt Nordström, and Jan M. Smith (Eds.). 1995. Types for Proofs and Programs, International Workshop

TYPES’94, Båstad, Sweden, June 6-10, 1994, Selected Papers. Lecture Notes in Computer Science, Vol. 996. Springer.
https://doi.org/10.1007/3-540-60579-7

Daniel Fridlender and Miguel Pagano. 2013. A Type-Checking Algorithm for Martin-Löf Type Theory with Subtyping
Based on Normalisation by Evaluation. In Typed Lambda Calculi and Applications, 11th International Conference, TLCA

2013, Eindhoven, The Netherlands, June 26-28, 2013. Proceedings (Lecture Notes in Computer Science), Masahito Hasegawa
(Ed.), Vol. 7941. Springer, 140ś155. https://doi.org/10.1007/978-3-642-38946-7_12

Herman Geuvers. 1994. A short and flexible proof of Strong Normalization for the Calculus of Constructions, See [Dybjer
et al. 1995], 14ś38. https://doi.org/10.1007/3-540-60579-7_2

Eduardo Giménez. 1995. Codifying Guarded Definitions with Recursive Schemes, See [Dybjer et al. 1995], 39ś59. https:
//doi.org/10.1007/3-540-60579-7_3

Benjamin Grégoire and Xavier Leroy. 2002. A compiled implementation of strong reduction. In Proceedings of the Seventh

ACM SIGPLAN International Conference on Functional Programming (ICFP ’02), Pittsburgh, Pennsylvania, USA, October 4-6,

2002 (SIGPLAN Notices), Vol. 37. ACM Press, 235ś246. https://doi.org/10.1145/581478.581501
Benjamin Grégoire and Jorge Luis Sacchini. 2010. On Strong Normalization of the Calculus of Constructions with Type-Based

Termination. In Logic for Programming, Artificial Intelligence, and Reasoning - 17th International Conference, LPAR-17,

Yogyakarta, Indonesia, October 10-15, 2010. Proceedings (Lecture Notes in Computer Science), Christian G. Fermüller and
Andrei Voronkov (Eds.), Vol. 6397. Springer, 333ś347. https://doi.org/10.1007/978-3-642-16242-8_24

Robert Harper and Frank Pfenning. 2005. On Equivalence and Canonical Forms in the LF Type Theory. ACM Transactions

on Computational Logic 6, 1 (2005), 61ś101. https://doi.org/10.1145/1042038.1042041
Gérard P. Huet. 1989. The Constructive Engine. In A Perspective in Theoretical Computer Science - Commemorative Volume

for Gift Siromoney, R. Narasimhan (Ed.). World Scientific Series in Computer Science, Vol. 16. World Scientific, 38ś69.
https://doi.org/10.1142/9789814368452_0004

John Hughes, Lars Pareto, and Amr Sabry. 1996. Proving the Correctness of Reactive Systems Using Sized Types. In
Conference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

Papers Presented at the Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, Hans-Juergen Boehm and
Guy L. Steele Jr. (Eds.). ACM Press, 410ś423. https://doi.org/10.1145/237721.240882

INRIA. 2016. The Coq Proof Assistant Reference Manual (version 8.6 ed.). INRIA. http://coq.inria.fr/
Ugo Dal Lago and Charles Grellois. 2017. Probabilistic Termination by Monadic Affine Sized Typing. In Programming

Languages and Systems - 26th European Symposium on Programming, ESOP 2017, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings (Lecture Notes

in Computer Science), Hongseok Yang (Ed.), Vol. 10201. Springer, 393ś419. https://doi.org/10.1007/978-3-662-54434-1_15

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

https://doi.org/10.1007/978-3-540-25979-4_2
https://doi.org/10.1007/978-3-540-25979-4_2
https://doi.org/10.1007/11538363_11
https://doi.org/10.1007/11916277_8
https://doi.org/10.1016/j.entcs.2009.07.084
https://doi.org/10.1017/S0960129505004822
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1016/0167-6423(95)00021-6
https://doi.org/10.1007/3-540-47018-2_16
https://doi.org/10.2307/2586554
https://doi.org/10.1007/3-540-60579-7
https://doi.org/10.1007/978-3-642-38946-7_12
https://doi.org/10.1007/3-540-60579-7_2
https://doi.org/10.1007/3-540-60579-7_3
https://doi.org/10.1007/3-540-60579-7_3
https://doi.org/10.1145/581478.581501
https://doi.org/10.1007/978-3-642-16242-8_24
https://doi.org/10.1145/1042038.1042041
https://doi.org/10.1142/9789814368452_0004
https://doi.org/10.1145/237721.240882
http://coq.inria.fr/
https://doi.org/10.1007/978-3-662-54434-1_15

33:30 Andreas Abel, Andrea Vezzosi, and Theo Winterhalter

Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. 2001. The Size-Change Principle for Program Termination. In
Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

London, UK, January 17-19, 2001, Chris Hankin and Dave Schmidt (Eds.). ACM Press, 81ś92. https://doi.org/10.1145/
360204.360210

William Lovas and Frank Pfenning. 2010. Refinement Types for Logical Frameworks and Their Interpretation as Proof
Irrelevance. Logical Methods in Computer Science 6, 4 (2010). https://doi.org/10.2168/LMCS-6(4:5)2010

Per Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In Logic Colloquium ‘73, H. E. Rose and J. C.
Shepherdson (Eds.). North-Holland, 73ś118.

Alexandre Miquel. 2000. A Model for Impredicative Type Systems, Universes, Intersection Types and Subtyping. In 15th

Annual IEEE Symposium on Logic in Computer Science (LICS 2000), 26-29 June 2000, Santa Barbara, California, USA,

Proceedings. IEEE Computer Society Press, 18ś29. https://doi.org/10.1109/LICS.2000.855752
Alexandre Miquel. 2001. The Implicit Calculus of Constructions. In Typed Lambda Calculi and Applications, 5th International

Conference, TLCA 2001, Krakow, Poland, May 2-5, 2001, Proceedings (Lecture Notes in Computer Science), Samson Abramsky
(Ed.), Vol. 2044. Springer, 344ś359. https://doi.org/10.1007/3-540-45413-6_27

Nathan Mishra-Linger and Tim Sheard. 2008. Erasure and Polymorphism in Pure Type Systems, See [Amadio 2008], 350ś364.
https://doi.org/10.1007/978-3-540-78499-9

Bengt Nordström. 1988. Terminating General Recursion. BIT 28, 3 (1988), 605ś619.
Ulf Norell. 2007. Towards a Practical Programming Language Based on Dependent Type Theory. Ph.D. Dissertation. Department

of Computer Science and Engineering, Chalmers University of Technology, Göteborg, Sweden.
Frank Pfenning. 2001. Intensionality, Extensionality, and Proof Irrelevance in Modal Type Theory. In 16th IEEE Symposium

on Logic in Computer Science (LICS 2001), 16-19 June 2001, Boston University, USA, Proceedings. IEEE Computer Society
Press, 221ś230. https://doi.org/10.1109/LICS.2001.932499

Jorge Luis Sacchini. 2013. Type-Based Productivity of Stream Definitions in the Calculus of Constructions. In 28th Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013. IEEE Computer
Society Press, 233ś242. https://doi.org/10.1109/LICS.2013.29

Jorge Luis Sacchini. 2014. Linear Sized Types in the Calculus of Constructions. In Functional and Logic Programming - 12th

International Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6, 2014. Proceedings (Lecture Notes in Computer Science),
Michael Codish and Eijiro Sumii (Eds.), Vol. 8475. Springer, 169ś185. https://doi.org/10.1007/978-3-319-07151-0_11

Aaron Stump, Vilhelm Sjöberg, and Stephanie Weirich. 2010. Termination Casts: A Flexible Approach to Termination with
General Recursion. In Workshop on Partiality And Recursion in Interactive Theorem Provers, PAR 2010, Satellite Workshop

of ITP’10 at FLoC 2010 (Electronic Proceedings in Theoretical Computer Science), Ana Bove, Ekaterina Komendantskaya,
and Milad Niqui (Eds.), Vol. 43. 76ś93. https://doi.org/10.4204/EPTCS.43.6

Martin Sulzmann, Manuel M. T. Chakravarty, Simon L. Peyton Jones, and Kevin Donnelly. 2007. System F with type
equality coercions. In Proceedings of TLDI’07: 2007 ACM SIGPLAN International Workshop on Types in Languages Design

and Implementation, Nice, France, January 16, 2007, François Pottier and George C. Necula (Eds.). ACM Press, 53ś66.
https://doi.org/10.1145/1190315.1190324

David Wahlstedt. 2007. Dependent Type Theory with Parameterized First-Order Data Types and Well-Founded Recursion. Ph.D.
Dissertation. Chalmers University of Technology.

Benjamin Werner. 1992. A Normalization Proof for an Impredicative Type System with Large Eliminations over Integers. In
Proceedings of the 1992 Workshop on Types for Proofs and Programs, Båstad, Sweden, June 1992, Bengt Nordström, Kent
Petersson, and Gordon Plotkin (Eds.). 341ś357. http://www.cs.chalmers.se/Cs/Research/Logic/Types/proc92.ps

Hongwei Xi. 2002. Dependent Types for ProgramTermination Verification. Journal of Higher-Order and Symbolic Computation

15, 1 (2002), 91ś131. https://doi.org/10.1023/A:1019916231463

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 33. Publication date: September 2017.

https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/360204.360210
https://doi.org/10.2168/LMCS-6(4:5)2010
https://doi.org/10.1109/LICS.2000.855752
https://doi.org/10.1007/3-540-45413-6_27
https://doi.org/10.1007/978-3-540-78499-9
https://doi.org/10.1109/LICS.2001.932499
https://doi.org/10.1109/LICS.2013.29
https://doi.org/10.1007/978-3-319-07151-0_11
https://doi.org/10.4204/EPTCS.43.6
https://doi.org/10.1145/1190315.1190324
http://www.cs.chalmers.se/Cs/Research/Logic/Types/proc92.ps
https://doi.org/10.1023/A:1019916231463

	Abstract
	1 Introduction
	2 Size Irrelevance in Practice
	3 A Type System with Irrelevant Size Application
	4 Semantics and Completeness of Normalization by Evaluation
	4.1 Weak Head Reduction
	4.2 Read Back
	4.3 Partial Equivalence Relations
	4.4 PER Model
	4.5 Subtyping
	4.6 Type Shapes
	4.7 Computation with Natural Numbers
	4.8 Fundamental Theorem
	4.9 Completeness of NbE

	5 Soundness of Normalization by Evaluation
	6 Algorithmic Subtyping
	7 Type Checking
	8 Discussion and Conclusions
	Acknowledgments
	References

