
HAL Id: hal-01596135
https://hal.science/hal-01596135

Submitted on 9 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Securing Complex IoT Platforms with Token Based
Access Control and Authenticated Key Establishment

Timothy Claeys, Franck Rousseau, Bernard Tourancheau

To cite this version:
Timothy Claeys, Franck Rousseau, Bernard Tourancheau. Securing Complex IoT Platforms with
Token Based Access Control and Authenticated Key Establishment. International Workshop on Secure
Internet of Things (SIOT), Sep 2017, Oslo, Norway. �hal-01596135�

https://hal.science/hal-01596135
https://hal.archives-ouvertes.fr

Securing Complex IoT Platforms with Token Based Access Control and
Authenticated Key Establishment

Timothy Claeys, Franck Rousseau, Bernard Tourancheau
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble France

Email: firstname.lastname@imag.fr

Abstract—In this paper we propose a new authorization
and authentication framework for the IoT that combines the
security model of OAuth 1.0a with the lightweight building
blocks of ACE. By designing self-securing tokens the security
of the framework no longer depends on the security of the
network stack. We use basic PKI functionalities to bootstrap
a chain-of-trust between the devices which simplifies future
token exchanges. Finally, we propose an alternate key estab-
lishment scheme for use cases where devices cannot directly
communicate.

We test our proposal by implementing the critical aspects
on a STM32L4 microcontroller. The results indicate that our
framework guarantees a strong level of security for IoT devices
with basic asymmetric cryptography capabilities.

Keywords-authorization; access tokens; key establishment;
authentication

I. INTRODUCTION

In recent years we have seen a profusion of Internet of
Things (IoT) platforms [1]. These IoT platforms consist
of heterogeneous, often constrained, devices with complex
network stacks. The design of security services that provide
fine-grained access control, authentication and confidential-
ity are a challenge for most devices in the IoT. To protect
data from unauthorized access, standard solutions use Public
Key Infrastructure (PKI), Transport Layer Security (TLS),
user passwords, and token architectures. These solutions are
often ill-suited for IoT architectures as they have a large
computational overhead and require ubiquitous connectivity
of the smart devices.

The IEFT ACE working group has proposed a generic
framework suitable for authentication and authorization in
constrained environments. ACE is based on OAuth 2.0. It
enables a third party, defined as the client, to access pro-
tected resources from a resource server, e.g. a smart device.
Instead of requiring the owner of the device, the resource
owner, to disclose his or her credentials, access is regulated
by tokens provided by a trusted third party, the authorization
server. The generic architecture of ACE covers a wide range
of possible use cases with different requirements from a
security point of view [2]. ACE defines profiles that describe
the transport mechanisms and security protocols for different
deployments. For example, clients that directly access the
resource server use ACE either in combination with the
Datagram Transport Layer Security (DTLS) [3] or with

Object Security of COAP (OSCOAP) [4]. Clients in publish-
subscribe architectures can use the ACE pub-sub profile.

The main drawback of both ACE and OAuth 2.0 is that
both depend on the security of the underlying communi-
cation protocols, e.g. (D)TLS, and a trusted third party,
the authorization server. The authentication of the different
entities, resource owner, resource server and authorization
server, happens with pre-shared secrets. ACE does not
provide the option for dynamic entity authentication with
PKI. For large scale deployments, the pre-distribution of
entity authentication secrets might be infeasible.

In this paper, we present a new secure authorization and
authentication framework that addresses the main security
issues of ACE. We follow the security model of OAuth
1.0a [5]. Our framework uses self-securing tokens and is
therefore independent from the security properties of the un-
derlying network stack. This makes it suitable for complex,
multi-hop environments. In these contexts the underlying
network stack changes and does not always guarantee secure
communication. We introduce basic PKI functionalities in
our achitecture. This removes the need to blindly trust the
authorization server. Moreover, we capitalize on an initial
trust anchor between the client and the resource server by
setting up a chain-of-trust. The chain of trust allows the
client to reuse tokens while protecting them with simple
symmetric cryptographic functions. Yet, we leverage a vast
amount of work behind the ACE architecture. More pre-
cisely, we keep the ACE authorization flow and adopt the
concept of proof-of-possession tokens that binds the identity
of a client with an access token. Our tokens are represented
with the Concise Binary Object Representation (CBOR) [6]
format and protected using Concise Object Signing and
Encryption (COSE) objects [7].

We then propose an alternative for Ephemeral Diffie
Hellman over Cose (EDHOC) as Authenticated Key Estab-
lishment (AKE) scheme. A shared secret between the client
and resource server is calculated with the Elliptic Curve
Integrated Encryption Scheme (ECIES) [8]. ECIES can be
used in all ACE’s profiles. However, it is optimized for use
cases where the client and resource server cannot directly
communicate. For example, when two nodes in different
duty-cycled sensor networks want to communicate, their
messages must be buffered in a safe way in a network proxy.

Resource Owner
User

Authorization Server
Service Provider

Resource Server

Client
Consumer

1

2a

2b

11

3
2

2

3a

3b

OAuth 1.0a

ACE / OAuth 2.0 #

#

Figure 1. The OAuth 1.0a and ACE authorization flows.

We have tested the critical aspects from our architecture
on a STM32L4 [9]. The results for cryptographic primitives
show that after an initial expensive token verification phase,
further access control with the same token can be done
with negligible overhead. Furthermore, we measured the
memory overhead for the cryptographic primitives, which
amounts in total to 45kB. We also measured the token sizes
and compared them with the maximum packet length of
Bluetooth Low Energy, IEEE802.15.4 and NFC.

The rest of the paper is organized as follows: In Section II
we provide a background on ACE, OAuth 1.0a and their
security models. Section III defines the threat model for our
framework. In Section IV and V we propose our framework
and test its properties. A security analysis is given in
Section VI and Section VII concludes the paper.

II. ACE VS. OAUTH 1.0A

A. OAuth 1.0a

The OAuth protocol was designed for use on the web
and uses HTTP for commmunication. It enables websites
or applications (consumers) to access protected resources
from a web service (service provider). The consumers don’t
require users to disclose their credentials [5]. The OAuth
protocol has 3 phases, depicted in Figure 1. In phase 1,
the consumer asks an unauthorized request token from the
service provider (1). In phase 2, the consumer requests
the authorization of the user to access the protected re-
sources (2a). The consumers redirects the user to the service
provider. The user authenticates him or herself, e.g. using
normal user and password credentials, and then grants or
denies the authorization request of the consumer (2b). If the
user accepts, the consumer is informed that its unauthorized
access token from phase 1 has been authorized. In phase 3,
the consumer returns to the service provider and exchanges
its authorized request token for an access token. The access
token can be used to access the protected resources (3).

B. OAuth 1.0a Security

OAuth 1.0a requires consumers to generate new signa-
tures on every request. These can be calculated through
asymmetric cryptography or Hashed Message Authentica-
tion Codes (HMAC) and provide integrity and authenticity
of the requests. Generating and validating signatures creates
a considerable overhead as parameters have to be parsed,
sorted, and hashed in a certain way for every request. The
secrets needed for signing are provided during an enrollment
phase and are then never transmitted across the wire. OAuth
1.0 does not assume an underlying secure channel. Because
of these reasons OAuth 1.0a is considered more secure than
OAuth 2.0 but more difficult to implement [1].

C. ACE Framework

The ACE architecture introduces a flexible authorization
and authentication for the IoT. The current specification is
based on OAuth 2.0. It uses CoAP with CBOR encoded
messages instead of HTTP. ACE uses the naming convention
of OAuth 2.0, but the entities act primarily the same as
in OAuth 1.0a. The resource owner replaces the user. The
protected resources are now stored on a newly introduced
entity, the resource server, instead of the service provider.
The client has the role of consumer. The ACE flow starts
with the client obtaining the resource owner’s consent, see
Figure 1. The consent can be delivered dynamically as in the
OAuth schemes or it can be pre-configured by the resource
owner at the authorization server (1). In step 2, the client
makes an access token request to the authorization server.
If the authorization server successfully processes the request
from the client, it returns an access token (2). In the final
step, the client presents the token to the resource server. If
the resource server can validate the token, access is granted
to the protected resource (3a). The resource server can try
to validate the tokens locally or it will request a token
introspection at the authorization server. The authorization

server will then verify the token for the resource server (3b).
Tokens that can be locally verified are called self-contained
tokens.

D. ACE Security

Similarly to OAuth 2.0 that uses TLS to protect HTTP
traffic, ACE uses secure communication protocols such as
DTLS and Object Security to protect CoAP messages. The
CoAP traffic carries both the tokens and the protected
resources. The entities in ACE always use mutual authen-
tication. This is obtained through pre-shared raw public
keys or symmetric keys. Authentication through PKI is
not supported in ACE. ACE defines an additional defense
against token theft. It introduces Proof-of-Possession (PoP)
tokens. To generate PoP-tokens the authorization server
binds cryptographic keys to the traditional access tokens.
These so called PoP-keys can be symmetric or asymmetric
key pairs. Symmetric PoP-keys are randomly generated by
the authorization server. The authorization server shares one
copy with the client. A second copy of the PoP-key is
either stored by the authorization server to be used on token
introspection or securely shared with the resource server
so that it can locally verify the PoP-tokens. If the client
uses asymmetric PoP-keys, the authorization server binds
the public key of the client to the PoP-token. The client uses
the symmetric or asymmetric PoP-keys to demonstrate the
possession of a secret to the resource server when accessing
the protected resource through the presentation of its PoP-
token. It proves that the client is the valid owner of the
token.

1) CoAP over DTLS: When using DTLS as secure trans-
port layer the client will set up a secure channel with the
resource server [3]. The client can either use asymmetric
cryptography with raw public keys or a symmetric pre-
shared key mode. In the first scenario a client publishes its
raw public key to the authorization server. The authorization
server generates a token and binds it to the client’s public
key. Before starting the DTLS handshake the client must
send its token to the resource server. The resource server
must obtain the public key of the client that was bound
to the token. The resource server can then authenticate the
client. While in pre-shared key mode, the client and resource
server can use a pre-shared symmetric pop key, provided by
the authorization server, to mutually authenticate and secure
the DTLS session.

2) OSCOAP: In contrast to DTLS, OSCOAP does not
protect the communication channel but uses COSE objects
to protect the payload of a CoAP message end-to-end,
across intermediary nodes [4]. OSCOAP uses a common
security context between the client and the resource server.
This context specifies a a pre-established master secret and
an Authenticated Encryption with Additional Data (AEAD)
algorithm that is used to encrypt and protect the payload.
Similarly to DTLS, a symmetric PoP-key, provided by

the authorization server, can be directly used as a master
secret to derive OSCOAP’s security contexts and mutually
authenticate the client and the resource server. Alternatively,
a symmetric or asymmetric PoP-key can be used to authen-
ticate the messages during EDHOC. The secret derived from
EDHOC [10] is then used as master secret for the security
context.

III. THREAT MODEL

In order to design a token-based authorization and authen-
tication scheme we must analyze the different threats. The
threat model lists token-specific threats and threats against
entities in the architecture. The token-related threats are:

• Integrity of the tokens: we want to prevent unauthorized
entities from forging valid tokens or changing the
content of the token after its creation.

• Token theft: a token theft detection mechanism must
be in place to prevent unauthorized entities from using
stolen tokens.

The threats against entities in the architecture are pre-
sented below:

• The resource servers in IoT architectures are often con-
strained devices. They can be deployed in remote areas
and can lack basic security features, such as memory
protection units (MPU). These devices are prone to a
wide range of network and physical attacks. Because of
these reasons we must minimize the storage of secrets
in the resource servers and verify their identity during
the token exchanges.

• The clients can be very heterogeneous. They can be
laptops, smartphones, cloud services or other smart
devices. The tokens stored on these devices must be
protected from theft. The clients must be authenticated
during the token exchanges and we must prevent them
from forging valid tokens.

• The authorization server creates tokens for the clients
after they successfully authenticate. In our new archi-
tecture we want to prevent a compromised authorization
server from accessing all the protected resources.

IV. PROPOSED AUTHORIZATION ARCHITECTURE

We design a new token-based access control scheme with
authenticated key establishment for IoT platforms. The ac-
cess tokens consist of a set of encoded access rights, known
as token claims, wrapped in a COSE object. Our architecture
is standalone and does not depend on the security of the un-
derlying transport method. It handles resource servers with
intermittent Internet connectivity by using self-contained
tokens. Clients can be provided with long-lived tokens if
they have limited connectivity with the authorization server.
Long-lived tokens allow multiple authentications with the
same token. The main advantage is that our framework
can easily be used in complex, multi-hop environments
where the underlying network stack changes and therefore

does not always guarantee secure communication. We avoid
the use of trusted third parties. The framework uses the
same name conventions as the ACE specification. We make
several assumptions about the entities in our framework: the
constrained devices are capable of lightweight asymmetric
cryptography and every device can either contact a Cer-
tificate Authority or has a root certificate onboarded. This
allows the participating devices to sign messages and verify
the identities behind the signatures.

A. Access Token Generation

Before a client can recover a valid access token for
a protected resource it must obtain permission from the
resource owner. With a valid permission it can request an
access token from the authorization server. The authorization
server sets the token claims according to the permission and
wraps the token claims in a COSE-sign object, shown in
Figure 2. The authorization server signs the protected header
and the payload, and transfers it to the client. The client
verifies the authorization server’s signature and signs the
COSE object with its own private key.

Token Claims
Protected
Header

Unprotected
Header

Payload

Authorization Server
Signer object

Client
Signer Object

Multi Signature object

Identity | Scope | Protect.

Figure 2. The self-securing token based on CWT specification. The token
claims are wrapped in a COSE-sign object, allowing for multiple signatures

The token claims use the same structure as the CBOR web
token (CWT) [11] specification. It consists of three parts:
the token identity information fields, token scope fields and
token protection fields.

1) Token Identity Information: The token identity infor-
mation fields contain a subject field and an audience field.
The first identifies a unique resource server that is the target
of this token. The latter stores the client’s public key or a
key identifier of the client’s public key for which the token
is created. The full public key can be presented by a COSE
key object. The issuer field defined in CWT is omitted in our
token model because a key identifier for the public key of
the authorization server is already included in the signature
part of the enveloping COSE object.

2) Token Scope: The scope of the token is defined in
the resource scope field. It describes the different actions
a client is allowed to take once the token gets validated by
the resource server. These actions are application dependent.
The expiration, not-before and issued-at fields store timing
information on when the token can be used and when it was
created.

3) Token Protection: The token protection field holds
two replay counters. The long-term replay window is re-
sponsible for replay protection in between different tokens.
The window contains an integer that is incremented by
the authorization server each time a client requests a fresh

token from the authorization server. The authorization server
maintains per client a long-term replay window value that
is independent from other clients. The short-term replay
window is a replay protection window, the scope of which
is limited to the lifetime of the token. A resource server
stores, per client, both replay window values. The value of
the short-term replay window must change on every token
use to obtain the PoP-principle, see Section IV-B.

When the resource server uses the token timing informa-
tion, such as the expiration, not-before and issued-at fields,
to limit the token usage, the short-term replay window is
a simple counter that increments for every token use. If
the resource server does not possess precise time-keeping
hardware, the authorization server leaves the expiration field
in the token scope blank and sets the short-term replay
window to a specific value during the token creation. The
resource server then decrements the short-term window for
every token use until the window value reaches 0. At 0 the
token is no longer valid and the client will have to request
a new token at the authorization server.

B. Authenticating to the Resource Server

In deployments without an intermediary network proxy,
the client sends its token directly to the resource server,
see (1) in Figure 3. A token is always processed in two
phases. In the first phase the token is validated. When a
client authenticates with a fresh token, the resource server
verifies the following information:

1) It verifies that the token hasn’t expired. It either checks
the token scope field or the short-term replay window.

2) It verifies the signatures of the authorization server
and the client.

3) If the client has no previous records, the resource
server uses the audience field to create a client ID.
It then stores the replay values for this ID.

In phase 2, the resource server creates a COSE-encrypt
object. It copies the token claims from the received COSE-
sign object and updates the short-term replay protection
window. It encrypts the payload according to the COSE
specification. The key for the encryption algorithm, Ksh,
is derived from a shared secret established during the AKE.
The AKE takes places after the initial token verification,
see Section IV-C. The resource server then protects the
integrity of the payload, containing the token claims, and
the protected header fields of the COSE-encrypt object by
calculating a HMAC according to the COSE specification.
The key necessary for the HMAC is generated locally on the
resource server and only known to the resource server, Krs.
It prevents the client from tampering with the token, i.e.
changing the token claims. The resource server then sends
the encrypted updated token back to the client, see (2) in
Figure 3.

These initial two steps are expensive due to the asym-
metric cryptography needed to verify a fresh token and

{Updated token}Ksh,{HMAC}Krs

Resource
ServerClient

{Fresh Access Token}SIG1,SIG2

{Updated token}Ksh,{HMAC}Krs,{HMAC}Ksh

{Updated token'}Ksh,{HMAC'}Krs

Authenticated Key Establishment

1

2

3

4

Figure 3. The token exchanges between the client and the resource server:
SIG1 and SIG2 are the authorization server and client signatures. Ksh and
Krs are the shared key and the resource server HMAC’s key, respectively

the setup of the shared secret with the AKE protocol. The
verification of a fresh token bootstraps a chain-of-trust that
allows the client and resource server to use solely symmetric
cryptography in the following token verifications.

Updated Token
Protected
Header

Unprotected
Header

Encrypted Payload

 {Resource Server's
MAC}Krs

Multi MAC object

{Client's
MAC}Ksh

Figure 4. The updated token claims, wrapped in a COSE-encrypt object.
We use the recipients fields of the COSE-encrypt object to put an integrity
check of the resource server and an integrity check of the client in the
COSE object.

The client then receives the updated token. It can verify
the origin because the token was encrypted with the shared
key, Ksh. The shared key thus acts as a PoP-key. The next
time the client wants to authenticate to the resource server,
it uses the received token. Before it sends the token to
the resource server for a new authentication, it reencrypts
the token and calculates its own HMAC over the payload,
with Ksh, see (3) in Figure 3. A verifiable HMAC proofs
knowledge of the PoP-key to the resource server. The token
is depicted in Figure 4. The resource server again uses 2
phases to process the token. It now verifies the following
information:

1) It verifies the token’s expiration time.
2) It verifies its own HMAC over the token, with Krs,

to detect tampering.
3) It verifies the client’s HMAC over the token, with Ksh,

to validate its identity.
4) It checks the validity of the long-term token replay

number and the short-term replay number in the token
by comparing it to its local versions.

If all checks are valid, the token originates from the
rightful client and it has not been tampered with. Because
with each token use, the resource server updates the short-

term replay window, the integrity tags change every time.
A man-in-the-middle (MITM) or replay attack is therefore
not possible. Before sending back the updated token to the
client, the resource server removes the client’s HMAC. The
client can then again prove it’s knowledge of the shared
secret by calculating the HMAC over the updated token, see
(4) in Figure 3.

C. Authenticated Key Establishment

Similarly to ACE, we use EDHOC to establish a shared
secret between the client and the resource server. EDHOC is
authenticated with the private keys from both the client and
the resource server bound to their respective certificates. This
provides a mutual authentication during the shared secret
establishment. The shared secret is then used to derive two
symmetric keys. The first key, Ksh, is used as a PoP-key
to proof valid ownership of the token. The second key is
used in combination with an AEAD scheme to protect the
resources.

In scenarios where a direct connection between the re-
source server and client is not possible, we propose the use
of Elliptic Curve Integrated Encryption Scheme (ECIES)
as the key establishment scheme. Where EDHOC uses 2
messages to set up a symmetric key, ECIES can function as
an offline scheme. The resource server derives a symmetric
key based on the public key of the client and a locally
generated ephemeral key pair. With this key it can encrypt
data and securely store it in the proxy server before the client
has derived its key. An example where a direct connection
might not be possible is when both the client and resource
server are sensor nodes that belong to two distinct wireless
networks. The nodes sleep most of the time and their
duty cycles are not synchronized. Authentication and key
establishment between both entities can be solved in the
following way, see Figure 5. The client posts a fresh access
token to a proxy (1). The proxy forwards the token to the
resource server when it becomes available (2). The resource
server validates the token locally. It then starts the ECIES
scheme. The resource server generates an ephemeral key pair
U = u ·G, where u is the private key, G the generator of the
elliptic curve and U the public value. It selects the Diffie-
Hellman key agreement function and provides its private key,
u, and the client’s public key extracted from the token, V ,
as input. The resulting secret is u · V . It can combine the
secret with optionally additional data and feed it to a Key
Derivation Function (KDF). The KDF is run until a key for
encryption and a key for the MAC can be derived. Both keys
are used in combination with an AEAD scheme to encrypt
the resources posted to the proxy and protect their integrity
(3). The resource server then pushes the encrypted resource,
updated token and its ephemeral public key to the network
proxy. The resource server signs the ephemeral public key,
{U}SIG, with its static private key bound to its certificate
before it is uploaded to the proxy. When the client connects

Resource Server

Network proxy

Client

u

KA VKDF

Kenc Kmac

KA
U

v KDF

Kenc Kmac

access token access token

{{resource}Kmac}Kenc
updated token

{U}SIG

{{resource}Kmac}Kenc
updated token

{U}SIG

21

34

Figure 5. Authenticated key establishment over an indirect connection using ECIES.

to the network proxy, it retrieves the encrypted resources, its
updated token and the signed ephemeral public key of the
resource server. The signature on the ephemeral public key
allows the client to validate the resource server’s identity. It
subsequently runs its own instance of the ECIES scheme to
derive the same symmetric keys. The client can now decrypt
and verify the integrity of the retrieved resources.

The next time a client wants to access the protected
resources it uploads its new updated token. After verification
of the token the resource server can decide to use the
old derived keys or rerun the ECIES scheme with a new
ephemeral key pair. The latter provides Perfect Forward
Secrecy (PFS), similar to EDHOC.

V. IMPLEMENTATION

In this section we measure the critical aspects of our
framework.

A. Computational Overhead

We tested the cryptographic primitives, used in our archi-
tecture, on a STM32L4 [9]. The STM32L4 uses a Cortex-M4
at 80MHz as processor. The results are depicted in Table I.
We used mbed TLS [12] [13] as cryptographic library. All
the elliptic curve operations used the optimized NIST curves
and are supported by COSE. The resource server starts the
token processing with the validation of 2 signatures.

Table I
CRYPTOGRAPHIC OVERHEAD (ms)

Primitive Encrypt/Sign Decrypt/Verify

AES (128 bit) 0.079 0.155

HMAC (SHA256) 0.386 -

ECDSA (P-256) 248 839

Key gen. (P-256) 590 -

ECDH (P-256) 581 -

Afterwards it needs to set up the shared secret using either
EDHOC or ECIES. We can see that this has a significant
cryptographic overhead. The first verification and setup is
expensive but bootstraps a chain-of-trust between the client
and the resource server. Once the initial verification is
completed and EDHOC has derived an authenticated key, the
other token exchanges use solely symmetric cryptography.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 ti
m

e

Round trips

Crypto impact

Figure 6. The impact of the cryptographic overhead from the resource
server’s point of view. The initial overhead becomes less important by
every updated token exchange. The exchange of an updated token uses
only symmetric cryptography.

 0.058

 0.059

 0.06

 0.061

 0.062

 0.063

 0.064

1 2 3 4 5 6 7 8 9 10

E
ne

rg
y(

J)

Round trips

Crypto impact

Figure 7. The impact of the cryptographic overhead from the resource
server’s point of view. The initial token verification uses a significant
amount of energy but the additional energy consumed by the symmetric
cryptography is negligible.

We didn’t test the ECIES scheme because at its core it uses
the same primitives as EDHOC. The normalized impact of
the cryptographic operations per token exchange is depicted
in Figure 6 and the additional energy usage per token
exchange is shown in Figure 7.

B. Memory Overhead

The memory overhead of our scheme can be split up in
two parts: the code size and the storage of client information.

1) Code Size: We measured the code size of the cryp-
tographic primitives in the mbed TLS on the STM32L4.
The results are depicted in Table II. While the code size
of the symmetric primitives is relatively small, both ECC
primitives have a distinct overhead. A part of ECDSA’s code
size is function calls to the mbed TLS hash library. The total
code size for the cryptographic primitives amounts to 45
kB. The resource server and client also use the CBOR and
COSE encoding libraries for the encoding and formatting of
the tokens.

Table II
MEMORY OVERHEAD OF THE CRYPTOGRAPHIC PRIMITIVES (BYTES)

Primitive Code size

AES (128 bit) 4500

HMAC (SHA256) 5304

ECDSA (P-256) 26676

ECDH (P-256) 17340

2) Client Data and Key Storage: The resource server
stores for each client the long-term and short-term replay
windows. These are linked to the client’s ID which can
be a hash of the client’s public key. The resource server
also stores the shared symmetric key for encryption of the
updated token. The total memory overhead per client is 448
bits if we take 32 bits for both replay windows. The system-
wide stored information is the certificate of the authorization
server, the resource server’s root certificate, and the locally
derived key, Krs, to calculate the HMAC over the updated
tokens. This key can be used to protect the integrity of the
all the tokens used by the different clients.

C. Bandwidth Limitations

Constrained devices use communication protocols with
limited packet sizes, such as Bluetooth Low Energy (BLE),
IEEE802.15.4 and Near Field Communication (NFC). The
maximum packet sizes of these protocols are 245 bytes,
120 bytes and 254 bytes, respectively [14] [15]. The size of
the exchanged tokens is therefore an important factor. We
implemented our own Python COSE library and tested the
COSE object sizes for our different token types: the fresh
token and the updated token. We used an example token for
test purposes:

• Subject field: hash of the resource server’s public key
(256 bit)

• Audience field: hash of the client’s public key (256 bit)
• Scope: a 32 bit field where every bit represents a

protected resource on the resource server.
• Long-term replay window: 32 bit
• Short-term replay window: 32 bit. No timing informa-

tion is set in the token scope, so this field contains the
total amount of allowed token uses.

The total raw token size is 74 bytes. The token encoded as
a CBOR array amounts to 80 bytes. The COSE-sign object
has the token as payload, two signatures and the signature
algorithms and key identifiers in the protected header. The
total size of the COSE-sign object of the fresh token is
245 bytes. The largest part of the COSE-sign object are
the signatures calculated with ECDSA and P-256 as curve.
COSE supports P-256, P-384 and P-512. When the client
reauthenticates with the updated token the COSE object
has been transformed to a COSE-encrypt object. It contains
the CBOR-encoded token as encrypted payload, 2 HMACs
and information on the cryptographic primitives and key
identifier in the protected headers. The total size of the
updated token is 181 bytes. We used SHA-256 as internal
hash function. Every HMAC has thus a total size of 32 bytes.
COSE supports HMAC lengths of 64, 256, 384 and 512 bits.

We notice that the COSE-mac object fits in a BLE and
NFC frame. The COSE-sign does not fit in the frames,
because the underlying network protocols also add their
headers before the packet is sent. When using tokens in
wireless sensor networks, which mainly use IEEE802.15.4,
the tokens will always have to be split up over several
packets.

VI. SECURITY CONSIDERATIONS

This section discusses security aspects of our proposed
architecture.

A. Protection against Eavesdropping Attacks

The fresh token, signed by both the authorization server
and the client, is not encrypted during transmission. At-
tackers can thus read the content of the token. This does
not pose a security issue as the token does not contain any
secrets. In case there are privacy concerns, the fresh token
can be sent over a secured channel. After the authenticated
key establishment the updated tokens and the exchanged
resources are encrypted with the shared key, established
during the AKE.

B. Protection against Replay Attack

The tokens contain a long-term and short-term replay
window. The long-term window provides protection against
replay when an attacker tries to reuse an older token. This
replay window only increases when a specific client obtains
a new token from the authorization server. The value is
set by the authorization server and checked and stored by
the resource server. The short-term replay window provides
protection when a client uses the same token more than once.
The value starts at 0 for a fresh token and is incremented by
the resource server on every usage. Notice that the resource
server must store and update the replay window values,
otherwise a replay attack is possible.

C. Protection against Man-in-the-Middle Attack

Man-in-the-middle attacks are thwarted by the use of
signatures or HMACs. A fresh token carries two signatures.
One from the authorization server and one from the client.
The resource server uses its onboarded certificates to validate
the identities. While exchanging the updated tokens we
employ the proof-of-possession concept from ACE. The
shared key Ksh, derived from the AKE, is used by the client
to calculate a HMAC and encrypt the updated token. The
resource server only uses the shared key for encryption. It
calculates its own HMAC with its local key, Krs. Correct
usage of Ksh implies knowledge of the shared secret.

D. Protection from a Rogue Client

A malicious client cannot forge tokens. A fresh token must
have a valid signature from the authorization server. The
integrity of the updated tokens is protected by the HMAC
calculated by the resource server with Krs. This key is only
known to the resource server.

E. Protection against Compromised Authorization Servers
Fresh tokens are only considered valid when they have

signatures of both the client and authorization server. Be-
cause the signatures are validated through the certificate sys-
tem an authorization server cannot easily spoof the signature
of a client.

F. Protection against Compromised Resource servers
If a resource server were compromised, all the stored

cryptographic material could be revealed. We advise that
resource servers that are capable use the PFS modes of
EDHOC and ECIES. This minimizes the amount of com-
promised data when the resource server is captured.

VII. CONCLUSION

This paper proposes a new authentication and authoriza-
tion framework. The main idea is to combine the security
model of OAuth 1.0a with the lightweight IoT architec-
ture of ACE. We designed a framework that uses basic
PKI functionalities for dynamic entity validation and self-
securing tokens. The tokens can be long-lived and are self-
contained. This allows for deployments where both the client
and resource server have only limited connectivity with the
authorization server. The security of the tokens does not
depend on the security of the underlying transport protocols
and avoids the use of trusted third parties. We achieve this
by using signatures on the fresh tokens obtained from the
authorization server and HMACs on the updated tokens. We
also propose a new authenticated key establishment scheme.
ECIES allows for offline key derivation which is useful in
use cases where the client and resource server can’t directly
communicate.

The experimental results show that the initial verification
of the fresh tokens is expensive but it establishes a chain-
of-trust. This can be leveraged by applications to strongly

reduce the time and energy needed to verify the same token
in the future.

VIII. ACKNOWLEDGMENTS

This work has been partially supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the
French program Investissement d’avenir, the FUI IoTize
project funded by Région Auvergne-Rhône-Alpes, and the
DataTweet project under contract ANR-13-INFR-0008-01.

REFERENCES

[1] A. Niruntasukrat, C. Issariyapat, P. Pongpaibool, K. Meesub-
lak, P. Aiumsupucgul, and A. Panya, “Authorization mech-
anism for MQTT-based Internet of Things,” in Communica-
tions Workshops (ICC), 2016 IEEE International Conference
on. IEEE, 2016, pp. 290–295.

[2] L. Seitz, G. Selander, E. Wahlstroem, S. Erdtman, and
H. Tschofenig, “Authentication and Authorization for
Constrained Environments (ACE),” IETF, Internet-Draft
draft-ietf-ace-oauth-authz-06, Mar. 2017, work in Progress.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-
ietf-ace-oauth-authz-06

[3] S. Gerdes, O. Bergmann, C. Bormann, G. Selander, and
L. Seitz, “Datagram Transport Layer Security (DTLS)
Profile for Authentication and Authorization for Constrained
Environments (ACE),” IETF, Internet-Draft draft-ietf-ace-
dtls-authorize-00, Jun. 2017, work in Progress. [Online].
Available: https://datatracker.ietf.org/doc/html/draft-ietf-ace-
dtls-authorize-00

[4] L. Seitz, M. Gunnarsson, and F. Palombini, “OSCOAP
profile of ACE,” IETF, Internet-Draft draft-seitz-ace-
oscoap-profile-02, May 2017, work in Progress. [Online].
Available: https://datatracker.ietf.org/doc/html/draft-seitz-ace-
oscoap-profile-02

[5] (2016, June) OAuth Core 1.0 Revision A. OAuth Core
Workgroup. [Online]. Available: https://oauth.net/core/1.0a/

[6] C. Bormann and P. E. Hoffman, “Concise Binary Object
Representation (CBOR),” RFC 7049, Oct. 2013. [Online].
Available: https://rfc-editor.org/rfc/rfc7049.txt

[7] J. Schaad, “CBOR Object Signing and Encryption
(COSE),” IETF, Internet-Draft draft-ietf-cose-msg-24,
Nov. 2016, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-cose-msg-24

[8] V. G. Martı́nez, L. H. Encinas, and C. S. Ávila, “A Survey
of the Elliptic Curve Integrated Encryption Scheme,” ratio,
vol. 80, no. 1024, pp. 160–223, 2010.

[9] STM32L432KC STM32L4KB, STMicroelectronics, June
2017, rev. 3.

[10] G. Selander, J. Mattsson, and F. Palombini,
“Ephemeral Diffie-Hellman Over COSE (EDHOC),”
IETF, Internet-Draft draft-selander-ace-cose-ecdhe-06,
Apr. 2017, work in Progress. [Online]. Avail-
able: https://datatracker.ietf.org/doc/html/draft-selander-ace-
cose-ecdhe-06

[11] M. Jones, H. Tschofenig, E. Wahlstroem, and S. Erdtman,
“CBOR Web Token (CWT),” IETF, Internet-Draft draft-
ietf-ace-cbor-web-token-05, Jun. 2017, work in Progress.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-
ietf-ace-cbor-web-token-05

[12] (2016) ARM mbed: mbed TLS. ARM. [Online]. Available:
https://tls.mbed.org

[13] (2015) Nist lightweight cryptography workshop.
ARM. [Online]. Available: http://csrc.nist.gov/groups/ST/lwc-
workshop2015/presentations/session7-vincent.pdf

[14] É. Morin, M. Maman, R. Guizzetti, and A. Duda, “Compar-
ison of the Device Lifetime in Wireless Networks for the
Internet of Things,” IEEE Access, vol. 5, pp. 7097–7114,
2017.

[15] “Near Field Communication - Interface and Protocol (NFCIP-
1),” ECMA, Tech. Rep., June 2013.

