
HAL Id: hal-01596118
https://hal.science/hal-01596118

Submitted on 4 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clock Drift Prediction for Fast Rejoin in 802.15.4e
TSCH Networks

Timothy Claeys, Franck Rousseau, Bernard Tourancheau, Andrzej Duda

To cite this version:
Timothy Claeys, Franck Rousseau, Bernard Tourancheau, Andrzej Duda. Clock Drift Prediction for
Fast Rejoin in 802.15.4e TSCH Networks. 26th International Conference on Computer Communication
and Networks (ICCCN), Jul 2017, Vancouver, BC, Canada. �10.1109/ICCCN.2017.8038401�. �hal-
01596118�

https://hal.science/hal-01596118
https://hal.archives-ouvertes.fr

Clock Drift Prediction for Fast Rejoin
in 802.15.4e TSCH Networks

Timothy Claeys, Franck Rousseau, Bernard Tourancheau, Andrzej Duda
University Grenoble Alps,

Grenoble Institute of Technology, CNRS Grenoble Informatics Laboratory, Grenoble, France.
Email: firstname.lastname@imag.fr

Abstract—In this paper, we propose a fast predictive resynchro-
nization scheme that allows nodes to rejoin a 802.15.4e TSCH
network with which they were previously synchronized. The idea
of the scheme comes from the investigation of the internal and
external root causes of the clock drift between two nodes—
we have identified the causes and proposed a means for its
estimation. Based on the prediction of the drift between any
pair of nodes, we are able to determine the instant at which a
node needs to wake up after desynchronization, thus reducing
its energy consumption and the rejoin latency.

We compare the proposed scheme with other state-of-the-art
proposals through experiments on different hardware platforms.
The experimental results show that desynchronized nodes rejoin
up to 34 times faster and consume less energy by a factor of
1000 compared to the other proposals.

I. INTRODUCTION

There is a growing need for network protocols that meet
the requirements for supporting the Internet of Things (IoT).
The IEEE802.15.4e standard defined three new MAC-layer
protocols [1]: i) the Deterministic and Synchronous Multi-
channel Extension (DSME) that uses the same beacon format
as IEEE802.15.4 and adds channel hopping, ii) Low Latency
Deterministic Networks (LLDN), and iii) Time Slotted Chan-
nel Hopping (TSCH). TSCH defines a time synchronized
network with dedicated timeslots to avoid collisions, and
channel hopping, with maximum 16 frequency channels, for
high reliability. Timeslot synchronization is important because
the operation of the MAC layer relies on the precise time align-
ment of the timeslots. Clock imperfections may therefore lead
to synchronization issues. To mitigate such problems, TSCH
specifies a default scheme to maintain synchronization: nodes
take advantage of the timing information on frame arrivals
to calibrate their clocks. Stanislowski et al. [2] extended this
default scheme by introducing the concept of drift awareness
in which nodes learn how their clocks drift with respect to
their neighbors to dynamically change the amount of traffic
required for a network to stay synchronized.

Synchronized operation and channel hopping have made
TSCH one of the most promising solutions for a wide range of
IoT applications (e.g. industrial, automotive, e-health applica-
tions) [3]. A fast network rejoin procedure lets TSCH support
truly dynamic networks with high churn when nodes often
leave and rejoin the network, e.g. the Floating Sensor Network
(FSN) project built at UC Berkeley [4] or energy scavenging
networks where nodes need to rejoin after the batteries are

recharged. Currently, the only way to realign the timeslots
of a node that wants to rejoin the network is to capture a
specific frame, called an Enhanced Beacon (EB), containing
synchronization information. If the network traffic is sparse
and spread over multiple frequency channels, the rejoining
node may have to scan actively for long time periods, which
may be unfeasible for nodes with small batteries or energy har-
vesting. The current state of the art in this domain [5], [6] has
mainly focused on optimizing the bootstrap synchronization
phase in which uninitialized nodes want to join a network.

In this paper, we first study in detail the internal and external
root causes of the clock drift between two nodes. We begin
with an analysis of the internal root causes by measuring
the clock frequency variation on three hardware platforms,
namely TelosB Crossbow [7], OpenMote-CC2538 [8], and
GREENNET [9]. We investigate its effect on the clock drift
and model the internal as well as external root causes of the
drift. The investigation shows that a pair of nodes has a stable
relative drift that depends only on the stability of the clock
frequency. Moreover, platforms with a high frequency (HF)
clock stay synchronized longer because the fluctuations in
the clock frequency caused by the production spread (small
imperfections in the crystal and the surrounding electrical
components [3]) have a smaller impact on the relative drift.
Furthermore, we study the impact of external drift root causes
such as temperature and input voltage to show that we can use
the relationship between the external causes and the frequency
of the crystal to compensate for an unstable relative drift.

Based on these investigations, we propose a new three phase
scheme for rejoining the network with a minimal latency and
energy consumption. In the first phase, when a node is still
synchronized, it predicts the relative drift caused by internal
and external sources with respect to its time source neighbors,
the nodes whose timing information is used to calibrate the
clock. The node also tracks the number of elapsing slots
by using a low power timer. In the second phase, when
the node becomes desynchronized, it can find the current
network timeslot in an accurate manner by combining the drift
prediction and the low power timer value. Finally, the node
computes the right frequency channel based on the timeslot
parameters stored in the persistent memory. The node uses a
radio reception (Rx) window to capture passing frames. The
length of the Rx window depends on the time during which the
node was desynchronized and on the different types of drift

sources. The window grows steadily to account for unforeseen
drift factors.

We have implemented the proposed scheme in the Open-
WSN stack1 and evaluated its performance on three different
hardware platforms. The experimental results show that our
scheme outperforms the existing joining schemes. It achieves
a faster rejoin latency and consumes much less energy because
it accurately predicts the time location of frames transmitted
by the time source neighbor and thus spends less time in radio
active mode.

We start the paper with the background on IEEE802.15.4e
TSCH in Section II. Section III presents the state of the art
of the research relative to our work. Section IV shows the
investigation results on modeling the sources of the clock
drift and Section V introduces the proposed scheme. Section
VI reports on the experimental results of the performance
evaluation and Section VII concludes the paper.

II. IEEE802.15.4E TSCH: AN OVERVIEW

This section gives an overview of the IEEE802.15.4e TSCH
protocol and discusses in detail its synchronization methods.

A. Slotted Schedule

TSCH uses a schedule, which repeats over time, to synchro-
nize its communication in time and frequency. The schedule
defines a slotframe structure consisting of a group of timeslots.
Nodes can use different channel offsets during a timeslot so
a timeslot is subdivided into individual slots (see Fig. 1).
The schedule specifies the channel offset and the timeslots
during which a node should wake up to communicate with its
neighbors [10]. The node can go to sleep to save energy in
other slots. Each timeslot has an unique Absolute Slot Number
(ASN): the total number of timeslots elapsed since the start
of the network or an arbitrary start time determined by the
PAN coordinator. The ASN counter is incremented for every
timeslot and its value is tracked by all the devices in the
network. The ASN and the channel offset uniquely identify
a slot.

ASN

Tx

Rx

0

1

2

3

0 1 2 3 4 5

Timeslot

C
h
a
n
n
e
l
O

ff
se

t Tx
Rx

Fig. 1. Example TSCH schedule and slotframe with 6 timeslots, 4 channel
offsets, and slots dedicated to Tx or Rx operations.

A single slot is long enough to send a maximum length
frame and receive an acknowledgement frame. The duration
of a slot is implementation specific with 10 ms or 15 ms com-
monly used values. When a node wakes up for a transmission
slot (Tx) in its schedule, it checks the transmission buffer for

1The OpenWSN project provides open-source implementations of IoT
protocol stacks (https://github.com/openwsn-berkeley).

a frame to send. If the buffer is empty, the node goes back
to sleep. If there is a frame in the buffer, the node turns the
radio on, sends the frame, and waits for the acknowledgement
if expected. For a reception slot (Rx), the node turns on its
radio to receive a frame, sends back an acknowledgement if
required, and goes back to sleep. When it does not receive
anything within a specified time interval, it goes back to sleep.
During the TxRx slot, the node first checks the buffer for a
frame to transmit. If there is one, it proceeds as in the Tx
slot, otherwise it acts as an Rx slot. No frame reception in Rx
mode means that either the sender had nothing to send or the
frame sent by a neighboring node was lost.

TsTxOffset

Tx Ack

Rx AckTx window

Rx window

PGTTsRxOffset

AGT

t(s)

Tx
slot

Rx
slot

Fig. 2. Timeslot template indicates the time offsets within the timeslot. PGT
and AGT stand for Packet and Acknowledgment Guard Time, respectively.

One of the main advantages of TSCH is frequency channel
hopping that results in frequency diversity to mitigate the
effects of interference and multipath fading [11]. Moreover, the
use of several frequencies increases network capacity because
more nodes can transmit at the same time. Nodes periodically
switch the frequency channel using a hopping sequence, an
ordered list of frequency channels (by default, it is a pseudo-
randomly sorted list of all available channels) known to both
sending and receiving nodes. Two hopping nodes sharing a
hopping sequence compute the frequency channel for a given
slot with [1]:

CH = HS [counter mod sequence length], (1)

where HS is a hopping sequence, counter is a
shared counter for a pair of communicating nodes, and
sequence length is the length of the channel hopping se-
quence. In most TSCH implementations, the counter is con-
structed as the sum of the ASN and a channel offset for a
given slot [11], [12]. Nodes can use 16 available frequency
channels. If the hopping sequence length and slotframe size
are relatively prime, nodes will successively hop through all
available channels [11].

B. TSCH PAN Formation and Maintenance

1) Building a TSCH Network: Nodes in the network ad-
vertise the network presence by periodically sending out En-
hanced Beacons (EB) containing a payload with information
elements (IE). IEs contain all the information needed by
a new or desynchronized node to join the network. The
following payloads are mandatory to ensure the successful
synchronization of a new node:
• Synchronization IE: contains the current ASN.
• Timeslot IE: contains the timeslot template that specifies

when the radio of the receiver and sender should be

turned on, when they should expect an incoming data
or acknowledgement frame. Fig. 2 presents a template.

• Channel Hopping IE: contains the hopping sequence used
by the network.

• TSCH Slotframe and Link IE: contains one or more
slotframes and their active slots. The joining nodes can
use the slots to communicate with the advertising device.

A node willing to join the network turns its radio on and
listens to EBs on a given channel [13]. The information
delivered by an EB allows the joining node to construct an
initial local schedule and to negotiate with the advertising
node some dedicated slots in which only one pair of nodes
can communicate. After building the initial schedule, the node
has to select a time source neighbor for clock calibration and
eventually construct its own EB for network advertisement.

2) Synchronization: As described above, a node initially
synchronizes with the network by means of EBs. This way of
operation is called advertisement based synchronization [14].
Every network has an advertisement policy that defines when
nodes transmit EBs. After the bootstrap phase synchroniza-
tion, nodes maintain time synchronization through regular
communication with their time source neighbor. The need
for synchronization comes from the fact that nodes have
independent clocks, the frequency of which may diverge from
the nominal frequency because of the production spread, small
imperfections in the crystal and the surrounding electrical
components. External factors can also influence the actual
frequency of clocks. All these phenomena cause a clock drift:
we assume that nodes have imperfect clocks C(t) with a given
drift D such that

∣∣dC(t)
dt − 1

∣∣ ≤ D [15]. A typical value of D
is 40 ppm for crystal clocks. The clock skew is the difference
between a given clock with respect to the perfect clock after
a certain time: δ = [C(t)− t] ·∆t.

TSCH defines an additional synchronization method based
on exchanging keep-alive frames. A higher layer such as 6top
can create a keep-alive (KA) frame when there has been no
clock calibration for a long time. When a node does not
communicate with its time source neighbor for a time longer
than the KA interval, it is considered desynchronized. KA
frames contain no data, they are sent just to calibrate the clock.

When a node pair exchanges any frame with its time source
neighbor, it uses either frame-based or acknowledgement-
based synchronization. Both methods require the receiver to
measure the clock skew (δ) between the expected and actual
time of the frame arrival. Because of the clock skew, nodes
have to use a guard time when turning on the radio. TSCH
defines the Packet Guard Time (PGT) with typical value of
2600 µs [12] [14]. A receiver will turn its radio on PGT/2
earlier than it expects the arrival of a frame (see Fig. 3). If at
least one frame is sent every KA interval, then |δ| < PGT

2 and
the reception of the frame is guaranteed. When the node does
not receive a frame preamble after a full PGT, it will turn its
radio off and go back to sleep. The same procedure is used at
the transmitter side when it expects an acknowledgement.

The frame-based and acknowledgement-based synchroniza-
tion schemes are defined as follows:

1) The receiver records timestamp ts of the frame start
symbol.

2) It measures the following clock skew:

δ = Radio offset +
PGT

2
− ts, (2)

where Radio offset represents the time between the
beginning of the timeslot and the activation of the radio.
For Tx and Rx slots these offsets are called TsTxOffset
and TsRxOffset, respectively, see Fig. 3.

3) In case of frame-based synchronization, the receiver
will use the measured value of δ to calibrate its clock.
When using acknowledgement-based synchronization,
the receiver will add δ to the acknowledgement frame,
which is sent back to the transmitter. In this scenario,
the transmitter calibrates its clock.

Rx

Tx

δ

TsTxOffset

TsRxOffset

Expected time of arrival

Start of transmission

PGT/2PGT/2 t(s)

t(s)

Fig. 3. Node pair timeline: the receiver activates radio PGT
2

earlier than the
instant at which it expects a frame, |δ| must be smaller than PGT

2
.

III. RELATED WORK

In this section, we give a brief overview of the main
proposals related to our work and with which we compare
in the evaluation. The vast amount of related research has
mainly focused on optimizing the bootstrap synchronization
phase for single channel protocols. Nodes have no prior
knowledge of the network but use only one radio frequency
for discovery [16] [17] [18]. We do not assess these proposals
as our scheme focuses on a multichannel rejoining scenario,
where we can exploit previously gained network information.
In this paper, we compare our scheme to the proposals of
Vogli et al. [5] and Duy et al. [6] as their join schemes also
specifically focus on the TSCH protocol. Both papers impose
network advertisement policies, while our scheme does not
require any specific scheduling of EBs nor data frames.

Vogli et al. [5] proposed two advertisement policies: Ran-
dom Vertical filling (RV) and Random Horizontal filling (RH).
The RV policy fixes a timeslot. Each new node that joins the
network sends one EB per slotframe. The location of the EB in
the schedule is defined by the fixed timeslot and a randomly
picked channel offset. In contrast, the RH policy fixes the
channel offset and randomly chooses a timeslot. As timeslots
or channel offsets are randomly picked, there is no guarantee
that a slot will not be taken twice by neighboring nodes. If
this happens, EBs are lost due to collisions. The chance that a
node captures an EB will also reduce when the slotframe size
and the amount of used channel offsets increases [13].

Duy et al. [6] took a similar approach, but they let every
node send multiple EBs per slotframe. Their scheme divides a
slotframe into an advertisement plane and a data plane. Each

32787

32787.5

32768

32768.5

32769

32766.2

32766.7

0 0.2 0.4 0.6 0.8 1 1.2 1.4

fr
e
q
u
e
n
cy

 [
H

z]

time [s]

OpenMote - Leaf

TelosB- Sink

Greennet - Leaf

OpenMote - Sink

TelosB- Leaf

Greennet - Sink

Reference

(a)

103

104

105

0 50 100 150 200 250 300

cl
o
ck

 s
ke

w
 [

µ
s]

time [s]

Rel. OM|S-L|
Abs. OMS
Rel. TB|S-L|
Abs. TBS
Rel. GN|S-L|
Abs. GNS

PGT

(b)

Fig. 4. Clock measurements on TelosB Crossbow, OpenMote-CC2538, and GREENNET platforms (at 25 ◦C): a) frequency variations in time, b) clock skew.

synchronizer, a node that advertises the network with EBs,
uses the advertisement plane to send a EBs on random consec-
utive channels. The number of EBs sent by each synchronizer
depends on the output of a fuzzy system that takes into account
the number of neighbors in the network and optimizes the
number of EBs sent by each node.

IV. IDENTIFYING ROOT CAUSES OF THE CLOCK DRIFT,
CLOCK SKEW AND ITS MODELING

In subsection IV-A and IV-B, we respectively investigate the
internal and external sources, i.e., voltage and temperature,
of the clock drift and the clock skew on different hardware
platforms running TSCH. The methodology of the study is to
have a one-hop network with a sink and a leaf. We deactivate
all drift mitigation techniques of TSCH in OpenWSN and
measure the clock frequencies on the nodes with a logic
analyzer [19] that samples at 50 MHz.

OpenWSN expects each node to have a clock frequency of
exactly 32 768 Hz. Therefore, a perfect clock with a frequency
of 32 768 Hz is our reference clock to measure the drift and
the skew of a given clock. Fig. 4a shows the frequencies of the
crystal oscillator for both the sink and the leaf for each tested
platform, the reference clock is shown by the dashed line. We
call the difference between the real frequency and the reference
the absolute drift (Dabs). The difference between the absolute
drift of the sink and the leaf is the relative drift (Drel). Fig. 4b
shows how fast the clocks diverge with respect to a perfect
clock by showing the absolute clock skew, and with respect to
each other, by presenting the relative clock skew. Every time
the node uses Eq. (2), it actually measures the relative clock
skew with respect to its time source neighbor. We only show
the absolute clock skew for the sink and the relative clock
skew to keep the figure readable. The leaf absolute skew is
not shown in Fig. 4b.

A. Internal Drift Causes

The TelosB platform has a 32 768 Hz crystal oscillator [20]
and we observe that it has the smallest absolute drift (see
Table I), but also important fluctuations, caused by the pro-
duction spread. The GREENNET motes use a 64 kHz clock [9]

TABLE I
MEASURED FREQUENCY (Hz) AND DRIFT (PPM) ON CHOSEN PLATFORMS.

Avg. Frequency Dabs Drel

Sink Leaf Sink Leaf
∣∣S− L

∣∣
TelosB 32768.65 32768.34 20.1 10.6 9.5

GREENNET 32766.47 32766.47 46.3 39.5 6.8

OpenMote 32786.93 32786.93 578.5 584.0 5.5

with a scaling factor to approximate a 32 768 Hz clock. As
the oscillator frequency is not a multiple of 32 768 Hz, the
resulting frequency deviates with an extra 2 Hz from the
reference frequency, resulting in a greater absolute drift. The
OpenMote nodes have a 32 MHz internal oscillator [8], so
its output is divided by an integer to obtain the frequency of
32 768 Hz. Similarly to the GREENNET platform, the 32 MHz
frequency of OpenMotes is not a multiple of 32 768 Hz and
the obtained frequency is shifted with roughly 18 Hz on top
of the production spread, giving them very high absolute drift.

The absolute drift shown in Table I generates an increas-
ing absolute skew, δabs, with respect to a perfect clock of
32 768 Hz (see Fig. 4b) represented after time ∆t by the
following relation:

δabs = ∆t

(
1

1± ef
+ ε

)
, (3)

where ±ef [ppm] is the production spread and ε represents
the frequency shift due to integer divisions.

The absolute skew for the OpenMote nodes is the largest due
to the large shift of 18 Hz. At the same time, the OpenMote
nodes present small frequency fluctuations while they are
fairly large on TelosB and GREENNET, which explains the
smaller relative drift (Drel) for OpenMotes. The clock of
OpenMotes runs at 32 MHz and dividing its frequency by
almost 1000 renders the clock fluctuations negligible. For
the TelosB and GREENNET nodes, the frequency fluctuations
result in a greater relative drift. When the resulting relative
skew exceeds PGT

2 , i.e. 1300 µs, indicated by the dashed line
in Fig. 4b, the leaf desynchronizes.

We can observe that combining nodes of different hard-
ware platforms leads to an increased relative skew due to a
large ∆ε between platforms. Synchronization in heterogeneous
hardware networks falls out of the scope of this paper, but the
authors are actively working on this issue.

B. External Drift Sources

1) Temperature: The main external factor that influences
the clock drift is temperature. Other causes, i.e. supply voltage
and crystal aging, change more slowly [2]. Datasheets of clock
crystals often describe the relationship between the tempera-
ture and the crystal frequency. We can use this information
to compensate the varying drift when a node can measure the
temperature changes, see subsection V-B.

2) Voltage: We have tested the impact of the battery
voltage on the TelosB crystal oscillator. We only tested the
TelosB platform as it is the only platform at our disposal
that does not have any voltage regulator. The input voltage
is directly applied to the clock crystal. In an experiment, we
have successively used the voltage of 1.8 V, 3 V, and 4 V
for periods of ten minutes. We have measured the following
corresponding frequencies: 32 768.42 Hz, 32 768.45 Hz, and
32 768.49 Hz. Although we can notice a slight increase in
frequency with the growing input voltage, the values are too
small to conclude that the changing voltage would noticeably
influence the clock drift for this platform. The TelosB nodes
include a battery voltage monitor that can track the voltage
levels of the battery. Platforms whose clock drift depends on
a changing input voltage can use such a monitor to compensate
for this external form of the varying drift.

C. Clock Drift and Clock Skew Model

By accounting for all the previous causes of the clock drift,
we can use the following relation to estimate the relative skew
between a node and its time source neighbor after time ∆t:

δrel = ∆t

(
1

1− ef
− 1

1 + ef
+ E(t) + ∆ε

)
, (4)

where E(t), ∆ε and ±ef represent the varying drift from
external causes, the difference in the frequency shift between
the nodes and the production spreads of the nodes, respec-
tively.

V. PREDICTIVE REJOINING SCHEME FOR TSCH

Building on the model presented in the last section, we
propose a fast rejoining scheme based on the prediction of
the clock drift and the resulting skew. The scheme minimizes
the join latency and energy consumption. It is backward
compatible with the TSCH protocol. Nodes implementing the
scheme do not rely on any actions taken by other nodes and
can thus coexist with ”standard” nodes. As we assume that
the radio is the main energy consumer, the scheme needs to
minimize the time during which a node actively scans for EB
frames and tries to rejoin the network. To decide when the
node needs to start receiving, the scheme computes the relative
clock drift to predict the instant of the next frame, sent by a

time source neighbor. The duration of the Rx window depends
on the predicted skew, the minimal duration being default PGT
(2600 µs).

A. Principles of the Rejoining Scheme

The scheme consists of three phases:
Phase 1. The first stage occurs when nodes are still syn-

chronized. Every node periodically measures its clock skew
with respect to its time source neighbor, δrel, by using the
frame-based synchronization method and calibrates its clock
accordingly, see Fig. 3. The rejoining scheme sums up the
measured skews over a time interval. The relative drift can
be calculated by dividing the skew sum by the time interval.
This estimation is constantly updated while the node stays
synchronized. A node also stores the ASN value each time it
measures δrel. After each clock calibration, the node restarts
a low power timer that counts the elapsed slots until a new
clock calibration occurs. The timer keeps running even when
the node is in the low power sleeping mode to save energy.

A node becomes desynchronized when the time elapsed
since the last clock calibration exceeds the KA interval. For
example solar-energy powered nodes desynchronize during the
night. At this instant, we cannot guarantee that frames will
be captured as the relative clock skew, δrel, might be larger
than PGT/2. When the desynchronized node does no longer
exchanges frames with its time source neighbor, the clock
drift causes the skew to grow further (see Fig. 5). The ASN
of the desynchronized node for a given slot does not longer
correspond to the ASN used by its time source neighbor and
Eq. (1) will not give the right frequency channel.

drift drift

t(s)

t(s)Ti
m

e
 S

o
u
rc

e
 N

e
ig

h
b
o
r

D
e
sy

n
c

N
o
d
e

ASN: 19
Freq: 7

ASN: 20
Freq: 12

ASN: 19
Freq: 7

ASN: 20
Freq: 12

ASN: 93
Freq: 4

ASN: 94
Freq: 13

ASN: 93
Freq: 4

ASN: 94
Freq: 13

Fig. 5. Node pair timeline: the skew grows larger than the entire timeslot.

We can notice that all other information delivered in the EB
frame (slotframe size, channel hopping sequence, and timeslot
template) during the bootstrap phase of the network stays valid
after desynchronization. We can make this assumption because
changing these parameters would require a full update of the
whole network.

Phase 2. The second phase starts when the node detects
its desynchronization, which may happen either directly after
the KA interval overflow or after an extended period of time
when the node wakes up from low power mode. The node adds
the value of the low power timer to the most recently stored
ASN. The resulting value gives the node the first estimation
of the ASN currently used by the network. Then, the node
calculates the additional skew by multiplying the most recent
relative drift estimation with the total time the node was
desynchronized. If the additional relative skew since the last
clock calibration is larger than an entire timeslot, the node

Tx

Rx'Rx

(1)

t(s)
Ti

m
e
 S

o
u
rc

e

N
e
ig

h
b

o
r

D
e
sy

n
c

n
o
d

e
Original

Full time slot

Full time slot

(1) (2) t(s)window window

window

(a)

Tx

Rx'Rx

(1)

(1)

(3)

(2)

t(s)

t(s)

Ti
m

e
 S

o
u
rc

e
N

e
ig

h
b
o
r

D
e
sy

n
c

 n
o
d
e Original

Full timeslot

Full timeslot

window window

window

(b)

Fig. 6. Node pair timeline illustrating rejoin. (1) TsRxOffset and TsTxOffset before the respective Tx and Rx radio windows. (2) The predicted relative skew
allows for rescheduling of the Rx window (shown as the RX’ window). (3) Rx window expands for the unpredictable skew after desynchronization.

updates its estimated ASN value. For example, on the right
side of Fig. 5, the desynchronized node estimates an ASN of
94, while due to the clock drift, the actual ASN used by the
network, and the time source neighbor, is 93. By accounting
for the additional skew, a node detects that the estimated ASN
is off by 1 because the additional skew is larger than a timeslot.

Phase 3. In the final step, the desynchronized node looks
at its stored schedule for the first Rx slot for communication
with its time source neighbor and it goes to sleep up to the
Rx slot. When the node wakes up, it reestimates its additional
skew as if it had to sleep for a long time until the Rx slot.
The schedule contains the channel offset of the respective Rx
slot and combined with the estimated ASN, the node can tune
its radio to the right frequency channel. The node uses the
estimated skew to reschedule the Rx window such that it aligns
with the Tx window of its time source neighbor (see Fig. 6a).
The node activates its radio for the PGT interval. If the time
source neighbor does not send a frame in the Rx slot, the node
repeats the final step and locates the next Rx slots.

When the node successfully captures an incoming frame
from its time source neighbor, it recalibrates its clock with
the KA based synchronization method. The low power timer
is reset and the node becomes again synchronized with the
network. The captured frame does not have to be necessarily
addressed to the desynchronized node, but the transmitter must
be its time source neighbor. The node can use any frame
coming from the time source neighbor to synchronize (so its
content is not important), which means that an encrypted frame
can also be used to resynchronize—only the arrival instant is
needed to recalibrate the clock.

B. Compensation for Unpredictable Drift Causes
Unforeseen drift fluctuations after desynchronization and

finite arithmetic precision during the skew estimation may
create an undetected skew between the Tx window of the time
source neighbor and the Rx window of the desynchronized
node, see Fig. 6b. This skew comes from the fact that the
relative drift the node established during phase 1 of the
rejoining scheme is only an ephemeral estimation. The relative
drift can change any moment after desynchronization due to
external causes, e.g. temperature fluctuations. Once the node
is desynchronized, it is no longer aware that the relative drift
has changed as it cannot communicate with its time source
neighbor. The second cause of scheduling errors is the finite

precision when the node estimates the relative skew because all
platforms only use 16-bit integer arithmetic. Rounding errors
become more relevant when a node is desynchronized for
longer periods.

To compensate for the skew caused by unforeseen drift
causes, the Rx radio window grows steadily in time (see
Fig. 6b)—it depends on the total time the node was desyn-
chronized, the arithmetic precision, and the worst case external
drift change, e.g. the largest temperature change, expected in
the network. The window expands in both directions as the
desynchronized node does not know in which direction the
clock will drift. Nodes with a temperature sensor and having
sufficient energy can apply drift compensation in real-time. Its
goal is to keep the actual relative drift as close as possible to
the previously established relative drift estimation. If the node
obtains a stable relative drift by compensating the drift changes
that occur after desynchronization, our scheme gives a more
precise prediction of the relative skew and the instant of the
Tx window used by its time source neighbor, which results in
an smaller Rx window, thus lower energy consumption.

VI. EXPERIMENTAL EVALUATION

To validate our prediction-based rejoining scheme, we have
implemented it on the hardware platforms [7] [8] [9], using
the OpenWSN networking stack. We use the TSCH-minimal
schedule with 16 frequency channels and a slotframe of 101
timeslots, 15 ms each to obtain a 1% duty cycle [21]. The EB
interval is the sum of a fixed value of 30 s and a random value
chosen in [−3.48; +3.48], which lowers the probability of an
EB collision when nodes use the same EB interval and the
same timeslot. We compare our scheme with the proposals by
Vogli et al. [5] and Duy et al. [6].

A. Join Latency

In the first experiment, we have evaluated the join latency of
our scheme on the three platforms. The first node is configured
as the network sink, while a second node is set up as a
network leaf. At the beginning of the experiment, we wait
until the leaf is synchronized with the sink. Once the initial
synchronization occurs, we wait an additional 5 min so that
the leaf node learns its relative drift (see Phase 1 of Section
V) with respect to the sink. Once the leaf node establishes
an initial relative drift estimation, the sink node starts sending
frames on an unreachable frequency channel. After a period

of the KA interval, the leaf node enters the desynchronized
state and the resynchronization procedure starts. The sink node
keeps transmitting its frames on the unreachable frequency
channel for 5 min. After this delay, we instruct the sink to
return to the same channel hopping sequence as the leaf node.
Starting from this instant, we start measuring the time for the
leaf node to resynchronize with the sink. In this experiment,
the rejoin procedure becomes active directly after the node
desynchronizes as the node has sufficient energy.

Table II shows the average join latency for three different
scenarios. We obtain the experimental results for our scheme
after 35 runs on the OpenMote platform and we compute
the average join latency for the other schemes based on the
theoretical expressions experimentally validated by the authors
in their respective papers [5], [6]. Below the results for the
other proposals, we show the ratio with respect to our scheme.

TABLE II
AVERAGE REJOIN LATENCY (s)

Join Scheme EB (30 s) EB (15 s) EB (6 s)

Predictive Rejoin 7.51 5.9 5.25

Fast|Rapid Join [5][6]
255 127.5 51

× 34 × 22 × 10

Rapid Join [6] with 4 EBs
63.75 31.88 12.75

× 8 × 5 × 2

We can see that our scheme significantly outperforms the
other proposals in each scenario. The upper bound join latency
for our scheme corresponds to the interval between EBs as
we will always capture every frame sent by the time source
neighbor for a Packet Delivery Ratio (PDR) of 100% and the
correct drift estimation. However, other frames such as Rout-
ing Protocol for Low-Power and Lossy Networks (RPL), KA,
or data frames will very often speed up the resynchronization
process, because they are also sent by the network and they
do not cost any additional energy. Adding extra EB frames
will therefore only slightly improve the speed of our scheme.
The other proposals only use EBs for resynchronization and
do not predict the instant of the transmitted EBs. Fast Join
by Vogli [5] sends one EB per node. Rapid Join Scheme by
Duy [6] has two modes: the first mode is the same as Fast Join,
and the second mode lets every node send multiple EBs (it is
the scheme in the last row of Table II). The latter mode obtains
faster rejoin, but consumes more energy from the network
perspective as every node sends extra EBs. A typical energy
cost for an EB, depending on its size and hardware platform,
is 72.4 µJ with a battery at 2.2 V [6].

We have further tested the influence of the application traffic
on the rejoin scheme performance on the other hardware
platforms. Fig. 7 shows the synchronization speed for three
different traffic loads. In the first setup, there is no application
compiled on top of the stack and nodes only rely on EBs, RPL,
and KA frames to resynchronize. In the second setup, the sink
node injects one data frame in the network every EB period
and in the last scenario, the sink sends four extra data packets

per EB period. We notice that the resynchronization speed
for our scheme is independent from the platform and shows
the same behavior as in Table II. We can also see that there
is one outlier for the TelosB experiment with no application
data. We cannot be sure what caused the desynchronized node
to miss earlier frames, but we suspect interference issues. Our
scheme reschedules its Rx window and resynchronizes to the
next frame sent by its time source neighbor.

0

5

10

15

20

No app data 1 frame added 4 frames added

Jo
in

 la
te

n
cy

 (
s)

(T) Telosb
(O) OpenMote-CC2538

(G) Greennet

(T) (O) (G) (T) (O) (G) (T) (O) (G)

Fig. 7. Join latency after 35 experimental runs for three application traffic
loads on three different platforms.

B. Expanded Radio Reception Windows

1) Impact of the Arithmetic Precision: The OpenWSN code
is written in a portable way so it can be run on a wide
range of different platforms. We have used integer arithmetic
for computing the relative skew because either the usage of
floating point arithmetic is not supported or the memory and
speed costs are too high. We have optimized our code to obtain
a relative drift precision of 0.5 ppm. To get the experimental
results in Table III, we have used the same setup as in the first
experiment, but we have desynchronized the leaf for 1 h. At the
end, we have measured with the logic analyzer [19] at 25 MHz
the difference between the skew prediction and the real skew.
The desynchronized node uses a standard Rx window size of
PGT. If the unpredicted skew is smaller than the half PGT
(1300 µs), a successful resynchronization is possible without
an expanded Rx window (see Fig. 6).

TABLE III
ARITHMETIC PRECISION IMPACT ON DRIFT PREDICTION (ms)

Platform Predicted Real Abs. Err. Rel. Err.

TelosB 39.26 39.94 0.68 ± 0.08e−3 1.2%

OpenMote 2.13 2.39 0.26 ± 0.08e−3 3.1%

GREENNET 21.67 23.65 1.98 ± 0.08e−3 0.4%

We notice that after 1 h both the OpenMote and TelosB
platforms are still able to resynchronize without an expanded
Rx window. The bad results on the GREENNET platform can
be explained by looking at the relative drift prediction and the
actual drift between a GREENNET pair of nodes: the predic-
tion error on the GREENNET platform is significantly larger
because the relative drift for the GREENNET nodes amounts to

Leaf

Sink
(1) (1)

(1) (1)

(2)

(2)(3)

(3) (1)

(1)

(2)

4 ms

5 mV

(a)

Drift

Rescheduled Rx window

(4) (3) (5)

(1) (1)(1)(2)

Leaf

Sink

4 ms

5 mV

(b)

Fig. 8. Current measurements with a Tektronix MD03012 oscilloscope for energy consumption evaluation on the TelosB platform (battery at 2.2V).

6.8 ppm (see Table I), which is not a multiple of 0.5 ppm, the
smallest step we can apply in the Rx rescheduling process with
our scheme. Therefore, the drift estimation introduces an extra
error of 0.2 ppm. The relative drifts for the other platforms are
multiples of 0.5 ppm, which results in a smaller error.

2) Temperature Impact: In this experiment, we have evalu-
ated the growth of the Rx windows when after desynchroniza-
tion, a node is exposed to a fluctuating relative drift caused
by temperature changes. We have considered two cases: i) a
node without a temperature sensor and therefore it could not
compensate the additional drift, ii) a node with a temperature
sensor, compensating the measured drift in real-time. In both
experiments, the TelosB sink was in a room with a temperature
of approximately 25 ◦C. The leaf was put in an environment
where the temperature ranged between 10 ◦C and 35 ◦C. The
leaf measured its temperature and relative clock drift every
minute, and sent the results to the sink as plotted in Fig. 9. The
drift compensation in the second scenario was computed using
the relation −0.035 ppm/◦C2×(T−T0)2 [20]. When the nodes
start communicating, the temperature is 25 ◦C everywhere and
the clocks operate at their nominal temperature. The relative
drift measured during the first 10 min of the experiment,
at a constant temperature, is around 9.5 ppm for node pair
(1) and (2). After 10 min, we have gradually changed the
temperature in the environment of the leaf node. The node,
without temperature sensor, is not aware of the temperature
fluctuation. It cannot compensate and the relative drift for
node pair (1) changes drastically. Notice that Phase 1 of our
scheme accounts for the observed 9.5 ppm and the expanded
Rx window must compensate for the additional drift.

Node pair (1) has an additional 5 ppm drift caused by the
temperature changes (see Fig. 9), which amounts to 18 ms
after 1 h. Because we cannot predict how the drift changes,
we would have to expand the Rx window at both sides to:
(2 · 18 ms) + PGT = 38.6 ms. Node pair (2) only needs to
compensate an additional 1.5 ppm, which amounts to a smaller
Rx window of 13.4 ms.

C. Predictive Rejoin Scheme Footprint
Fig. 8 presents the measured current consumption: a) by a

synchronized pair of TelosB nodes and b) when the predictive
rejoin scheme reschedules the Rx window.

10

15

20

25

30

35

0 10 20 30 40 50 60 70
2

4

6

8

10

12

14

16

18

te
m

p
 [

°C
]

d
ri

ft
 [

p
p
m

]

time [min]

temperature (1)
uncompensated drift (1)

temperature (2)
compensated drift (2)

Fig. 9. Temperature and drift in time for compensated and uncompensated
TelosB pairs shows that temperature changes cause an additional drift.

TABLE IV
MEASURED ENERGY CONSUMPTION OF TELOSB (mJ)

TelosB CPU Idle CPU Active Radio Tx/Rx

Energy 0.66 2.86 39.6

We use a simplified energy model by Vilajosana et al. [14]
to obtain energy consumption from the current measurements
shown in Fig. 8. Table IV presents the measured energy (mJ)
on a TelosB node for the different states of a timeslot. Fig. 8
shows (1) the CPU waking up to check if a frame needs to
be sent at this timeslot, (2) the preparation of the data that
needs to be sent, (3) activation of the radio in Rx or Tx mode,
(4) the CPU waking up, noticing there is an incoming frame,
calculating the skew and rescheduling the Rx window, and
(5) the CPU verifying there is no incoming frame from the
time source neighbor. In Fig. 8, (4) shows the computational
overhead of the scheme in phase 2 and 3. The code is not
optimized but only uses basic arithmetic operations. The non-
optimized code size is 2.5 kB. The OpenWSN stack code size
is currently more than 50 kB. The overhead of phase 1 is
negligible as it only increments a counter, uses additions and
a simple division to estimate the clock drift. We can compute
the total used energy in a timeslot as the sum of the energy
spent in each state (Idle, Active, Radio), where T , I and Vb

are the time spent, the current drawn in a state, and the battery
voltage, respectively:

Etot = (TId · IId + TAct · IAct + TTx|Rx · ITx|Rx) · Vb. (5)

An “idle slot” is a slot during which only the CPU is respon-
sible for energy consumption. Slots during which the radio is
active are “radio slots”. Fast and Rapid Rejoin Schemes [5], [6]
cannot use prediction to localize the incoming EB. Therefore,
they need to keep their radio active all the time. The multi-
beacon option of Rapid Join also requires additional network
energy because it sends multiple EBs in the same EB period.
Because the sink uses a duty cycle of 1%, our scheme also
approaches this duty cycle. It uses one double sized active slot
to reschedule the Rx window and 99 idle slots per slotframe
(see Fig. 8b). This approach facilitates rescheduling of the
Rx window when it is located in between two timeslots. The
energy drawn for 99 idle slots and 1 double sized active slot
is 1.29 mJ. While the energy for 101 active slots is 59.99 mJ.
Table V shows the computed energy for the measured join
latency presented in Table II. Below the used energy for the
other proposals, we show the ratio with respect to our scheme.

TABLE V
ENERGY USED FOR RESYNCHRONIZATION (mJ)

Join scheme EB (30 s) EB (15 s) EB (6 s)

Predictive Rejoin 6.45 5.15 4.51

Fast|Rapid Join [5][6]
15.3e3 7.65e3 3.06e3

× 2372 × 1485 × 678

Rapid Join [6] (4 EBs)
3.82e3 1.91e3 0.76e3

× 592 × 370 × 168

VII. CONCLUSION

This paper proposes a novel predictive resynchronization
scheme that allows nodes to rejoin quickly the TSCH network
with which they were previously synchronized. The idea of
the scheme comes from the modeling of the clock drift root
causes. Based on the prediction of the relative drift, we are
able to determine the instant at which a node needs to wake up
after desynchronization thus reducing its energy consumption.

The predictive rejoining scheme is composed of three
phases. In phase 1, while nodes are still synchronized, they
learn their relative drift with respect to their time source
neighbors. Phase 2 happens when the node desynchronizes
from the network. It estimates the correct ASN based on
a low power timer and skew prediction. Phase 3 applies
a rescheduled Rx window that has an adapted length to
compensate unforeseen drift sources.

We have compared the proposed scheme with other state-
of-the-art proposals. The experimental results show that our
scheme significantly outperforms other proposals as we can
exploit the previously obtained network information. The
scheme results in a join latency that is up to 34 times faster
and the nodes consume a factor of 1000 less energy.

VIII. ACKNOWLEDGMENTS

This work has been partially supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the
French program Investissement d’avenir, the FUI IoTize
project funded by Région Auvergne-Rhône-Alpes, and the
DataTweet project under contract ANR-13-INFR-0008-01.

REFERENCES

[1] IEEE 802.15.4e Low-Rate Wireless Personal Area Networks (Amend-
ment to IEEE Std 802.15.4-2011). New York, NY, USA: IEEE
Standards Office, 2012.

[2] D. Stanislowski, X. Vilajosana, Q. Wang, T. Watteyne, and K. S. Pister,
“Adaptive Synchronization in IEEE 802.15.4e Networks,” IEEE Trans.
on Industrial Informatics, vol. 10, no. 1, pp. 795–802, 2014.

[3] A. Elsts, S. Duquennoy, X. Fafoutis, G. Oikonomou, R. Piechocki, and
I. Craddock, “Microsecond-Accuracy Time Synchronization Using the
IEEE 802.15. 4 TSCH Protocol,” 2016 SenseApp, 2016.

[4] A. Tinka, T. Watteyne, and K. Pister, “A Decentralized Scheduling Al-
gorithm for Time Synchronized Channel Hopping,” in Ad Hoc Networks.
Springer, 2010, pp. 201–216.

[5] E. Vogli, G. Ribezzo, L. A. Grieco, and G. Boggia, “Fast Join and
Synchronization Schema in the IEEE 802.15.4e MAC,” in 2015 IEEE
WCNC Workshops, 2015, pp. 85–90.

[6] T. P. Duy, T. Dinh, and Y. Kim, “A Rapid Joining Scheme based on
Fuzzy Logic for Highly Dynamic IEEE 802.15.4e TSCH Networks,”
IJDSN, vol. 12, no. 8, 2016.

[7] Telosb. Memsic, Inc. San Jose, California. [Online]. Available:
https://openwsn.atlassian.net/wiki/display/OW/TelosB

[8] A Powerful System-On-Chip for 2.4-GHz IEEE 802.15.4-2006 and
ZigBee Applications, Texas Instruments, 12 2012.

[9] L.-O. Varga, G. Romaniello, M. Vučinić, M. Favre, A. Banciu,
R. Guizzetti, C. Planat, P. Urard, M. Heusse, F. Rousseau, O. Alphand,
E. Dublé, and A. Duda, “GreenNet: an Energy Harvesting IP-enabled
Wireless Sensor Network,” IEEE Internet of Things Journal, vol. 2,
2015.

[10] M. R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L. A. Grieco,
G. Boggia, and M. Dohler, “Standardized Protocol Stack for the Internet
of (Important) Things,” IEEE Communications Surveys & Tutorials,
vol. 15, no. 3, pp. 1389–1406, 2013.

[11] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia,
“Traffic Aware Scheduling Algorithm for Reliable Low-Power Multi-
Hop IEEE 802.15. 4e Networks,” in 2012 IEEE PIMRC. IEEE, 2012,
pp. 327–332.

[12] OpenWSN: Open-Source Implementations of Protocol Stacks Based on
IoT Standards. [Online]. Available: http://www.openwsn.org

[13] D. De Guglielmo, A. Seghetti, G. Anastasi, and M. Conti, “A Perfor-
mance Analysis of the Network Formation Process in IEEE 802.15. 4e
TSCH Wireless Sensor/Actuator Networks,” in 2014 IEEE ISCC. IEEE,
2014, pp. 1–6.

[14] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang, and K. S.
Pister, “A Realistic Energy Consumption Model for TSCH Networks,”
IEEE Sensors Journal, vol. 14, no. 2, pp. 482–489, 2014.

[15] S. Yoon, C. Veerarittiphan, and M. L. Sichitiu, “Tiny-Sync: Tight Time
Synchronization for Wireless Sensor Networks,” ACM TOSN, vol. 3,
no. 2, p. 8, 2007.

[16] P. Dutta and D. Culler, “Practical Asynchronous Neighbor Discovery
and Rendezvous for Mobile Sensing Applications,” in Proc. 6th ACM
SenSys. ACM, 2008, pp. 71–84.

[17] M. Bakht, M. Trower, and R. H. Kravets, “Searchlight: Won’t You Be
My Neighbor?” in Proc. 18th MOBICOM. ACM, 2012, pp. 185–196.

[18] Y. Qiu, S. Li, X. Xu, and Z. Li, “Talk More Listen Less: Energy-Efficient
Neighbor Discovery in Wireless Sensor Networks,” in IEEE INFOCOM.
IEEE, 2016, pp. 1–9.

[19] (2016) Saleae. Saleae, Inc. 408 N Canal St, Unit A, South San
Francisco, CA 94080. [Online]. Available: https://www.saleae.com/

[20] MSP430 32-kHz Crystal Oscillators, Texas Instruments, 8 2006, rev. 2.
[21] X. Vilajosana, K. Pister, and T. Watteyne, “Minimal

6TiSCH Configuration,” IETF, Internet-Draft draft-ietf-6tisch-
minimal-21, Feb. 2017, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-minimal-21.

