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A STABILISED FINITE ELEMENT METHOD FOR A TIME-DEPENDENT

PROBLEM SOLVED USING A FICTITIOUS DOMAIN METHOD

GABRIEL R. BARRENECHEA, FRANZ CHOULY, AND CHEHERAZADA GONZÁLEZ

Abstract. In this work we present and analyse a stabilised finite element method for a fictitious
domain formulation of a transient heat equation posed on an irregular domain. First, the
problem is reformulated as a variational problem with constraints in a larger, simpler domain.
In order to have freedom to choose the spaces for primal variable and Lagrange multiplier, we
introduce a stabilising term whose consistency error can be shown to be of optimal order. We
show that the fully discrete problem is stable and enjoys optimal convergence under the extra
assumption that the initial condition has been chosen appropriately. This requirement is not
linked to the stabilised character of the method, as the numerical experiments confirm.

September 25, 2017
Key words : Fictitious domain method; stabilised finite element method; time-dependent prob-
lem.

1. Introduction

This work deals with the approximation of problems posed on irregular domains. The ap-
proximation of such problems is challenging since, at least for standard finite element methods,
the mesh needs to resolve the geometrical features of the domain, which may lead to highly
refined, or highly irregular, meshes if the domain is complicated. To avoid this restriction, sev-
eral approaches have been advocated over the years. For example, cut elements as in [10, 11],
composite finite element method as in [19] or ideas related to XFEM approaches in [24, 20].
Further approaches include the fat boundary method [23, 5], non-boundary fitted meshes (see,
e.g., [25]), or distributed Lagrange multiplier approaches [8, 7].

In this paper we apply the fictitious domain method for a heat equation posed on an com-
plicated spatial domain. This approach consists on introducing a larger, and simpler, domain
that includes the original physical domain where the problem is posed, and replace the original
partial differential equation by a mixed problem involving an extension of the solution to the
fictitious domain, and a Lagrange multiplier defined on the physical boundary. The analysis of
this method for a steady-state Poisson equation was first given in [17]. In the original paper the
stability and convergence of the method was proven for a piecewise linear discretisation of the
primal variable, and a piecewise constant approximation of the Lagrange multiplier, for meshes
that need to satisfy appropriate size restrictions. This restriction excluded, in particular, the
possibility of using the intersection of the mesh for the primal variable and the physical bound-
ary to define the finite element space for the Lagrange multiplier. To avoid this restriction, in
[3] a LPS-inspired stabilised method was proposed and tested.

Most, if not all, the above-mentioned references deal with the steady-state problem. Fewer
works have dealt with the time-dependent one, especially considering the analysis of the resulting
method (see, e.g. [1, 14, ?]). This lack of analysis is especially true for the case in which stabilised
finite element methods are used for the space discretisation. The stabilisation of finite element
methods for time dependent problems has been the object of many studies over the years. The
motivation for this has been that, for the case of mixed problems, such as the Stokes equations,
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unexpected results have been observed when the spatial and time discretisation parameters are
not chosen carefully. More precisely, for different stabilised finite element methods the fully
discrete problem can be proven stable only if δt ≥ Ch2, where h and δt stand for the mesh
width and time step, respectively (see [6, 12, 13, 2]). Later, in [9], this restriction on the time
step and mesh size was removed using symmetric stabilisation and, more importantly, a judicious
choice of initial condition (see also [22] for a more recent study concerning the PSPG method).

Based on the discussion from the above paragraphs, in this paper we follow closely the ap-
proach given in [9], and present the stability and convergence analyses of both stabilised, and
inf-sup stable, finite element methods for the time dependent heat equation approximated by
a fictitious domain method. For both cases, unconditional stability can be proven if the initial
condition is chosen appropriately. In fact, even if in this work we detail the analysis for the
stabilised case, very similar proofs, leading to essentially the same results, can be carried out for
the inf-sup stable setting. We have detailed the main differences throughout the manuscript.

The rest of the manuscript is organised as follows. In Section 2, we introduce the problem
under consideration and some useful notation. In Section 3, we analise the stability of the fully
discrete problems, and the convergence of the methods is proved in Section 4. Some numerical
results are presented in Section 5 and a conclusion in Section 6.

2. Problem setting

We now present notation that will be used on what follows. We adopt the standard notation
for Sobolev spaces (aligned with, e.g., [15]). In particular, for D ⊆ R2, H1(D) (H1

0 (D)) will
denote the space of (generalised) functions of L2(D) with first derivatives also belonging to
L2(D) (and that vanish on ∂D). The inner f on L2(D) is denoted by (·, ·)D, its associated norm
is denoted by ‖ · ‖0,D, and, for m ≥ 1, the norm (seminorm) in Hm(D) is denoted by ‖ · ‖m,Ω
(|·|m,Ω). We keep the same notation for vector-valued functions. The space of traces of functions

of H1(D) on ∂D is denoted by H
1
2 (∂D), provided with the trace norm

‖µ‖ 1
2
,∂D = inf

v∈H1(D)
v|∂D=µ

‖v‖1,D.

The dual of H
1
2 (∂D), with respect to the L2(∂D) inner product, is denoted by H−

1
2 (∂D), and

the duality pairing between them is denoted by 〈·, ·〉∂D. The corresponding dual norm is denoted
by ‖ · ‖− 1

2
,∂D

.

Let ω be an open bounded domain in R2 with a Lipschitz continuous boundary γ := ∂ω. We

consider γ =

M⋃
i=1

γi, where γi are the M smooth components of γ, that is, if γ has corners then

γi ∩ γi+1 will be its corner points (see Fig. 1).
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Figure 1. Example of γ where M = 3.

The following space will be needed throughout the manuscript:

H :=
M∏
i=1

H
1
2 (γi) with norm ‖µ‖H :=

M∑
i=1

‖µ‖ 1
2
,γi
.

Let T > 0 be a final time. The problem of interest in this work reads as follows:
find û : ω × [0, T ) −→ R such that

(2.1)

 ∂tû−∆û = f̂ in ω × (0, T ),
û = g on γ × (0, T ),

û(x, 0) = û0(x) in ω,

where f̂ : ω× [0, T ] −→ R, g : γ× [0, T ] −→ R, û0 : ω −→ R stand for source term, and boundary
and initial condition, respectively. We will assume that û0 and g are compatible in the sense
that û0|γ = g(·, 0).

To introduce the fictitious domain formulation for this problem, we first define Ω as an open
bounded set such that ω ⊆ Ω (Ω should be “simpler” than ω), and extensions f : Ω −→ R, u0 :

Ω −→ R such that f |ω = f̂ , u0|ω = û0. We now rewrite this problem in an equivalent way
following the approach presented in [17]. Defining

a(u, v) = (∇u,∇v)Ω and b(λ, v) = 〈λ, v〉γ ,

then the following equivalent weak form for (2.1) can be written:

Find (u, λ) ∈ {H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω))} × L∞(0, T ;H−

1
2 (γ)) such that

u(x, 0) = u0(x), and

(2.2)

{
(∂tu, v)Ω + a(u, v)− b(λ, v) = (f, v)Ω

b(µ, u) = b(µ, g),

for all v ∈ H1
0 (Ω), µ ∈ H−

1
2 (γ), and almost all t ∈ (0, T ). Problems (2.1) and (2.2) are linked

by the fact that if (u, λ) satisfies (2.2), then u|ω satisfies (2.1) and λ coincides with the jump of
the normal derivative of u on γ (see [18, 17] for details).

We now describe the discretisation strategies. For the time discretisation, we use the implicit
Euler method (although the same analysis can be extended to more involved schemes). Let
N ∈ N0 be given. We consider a uniform partition {(tn, tn+1]}06n6N−1, with tn = nδt, of the
time interval [0, T ] with time-step size δt = T

N . For a time-dependent function v, we will define
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its approximate time derivative Dvm+1 as follows

Dvm+1 :=
v(·, tm+1)− v(·, tm)

δt
.

For space discretisation, let {Th}h>0 denote a shape-regular family of triangulations of the
domain Ω. For each triangulation Th the subscript h refers to the level of refinement of the
triangulation, defined by

h = max
K∈Th

hK ,

where hK = diam(K). Let γh and γh̃ be two partitions of γ such that the vertices of γh̃
are also vertices of γh, with edges ẽ satisfying the following (see [17]): there exists C > 0
(independent of h) such that 3h 6 |ẽ| 6 Ch, for all ẽ ∈ γh̃. We suppose that for all ẽ ∈ γh̃,
card{e ∈ γh : e ⊂ ẽ} 6 C, where C > 0 is independent of ẽ and h.

Remark 2.1. We have left the choice of meshes on γ open. In particular, γh can be taken as
the partition of γ induced by Th. This is, the collection of edges e such that their end points are
the intersections of γ with the edges of the triangulation Th, plus the angular points of γ (see
Fig. 2). Then, γh̃ can be built by gathering several contiguous elements of γh until the restriction
|ẽ| ≥ 3h is satisfied.

Figure 2. Example of meshes on γ.

Associated to the partitions just described, we define the following finite element spaces:

Vh = {vh ∈ C0(Ω̄) ∩H1
0 (Ω) : vh|K ∈ P1(K),∀K ∈ Th},

Λh = {µh ∈ L2(γ) : µh|e ∈ P0(e),∀e ∈ γh},
Λh̃ = {µh̃ ∈ L

2(γ) : µh̃|ẽ ∈ P0(ẽ),∀ẽ ∈ γh̃} .
We observe that Λh̃ ⊆ Λh, and also denote Wh := Vh × Λh. Additionally, we introduce the

Lagrange interpolation operator ih : C0(Ω) −→ Vh. Thanks to the hypothesis on Th and γh̃,
the pair Wh̃ := Vh × Λh̃ satisfies the following discrete inf-sup condition (see [17]): there exists

β > 0, independent of h and h̃, such that

(2.3) sup
vh∈Vh\{0}

〈µh̃, vh〉γ
|vh|1,Ω

≥ β‖µh̃‖− 1
2
,γ ∀µh̃ ∈ Λh̃.
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On the other hand, the pair Vh × Λh is not inf-sup stable. For this case, it is proven in [3] that

there exist two constants C, β̃ > 0, independent of h, such that

(2.4) sup
vh∈Vh\{0}

〈µh, vh〉γ
|vh|1,Ω

+ C
(∑
ẽ∈γh̃

|ẽ|‖µ−Πh̃µ‖
2
0,ẽ

) 1
2
> β̃‖µh‖− 1

2
,γ ∀µh ∈ Λh,

where Πh̃ : L2(γ) −→ Λh̃ is defined as (Πh̃ξ)|ẽ = |ẽ|−1(ξ, 1)ẽ for each ẽ ∈ γh̃.
The main focus of this work is to approximate problem (2.2) using the space Wh, although

some difficulties associated to this non inf-sup stable choice are shared by the inf-sup stable
alternative Wh̃, and we will include comments on these similarities throughout the manuscript.
Since we only have the weak inf-sup condition (2.4), stabilisation is needed. Then we introduce
the bilinear form j : L2(γ)× L2(γ) −→ R defined as

j(µ, ξ) =
∑
ẽ∈γh̃

|ẽ|(µ−Πh̃µ, ξ −Πh̃ξ)ẽ.

This bilinear form satisfies the following properties:
Symmetry:

j(µ, ξ) = j(ξ, µ) ∀µ, ξ ∈ L2(γ);(2.5)

Continuity:

|j(µ, ξ)| ≤ Ch‖µ−Πh̃µ‖0,γ‖ξ −Πh̃ξ‖0,γ ∀µ, ξ ∈ L2(γ);(2.6)

Weak consistency: There exists C > 0, independent of h, such that (cf. [15])

|j(µ, ξ)| ≤
∑
ẽ∈γh̃

|ẽ|‖µ−Πh̃µ‖0,ẽ‖ξ −Πh̃ξ‖0,ẽ ≤ Ch
2‖µ‖H‖ξ‖H ∀µ, ξ ∈ H.(2.7)

We end this section by presenting the fully discrete methods to be analysed in this work. The
fully discrete problems read as follows:
1) Mixed finite element method : Given a suitable approximation of u0

h ∈ Vh of u0, for

0 ≤ n ≤ N − 1, find (un+1
h , λn+1

h̃
) ∈Wh̃ such that

(2.8)

{ 1
δt(u

n+1
h − unh, vh)Ω + a(un+1

h , vh)− b(λn+1

h̃
, vh) = (f(tn+1), vh)Ω

b(µh̃, u
n+1
h ) = b(µh̃, g),

for all (vh, µh̃) ∈Wh̃.

2) Stabilised method : Given a suitable approximation of u0
h ∈ Vh of u0, for 0 ≤ n ≤ N − 1, find

(un+1
h , λn+1

h ) ∈Wh such that

(2.9)

{
1
δt(u

n+1
h − unh, vh)Ω + a(un+1

h , vh)− b(λn+1
h , vh) = (f(tn+1), vh)Ω

b(µh, u
n+1
h ) + j(λn+1

h , µh) = b(µh, g),

for all (vh, µh) ∈Wh.

3. Stability analysis

In this section, we analise the stability of problem (2.9). One of our main tools is the following
Ritz projection Sh : W −→Wh defined as follows: for each (w, ξ) ∈W , the projection
Sh(w, ξ) = (Ph(w, ξ), Rh(w, ξ)) ∈Wh is the unique solution of

(3.1)

{
a(Ph(w, ξ), vh)− b(Rh(w, ξ), vh) = a(w, vh)− b(ξ, vh)
b(µh, Ph(w, ξ)) + j(Rh(w, ξ), µh) = b(µh, w),
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for all (vh, µh) ∈Wh. The well-posedness of (3.1) has been proven in [3]. Moreover, defining the
norm

|||(vh, µh)|||2h = |vh|21,Ω + j(µh, µh),

then the following stability and approximation results hold (see [3]):

(3.2) |||(Ph(w, ξ), Rh(w, ξ))|||2h ≤ C
(
|w|21,Ω + ‖ξ‖2− 1

2
,γ

)
,

and, if (w, ξ) ∈ H2(Ω)×H, then there exists C > 0 independent of h such that

‖ξ −Rh(w, ξ)‖− 1
2
,γ + |||(w − Ph(w, ξ), ξ −Rh(w, ξ))|||h ≤ Ch (|w|2,Ω + ‖ξ‖H) .(3.3)

We now move onto analysis of stability. For this we will only assume that the initial condition
u0
h is given by any H1

0 (Ω)-stable approximation of u0. With this choice, stability can only
be proved up to a term involving the time derivative of the discrete solution. This undesired
behaviour will then be corrected by changing the choice of initial condition.

Lemma 3.1. Let us suppose that ‖u0
h‖1,Ω ≤ C|u0|1,Ω and let {(unh, λnh)}Nn=1 be a solution of the

fully discrete problem (2.9). Then there exists C > 0, independent of h and δt, such that the
following estimate holds for 1 ≤ n ≤ N :

‖unh‖20,Ω +

n−1∑
m=0

δt
∣∣∣∣∣∣(um+1

h , λm+1
h )

∣∣∣∣∣∣2
h

≤ C|u0|21,Ω + C
n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖Dum+1
h ‖20,Ω

)
,(3.4)

and

n−1∑
m=0

δt‖λm+1
h ‖2− 1

2
,γ

≤ C

β̃2

(
|u0|21,Ω +

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖Dum+1
h ‖20,Ω

))
,(3.5)

where β̃ is the constant from (2.4).

Proof. First, using (2.4) and (2.9) with µh = 0, and the Cauchy Schwarz and Poincaré inequal-
ities, we get

β̃‖λm+1
h ‖− 1

2
,γ ≤ sup

vh∈Vh\{0}

b(λm+1
h , vh)

|vh|1,Ω
+ Cj(λm+1

h , λm+1
h )

1
2

= sup
vh∈Vh\{0}

(f(tm+1), vh)Ω − a(um+1
h , vh)− (Dum+1

h , vh)Ω

|vh|1,Ω
+ Cj(λm+1

h , λm+1
h )

1
2

≤ C‖f(tm+1)‖0,Ω + |um+1
h |1,Ω + C‖Dum+1

h ‖0,Ω + Cj(λm+1
h , λm+1

h )
1
2 .
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Squaring, multiplying by δt and adding over 0 ≤ m ≤ n− 1 leads to

n−1∑
m=0

δt ‖λm+1
h ‖2− 1

2
,γ

≤ C

β̃2

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + |um+1

h |21,Ω +
∥∥Dum+1

h

∥∥2

0,Ω
+ j(λm+1

h , λm+1
h )

)
=
C

β̃2

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + ‖Dum+1

h ‖20,Ω +
∣∣∣∣∣∣(um+1

h , λm+1
h )

∣∣∣∣∣∣2
h

)
.(3.6)

Now, to prove (3.4), we take vh = um+1
h , µh = λm+1

h in (2.9) and get(
um+1
h − umh

δt
, um+1

h

)
Ω

+ a(um+1
h , um+1

h ) + j(λm+1
h , λm+1

h ) = (f(tm+1), um+1
h )Ω + b(λm+1

h , g(tm+1)).

Using the equality (a− b)a = 1
2(a2 − b2) + 1

2(a− b)2, Cauchy Schwarz and Poincaré inequalities
in the above expression, we get

1

2δt

(
‖um+1

h ‖20,Ω − ‖umh ‖20,Ω
)

+
1

2δt
‖um+1

h − umh ‖20,Ω +
∣∣∣∣∣∣(um+1

h , λm+1
h )

∣∣∣∣∣∣2
h

= (f(tm+1), um+1
h ) + b(λm+1

h , g(tm+1))

≤ C‖f(tm+1)‖0,Ω|um+1
h |1,Ω + ‖λm+1

h ‖− 1
2
,γ‖g(tm+1)‖ 1

2
,γ .(3.7)

Now, after multiplying by 2δt, adding over 0 ≤ m ≤ n − 1 and using Young’s inequality, we
obtain

‖unh‖20,Ω − ‖u0
h‖20,Ω +

n−1∑
m=0

‖um+1
h − umh ‖20,Ω + 2

n−1∑
m=0

δt
∣∣∣∣∣∣(um+1

h , λm+1
h )

∣∣∣∣∣∣2
h

≤ C
n−1∑
m=0

δt‖f(tm+1)‖0,Ω|um+1
h |1,Ω + 2

n−1∑
m=0

δt‖λm+1
h ‖− 1

2
,γ‖g(tm+1)‖ 1

2
,γ

≤ C
n−1∑
m=0

δt‖f(tm+1)‖20,Ω +

n−1∑
m=0

δt|um+1
h |21,Ω + ε

n−1∑
m=0

δt‖λm+1
h ‖2− 1

2
,γ

+
1

ε

n−1∑
m=0

δt‖g(tm+1)‖21
2
,γ
,

where ε > 0 will be chosen later. Then as |um+1
h |21,Ω ≤

∣∣∣∣∣∣(um+1
h , λm+1

h )
∣∣∣∣∣∣2
h
, we rearrange terms

and arrive at

‖unh‖20,Ω +

n−1∑
m=0

‖um+1
h − umh ‖20,Ω +

n−1∑
m=0

δt
∣∣∣∣∣∣(um+1

h , λm+1
h )

∣∣∣∣∣∣2
h

≤ ‖u0
h‖20,Ω + C

n−1∑
m=0

δt‖f(tm+1)‖20,Ω + ε

n−1∑
m=0

δt‖λm+1
h ‖2− 1

2
,γ

+
1

ε

n−1∑
m=0

δt‖g(tm+1)‖21
2
,γ

≤ ‖u0
h‖20,Ω + C

n−1∑
m=0

δt‖f(tm+1)‖20,Ω +
1

ε

n−1∑
m=0

δt‖g(tm+1)‖21
2
,γ

+ ε
C

β̃2

n−1∑
m=0

δt
(∣∣∣∣∣∣(um+1

h , λm+1
h )

∣∣∣∣∣∣2
h

+ ‖Dum+1
h ‖20,Ω + ‖f(tm+1)‖20,Ω

)
.
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Then, taking ε = β̃2

2C in the above inequality, and rearranging, gives

‖unh‖20,Ω +

n−1∑
m=0

‖um+1
h − umh ‖20,Ω +

n−1∑
m=0

δt
∣∣∣∣∣∣(um+1

h , λm+1
h )

∣∣∣∣∣∣2
h

≤ C‖u0
h‖20,Ω + C

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖Dum+1
h ‖20,Ω

)
,

which proves (3.4) applying the inequality |u0
h|1,Ω ≤ C|u0|1,Ω. We obtain the estimate (3.5)

inserting (3.4) into (3.6). �

Remark 3.2. It is interesting to notice that, for g = 0, a stability result stronger than (3.4) can
be proved. More precisely, it would not have the term involving Dum+1

h in its right-hand side.
In fact, that term only appears in the estimate due to the calculations leading to (3.7). In there
it can be noticed that, if g = 0, then there is no need to bound the norm of λm+1

h to have a bound

for um+1
h , and then stability is proved without any further hypothesis.

We now bound the time derivative Dum+1
h using a special initial condition, and an extra

regularity assumption for g.

Theorem 3.1. Let {(unh, λnh)}Nn=1 be the solution of the fully discrete problem (2.9) where we

consider u0
h = Ph(u0, 0). Let us also assume ∂tg ∈ C0(0, T ;H

1
2 (γ)). Then for all 1 ≤ n ≤ N the

following estimate holds

‖unh‖20,Ω +

n−1∑
m=0

δt
∣∣∣∣∣∣(um+1

h , λm+1
h )

∣∣∣∣∣∣2
h

≤ C|u0|21,Ω + C
n−1∑
m=0

δt

(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖∂tg‖2
L∞(tm,tm+1;H

1
2 (γ))

)
,(3.8)

and

n−1∑
m=0

δt‖λm+1
h ‖2− 1

2
,γ

≤ C|u0|21,Ω + C
n−1∑
m=0

δt

(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖∂tg‖2
L∞(tn,tn+1;H

1
2 (γ))

)
.(3.9)

Proof. Based on the previous lemma, it is enough to prove that

n−1∑
m=0

δt‖Dum+1
h ‖20,Ω + |||(unh, λnh)|||2h

≤
(
C |u0|21,Ω +

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω +

1

ε
‖∂tg‖2

L∞((tm,tm+1),H
1
2 (γ))

+ ε‖λm+1
h ‖2− 1

2
,γ

))
,(3.10)

and then choose ε > 0 small enough such that the term involving ‖λm+1
h ‖− 1

2
,γ can be moved to

the LHS of (3.5).
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For 0 ≤ m ≤ N − 1, taking vh = Dum+1
h and µh = 0 in (2.9) and using the Cauchy Schwarz

inequality, we have

‖Dum+1
h ‖20,Ω + a(um+1

h , Dum+1
h )− b(λm+1

h , Dum+1
h ) = (f(tm+1), Dum+1

h )Ω

≤ ‖f(tm+1)‖0,Ω‖Dum+1
h ‖0,Ω ≤

1

2
‖f(tm+1)‖20,Ω +

1

2
‖Dum+1

h ‖20,Ω,

which implies

(3.11)
1

2
‖Dum+1

h ‖20,Ω + a(um+1
h , Dum+1

h )− b(λm+1
h , Dum+1

h ) ≤ 1

2
‖f(tm+1)‖20,Ω.

On the other hand, for 1 ≤ m ≤ N − 1, testing (2.9) at the time levels m+ 1 and m with vh = 0
and µh = λm+1

h gives

b(λm+1
h , g(tm+1))− b(λm+1

h , um+1
h ) = j(λm+1

h , λm+1
h ),

b(λm+1
h , g(tm))− b(λm+1

h , umh ) = j(λmh , λ
m+1
h ).(3.12)

Therefore, by subtracting these equalities, dividing by δt and using the bilinearity of j(., .), we
obtain

−b(λm+1
h , Dum+1

h ) = j(Dλm+1
h , λm+1

h )− 1

δt
b(λm+1

h , g(tm+1)− g(tm)),(3.13)

for 1 ≤ m ≤ N − 1. It then follows from (3.11) and the mean value inequality (see, e.g., [4,
Thorme 1.7, p.20]) that

1

2
‖Dum+1

h ‖20,Ω + a(um+1
h , Dum+1

h ) + j(Dλm+1
h , λm+1

h )

≤ 1

2
‖f(tm+1)‖20,Ω +

1

δt
b(λm+1

h , g(tm+1)− g(tm))

≤ 1

2
‖f(tm+1)‖20,Ω +

1

δt
‖λm+1

h ‖− 1
2
,γ
‖g(tm+1)− g(tm)‖ 1

2
,γ

≤ 1

2
‖f(tm+1)‖20,Ω +

1

δt
‖λm+1

h ‖− 1
2
,γδt‖∂tg‖L∞((tm,tm+1),H

1
2 (γ))

≤ 1

2
‖f(tm+1)‖20,Ω +

1

ε
‖∂tg‖2

L∞((tm,tm+1),H
1
2 (γ))

+ ε‖λm+1
h ‖2− 1

2
,γ
.(3.14)

On the other hand, using the symmetry and bilinearity of a(., .) and j(., .), and, once again,

a(a− b) = a2

2 −
b2

2 + (a−b)2
2 , gives

a(um+1
h , Dum+1

h ) =
1

2
Da(um+1

h , um+1
h ) +

δt

2
a(Dum+1

h , Dum+1
h ),

j(λm+1
h , Dλm+1

h ) =
1

2
Dj(λm+1

h , λm+1
h ) +

δt

2
j(Dλm+1

h , Dλm+1
h ).

Hence, (3.14) becomes

‖Dum+1
h ‖20,Ω +D(a(um+1

h , um+1
h ) + j(λm+1

h , λm+1
h ))

≤ ‖f(tm+1)‖20,Ω +
1

ε
‖∂tg‖2

L∞((tm,tm+1),H
1
2 (γ))

+ ε‖λm+1
h ‖2− 1

2
,γ
,



10 G.R. BARRENECHEA, F. CHOULY, AND C. GONZÁLEZ

for 1 ≤ m ≤ N − 1. After multiplication by δt and summation over 1 ≤ m ≤ n − 1, it follows
that

n−1∑
m=1

δt‖Dum+1
h ‖20,Ω + |||(unh, λnh)|||2h

≤
∣∣∣∣∣∣(u1

h, λ
1
h)
∣∣∣∣∣∣2
h

+
n−1∑
m=1

δt

(
‖f(tm+1)‖20,Ω +

1

ε
‖∂tg‖2

L∞((tm,tm+1),H
1
2 (γ))

+ ε‖λm+1
h ‖2− 1

2
,γ

)
.(3.15)

Since the initial approximation of u is given in terms of the Ritz-projection, u0
h = Ph(u0, 0),

by setting λ0
h = Rh(u0, 0) it follows that (3.13) also holds for m = 0. That is

(3.16) −b(λ1
h, Du

1
h) = j(Dλ1

h, λ
1
h)− 1

δt
b(λ1

h, g(t1)− g(t0)).

Next, taking, for n = 0, vh = Du1
h, µh = 0 in (2.9) and multiplying by 2δt, we get

δt‖Du1
h‖20,Ω + a(u1

h, u
1
h)− a(u0

h, u
0
h) ≤ δt‖f(t1)‖20,Ω + 2δtb(λ1

h, Du
1
h),

which, after using (3.16) leads to

δt‖Du1
h‖20,Ω + |u1

h|21,Ω
≤ |u0

h|21,Ω + δt‖f(t1)‖20,Ω + 2b(λ1
h, g(t1)− g(t0))− 2δtj(Dλ1

h, λ
1
h)

= |u0
h|21,Ω + δt‖f(t1)‖20,Ω + 2b(λ1

h, g(t1)− g(t0))− 2j(λ1
h, λ

1
h) + 2j(λ0

h, λ
1
h)

≤ |u0
h|21,Ω + δt‖f(t1)‖20,Ω + 2b(λ1

h, g(t1)− g(t0))− j(λ1
h, λ

1
h) + j(λ0

h, λ
0
h) ,

and then, rearranging and using a similar argument to bound the time derivative of g, we get

δt‖Du1
h‖20,Ω +

∣∣∣∣∣∣(u1
h, λ

1
h)
∣∣∣∣∣∣2
h

≤
∣∣∣∣∣∣(u0

h, λ
0
h)
∣∣∣∣∣∣2
h

+ δt‖f(t1)‖20,Ω + 2b(λ1
h, g(t1)− g(t0))

≤
∣∣∣∣∣∣(u0

h, λ
0
h)
∣∣∣∣∣∣2
h

+ δt‖f(t1)‖20,Ω + 2δt‖λ1
h‖− 1

2
,γ‖∂tg‖L∞((tm,tm+1),H

1
2 (γ))

≤
∣∣∣∣∣∣(u0

h, λ
0
h)
∣∣∣∣∣∣2
h

+ δt‖f(t1)‖20,Ω + εδt‖λ1
h‖2− 1

2
,γ

+
δt

ε
‖∂tg‖2

L∞((tm,tm+1),H
1
2 (γ))

.(3.17)

Then we get the estimate (3.10) adding (3.17) to (3.15) and using the stability of the Ritz-

projection (3.2),
∣∣∣∣∣∣(u0

h, λ
0
h)
∣∣∣∣∣∣2
h
≤ C|u0|21,Ω.

Estimate (3.9) is then proven taking ε = β̃
2C in (3.10) where C is the constant from (3.5). The

estimate (3.8) is obtained in an analogous way. �

3.1. The inf-sup stable case. In this section we briefly summerise the differences of the
approach in the case the inf-sup stable space Wh̃ is used for space discretisation. Our main goal
is to show that the stability deficiencies of the stabilised method are not due to the stabilisation,
but rather to the incorrect approximation of the initial condition. The proofs are very similar to
the ones presented on the last section, just by setting j(·, ·) = 0, and that is why we only sketch
them here. The first step is to modify the definition of the Ritz-projection to accommodate it
to this case. For the present case the Ritz projector is defined as follows:

Sh̃ : W −→Wh̃,
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whereW := H1
0 (Ω)×H−

1
2 (γ). For each (w, ξ) ∈W , the projection Sh̃(w, ξ) = (Ph̃(w, ξ), Rh̃(w, ξ)) ∈

Wh̃ is defined as the unique solution of

(3.18)

{
a(Ph̃(w, ξ), vh)− b(Rh̃(w, ξ), vh) = a(w, vh)− b(ξ, vh)

b(µh̃, Ph̃(w, ξ)) = b(µh̃, w),

for all (vh, µh̃) ∈Wh̃. Problem (3.18) is well-posed thanks to the inf-sup condition (2.3). More-
over, defining the norm

‖(v, µ)‖2W := |v|21,Ω + ‖µ‖2− 1
2
,γ
,

then the following stability and approximation results hold (see [17]): There exists C > 0,
independent of h, such that

(3.19) ‖Ph̃(w, ξ)‖2W 6 C
(
|w|21,Ω + ‖ξ‖2− 1

2
,γ

)
,

and if (w, ξ) ∈ H2(Ω)×H, then there exist C > 0, independent of h, such that

(3.20) |w − Ph̃(w, ξ)|1,Ω + ‖ξ −Rh̃(w, ξ)‖− 1
2
,γ ≤ Ch(|w|2,Ω + ‖ξ‖H).

When analysing the method (2.8), the equivalent of (3.4) and (3.5) read:

‖unh‖20,Ω +
n−1∑
m=0

(
δt|um+1

h |21,Ω + ‖um+1
h − umh ‖20,Ω

)
≤ C|u0|21,Ω + C

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖Dum+1
h ‖20,Ω

)
,(3.21)

and

n−1∑
m=0

δt‖λm+1

h̃
‖2− 1

2
,γ

≤ C|u0|21,Ω +
C

β2

n−1∑
m=0

δt
(
‖f(tm+1)‖20,Ω + ‖g(tm+1)‖21

2
,γ

+ ‖Dum+1
h ‖20,Ω

)
,(3.22)

where β is the constant from (2.3). Then, if u0
h is supposed to be the corresponding Ritz-

projection of (u0, 0), the following estimate can be derived as in (3.17):

δtb(λ1
h̃
, Du1

h) = δt〈λ1
h̃
,
u1
h − u0

h

δt
〉γ ≤

1

2ε
δt‖∂tg‖2

L∞((0,t1),H
1
2 (γ))

+ C|u0|21,Ω + Cεδt‖λ1
h̃
‖2− 1

2
,γ
,

(3.23)

where ε > 0 will be chosen small enough to move the term δt‖λ1
h̃
‖2− 1

2
,γ

to the left-hand side.

Then, following as in the proof of Theorem 3.1, a stability result independent of h and δt can
be obtained.

We finish this section by remarking that, if ih(u0) (the Lagrange interpolate of u0) is chosen
as the initial condition, a bound similar to (3.23) can be obtained under the extra hypothesis
that δt ≥ h2. In fact, supposing u0 ∈ H2(Ω), and using the approximation properties of ih we
arrive at
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δtb(λ1
h̃
, Du1

h) = δt
〈
λ1
h̃
,
u1
h − u0

h

δt

〉
γ

= 〈λ1
h̃
, u1

h〉γ − 〈λ1
h̃
, u0

h〉γ
= 〈λ1

h̃
, g(t1)− g(t0)〉γ + 〈λ1

h̃
, g(t0)− ih(u0)〉γ

≤ C

ε
δt‖∂tg‖2

L∞((0,t1),H
1
2 (γ))

+
ε

2
δt‖λ1

h̃
‖2− 1

2
,γ

+ Ch|u0|2,Ω‖λ1
h̃
‖− 1

2
,γ

≤ C

ε
δt‖∂tg‖2

L∞((0,t1),H
1
2 (γ))

+
ε

2
δt‖λ1

h̃
‖2− 1

2
,γ

+ C
1

2ε
|u0|22,Ω +

ε

2
h2‖λ1

h̃
‖2− 1

2
,γ

≤ C

ε
δt‖∂tg‖2

L∞((0,t1),H
1
2 (γ))

+
C

2ε
|u0|22,Ω +

1

2
ε(h2 + δt)‖λ1

h̃
‖2− 1

2
,γ
,

for any ε > 0. By supposing h2 ≤ δt and choosing ε < 0 small enough we get a stability result
similar to the one given in Theorem 3.1.

4. Convergence analysis

In this section we prove optimal order error estimates for the fully discrete method (2.9). We
start by presenting the following result on consistency. Its proof is direct verification.

Lemma 4.1. Let (u, λ) be the solution of (2.1) and let {(unh, λnh)}0≤n≤N be the solution of

(2.9). Assume that u ∈ C0(0, T ;H1
0 (Ω)) and λ ∈ C0(0, T ;H−

1
2 (γ)). Then, for 0 ≤ n ≤ N − 1,

the following holds

(Du(tn+1)−Dun+1
h , vh)Ω + a(u(tn+1)− un+1

h , vh)− b(λ(tn+1)− λn+1
h , vh)

+ b(µh, u(tn+1)− un+1
h ) = j(λn+1

h , µh) + (Du(tn+1)− ∂tu(tn+1), vh)Ω,

for all (vh, µh) ∈Wh.

We first show an estimate for the errors in a norm including the |||.|||h norm in space. It is
interesting to note that this result is optimal independently of the choice of the initial condition.

Theorem 4.1. Let us assume that u ∈ H1(0, T ;H2(Ω)) ∩ H2(0, T ;L2(Ω)) ∩ C0(0, T ;H2(Ω)),
u0 ∈ H2(Ω) ∩H1

0 (Ω) and λ ∈ H1(0, T ;H), and set u0
h ∈ Vh as u0

h = ih(u). Then the following
estimate holds for 1 ≤ n ≤ N :

‖unh − u(tn)‖20,Ω +
n−1∑
m=0

δt
∣∣∣∣∣∣(um+1

h − u(tm+1), λm+1
h − λ(tm+1))

∣∣∣∣∣∣2
h

≤ Ch2
(
‖u0‖22,Ω + ‖λ(0)‖2H

)
+ Ch2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω)) + ‖∂tλ‖2L2(0,tn;H)

)
+ C

(
δt2‖∂ttu‖2L2(0,tn;L2(Ω)) + h2‖λ‖2C0(t1,tn;H) + h2‖u‖2C0(t1,tn;H2(Ω))

)
,

with C > 0 a positive constant independent of h and δt.

Proof. As usual, for m = 0, ..., N , we decompose the error into interpolation and discrete errors
as follows

u(tm)− umh = u(tm)− Ph(u(tm), λ(tm))︸ ︷︷ ︸
θmπ

+Ph(u(tm), λ(tm))− umh︸ ︷︷ ︸
θmh

:= θmπ + θmh ,(4.1)
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λ(tm)− λmh = λ(tm)−Rh(u(tm), λ(tm))︸ ︷︷ ︸
ymπ

+Rh(u(tm), λ(tm))− λmh︸ ︷︷ ︸
ymh

:= ymπ + ymh ,(4.2)

where (Ph, Rh) is defined in (3.1). To ease the notation, we note, for m = 0, . . . , N ,

ûm = Ph(u(tm), λ(tm)) and λ̂m = Rh(u(tm), λ(tm)).

The term θm+1
π can be bounded using (3.20). In order to estimate θm+1

h , using the definition
of the bilinear form a(., .) + j(., .) and

(Dum+1
h , um+1

h ) =
1

2
D‖um+1

h ‖20,Ω +
1

2δt
‖um+1

h − umh ‖20,Ω,

we get

1

2
D‖θm+1

h ‖20,Ω +
∣∣∣∣∣∣(θm+1

h , ym+1
h )

∣∣∣∣∣∣2
h

≤ (Dθm+1
h , θm+1

h )Ω +
∣∣∣∣∣∣(θm+1

h , ym+1
h )

∣∣∣∣∣∣2
h

= (Dθm+1
h , θm+1

h )Ω + a(θm+1
h , θm+1

h ) + b(ym+1
h , θm+1

h )− b(ym+1
h , θm+1

h ) + j(ym+1
h , ym+1

h )︸ ︷︷ ︸
Tm+1
1

.(4.3)

Now, using (4.1)-(4.2), we have

Tm+1
1 = −(Dθm+1

π , θm+1
h )Ω − a(θm+1

π , θm+1
h ) + a(u(tm+1)− um+1

h , θm+1
h )

+ j(λ̂m+1, ym+1
h )− j(λm+1

h , ym+1
h ) + (Du(tm+1)−Dum+1

h , θm+1
h )Ω

− b(λ̂m+1 − λ(tm+1), θm+1
h ) + b(ym+1

h , ûm+1 − u(tm+1))

− b(λ(tm+1)− λm+1
h , θm+1

h ) + b(ym+1
h , u(tm+1)− um+1

h ).

By the modified Galerkin orthogonality (see Lemma 4.1), this expression reduces to

Tm+1
1 = −(Dθm+1

π , θm+1
h )Ω + (Du(tm+1)− ∂tu(tm+1), θm+1

h )Ω − a(θm+1
π , θm+1

h )

+ j(λ̂m+1, ym+1
h ) + b(ym+1

π , θm+1
h )− b(ym+1

h , θm+1
π )

= I + II + III + IV + V.(4.4)
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We now bound the above right-hand side term by term using the Cauchy Schwarz and the
Poincaré inequalities, (3.3), and properties of j(., .) (cf. (2.6)-(2.7)):

I ≤ C
(
‖Dθm+1

π ‖0,Ω + ‖Du(tm+1)− ∂tu(tm+1)‖0,Ω
)∣∣∣∣∣∣(θm+1

h , ym+1
h )

∣∣∣∣∣∣
h
,(4.5)

II ≤ |a(θm+1
π , θm+1

h )| ≤ |θm+1
π |1,Ω

∣∣∣∣∣∣(θm+1
h , ym+1

h )
∣∣∣∣∣∣
h
,(4.6)

III ≤ j(λ̂m+1, λ̂m+1)
1
2 j(ym+1

h , ym+1
h )

1
2 ≤ j(λ̂m+1, λ̂m+1)

1
2

∣∣∣∣∣∣(θm+1
h , ym+1

h )
∣∣∣∣∣∣
h

≤ {j(λ(tm+1)− λ̂m+1, λ(tm+1)− λ̂m+1)
1
2 + j(λ(tm+1), λ(tm+1))

1
2 }
∣∣∣∣∣∣(θm+1

h , ym+1
h )

∣∣∣∣∣∣
h

≤ Ch{|u(tm+1)|2,Ω + ‖λ(tm+1)‖H}
∣∣∣∣∣∣(θm+1

h , ym+1
h )

∣∣∣∣∣∣
h
,(4.7)

IV = 〈ym+1
π , θm+1

h 〉γ
≤ ‖λ(tm+1)− λ̂m+1‖− 1

2
,γ‖θ

m+1
h ‖ 1

2
,γ

≤ Ch
{
|u(tm+1)|2,Ω + ‖λ(tm+1)‖H

}
‖θm+1
h ‖1,Ω

≤ Ch
{
|u(tm+1)|2,Ω + ‖λ(tm+1)‖H

} ∣∣∣∣∣∣(θm+1
h , ym+1

h )
∣∣∣∣∣∣
h
,(4.8)

V = −b(ym+1
h , θm+1

π ) = −〈ym+1
h , θm+1

π 〉γ = j(λ̂m+1, ym+1
h )

= j(λ̂m+1 − λ(tm+1), ym+1
h ) + j(λ(tm+1), ym+1

h )

≤
(
j(λ̂m+1 − λ(tm+1), λ̂m+1 − λ(tm+1)) + j(λ(tm+1), λ(tm+1))

) 1
2
j(ym+1

h , ym+1
h )

1
2

≤ Ch(|u(tm+1)|2,Ω + ‖λ(tm+1)‖H)
∣∣∣∣∣∣(θm+1

h , ym+1
h )

∣∣∣∣∣∣
h
.(4.9)

Then collecting (4.4)-(4.9) and applying (3.3) once again, we get

Tm+1
1 ≤ C

(
‖Du(tm+1)− ∂tu(tm+1)‖0,Ω + ‖Dθm+1

π ‖0,Ω
)

︸ ︷︷ ︸
Tm+1
2

∣∣∣∣∣∣(θm+1
h , ym+1

h )
∣∣∣∣∣∣
h

+ Ch
(
|u(tm+1)|2,Ω + ‖λ(tm+1)‖H

)∣∣∣∣∣∣(θm+1
h , ym+1

h )
∣∣∣∣∣∣
h
.(4.10)

We bound separately both terms included in Tm+1
2 . For the first one, a Taylor expansion

gives

u(tm) = u(tm+1)− δt∂tu(tm+1)− 1

2

∫ tm+1

tm

∂ttu(s)(tm − s)ds,

which implies ∣∣∣∣u(tm+1)− u(tm)

δt
− ∂tu(tm+1)

∣∣∣∣ ≤ 1

2δt

∫ tm+1

tm

|∂ttu(s)||(tm − s)|ds

≤ 1

2

∫ tm+1

tm

|∂ttu(s)|ds ≤ 1

2

(∫ tm+1

tm

12ds

) 1
2
(∫ tm+1

tm

|∂ttu(s)|2ds
) 1

2

=
1

2
δt

1
2 ‖∂ttu‖L2(tm,tm+1).
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Thus, ∥∥∥∥u(tm+1)− u(tm)

δt
− ∂tu(tm+1)

∥∥∥∥2

0,Ω

=

∫
Ω

∣∣∣∣u(tm+1)− u(tm)

δt
− ∂tu(tm+1)

∣∣∣∣2 dx
≤ 1

4
δt

∫
Ω
‖∂ttu‖2L2(tm,tm+1)dx =

δt

4
‖∂ttu‖2L2(tm,tm+1;L2(Ω)).(4.11)

For the second term we have, using (3.20) once again and a Taylor expansion,

‖Dθm+1
π ‖20,Ω =

∥∥∥∥θm+1
π − θmπ

δt

∥∥∥∥2

0,Ω

=

∥∥∥∥u(tm+1)− Ph̃(u(tm+1), λ(tm+1))− u(tm) + Ph̃(u(tm), λ(tm))

δt

∥∥∥∥2

0,Ω

=

∥∥∥∥u(tm+1)− u(tm)

δt
− Ph̃

(
u(tm+1)− u(tm)

δt
,
λ(tm+1)− λ(tm)

δt

)∥∥∥∥2

0,Ω

≤ Ch2
( ∣∣∣∣u(tm+1)− u(tm)

δt

∣∣∣∣2
2,Ω

+

∥∥∥∥λ(tm+1)− λ(tm)

δt

∥∥∥∥2

H

)
≤ Ch2δt

(
‖∂tu‖2L2(tm,tm+1;H2(Ω)) + ‖∂tλ‖2L2(tm,tm+1;H)

)
.(4.12)

Thus, from (4.10) and using Young’s inequality, it follows that

Tm+1
1 ≤ 1

2

∣∣∣∣∣∣(θm+1
h , ym+1

h )
∣∣∣∣∣∣2
h

+ C
(
δt‖∂ttu‖2L2(tm,tm+1;L2(Ω))

+ h2δt
(
‖∂tu‖2L2(tm,tm+1;H2(Ω)) + ‖∂tλ‖2L2(tm,tm+1;H)

)
+ h2(|u(tm+1)|22,Ω + ‖λ(tm+1)‖2H)

)
.

By inserting this expression into (4.3), multiplying the resulting expression by 2δt, and adding
over 0 ≤ m ≤ n− 1, we obtain

‖θnh‖20,Ω +

n−1∑
m=0

δt
∣∣∣∣∣∣(θm+1

h , ym+1
h )

∣∣∣∣∣∣2
h

≤ ‖θ0
h‖20,Ω + C

(
δt2

2
‖∂ttu‖2L2(0,tn;L2(Ω)) + Ch2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω)) + ‖∂tλ‖2L2(0,tn;H)

)
+

n−1∑
m=0

h2δt
(
|u(tm+1)|22,Ω + ‖λ(tm+1)‖2H

))
.

It only remains to bound ‖θ0
h‖0,Ω. For this, we use the approximation properties of ih (cf. [15])

and of Rh (see (3.3)) and get

‖θ0
h‖ = ‖Ph(u0, λ(0))− ih(u0)‖0,Ω ≤ ‖Ph(u0, λ(0))− u0‖0,Ω + ‖u0 − ih(u0)‖0,Ω

≤ Ch(|u0|2,Ω + ‖λ(0)‖H),

which proves the result. �

The next result states an estimate for the error in a norm involving the H−
1
2 (γ)-norm of the

Lagrange multiplier λ. This estimate is optimal, up to a term that needs the right choice of
initial condition, and that will be treated at a later stage.
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Lemma 4.2. Let us assume that u ∈ H1(0, T ;H2(Ω)) ∩ H2(0, T ;L2(Ω)) ∩ C0(0, T ;H2(Ω)),
u0 ∈ H2(Ω) ∩H1

0 (Ω) and λ ∈ H1(0, T ;H), and set u0
h ∈ Vh as u0

h = ih(u0). Then the following
estimate holds for 1 ≤ n ≤ N :

n−1∑
m=0

δt‖λm+1
h − λ(tm+1)‖2− 1

2
,γ
≤ Ch2‖λ‖2C0(t1,tn;H)

+ C

(
h2
(
‖u0‖22,Ω + ‖λ(0)‖2H

)
+ h2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω)) + ‖∂tλ‖2L2(0,tn;H)

)
+ C

(
δt2‖∂ttu‖2L2(0,tn;L2(Ω)) + h2‖λ‖2C0(t1,tn;H) + h2‖u‖2C0(t1,tn;H2(Ω))

)
+

n−1∑
m=0

δt‖∂tu(tm+1)−Dum+1
h ‖20,Ω

)
,

with C > 0 a positive constant independent of h and δt.

Proof. We adopt the notations used in the proof of Theorem 4.1. Let n ∈ {1, ..., N} and
m ∈ {0, ..., n− 1}. Then, (2.4) gives

β̃‖ym+1
h ‖− 1

2
,γ ≤ sup

vh∈Vh\{0}

b(ym+1
h , vh)

|vh|1,Ω
+ Cj(ym+1

h , ym+1
h )

1
2 .

From (4.2), we have

b(ym+1
h , vh) = −b(ym+1

π , vh) + b(λ(tm+1)− λm+1
h , vh).

The first term can be bounded using the continuity of b(., .) and the trace and Poincaré inequal-
ities, which yields

b(ym+1
π , vh) ≤ C‖ym+1

π ‖− 1
2
,γ |vh|1,Ω.

On the other hand, using the modified Galerkin orthogonality (see Lemma 4.1) with µh = 0, we
have

b(λ(tm+1)− λm+1
h , vh) = a(u(tm+1)− um+1

h , vh) + (∂tu(tm+1)−Dum+1
h , vh)Ω

≤ C
∣∣∣∣∣∣(u(tm+1)− um+1

h , 0)
∣∣∣∣∣∣
h
|vh|1,Ω + ‖∂tu(tm+1)−Dum+1

h ‖0,Ω|vh|1,Ω.
As a result, from the above estimates, we arrive at

β̃‖ym+1
h ‖− 1

2
,γ ≤ sup

vh∈Vh\{0}

| − b(ym+1
π , vh) + b(λ(tm+1)− λm+1

h , vh)|
|vh|1,Ω

+ C
∣∣∣∣∣∣(0, ym+1

h )
∣∣∣∣∣∣
h

≤ C
(
‖ym+1
π ‖− 1

2
,γ +

∣∣∣∣∣∣(u(tm+1)− um+1
h , ym+1

h )
∣∣∣∣∣∣
h

+ ‖∂tu(tm+1)−Dum+1
h ‖0,Ω

)
.

Therefore, adding up from m = 0, to n− 1, we obtain

β̃2
n−1∑
m=0

δt‖ym+1
h ‖2− 1

2
,γ

≤ C
n−1∑
m=0

δt
(
‖ym+1
π ‖2− 1

2
,γ

+
∣∣∣∣∣∣(u(tm+1)− um+1

h , ym+1
h )

∣∣∣∣∣∣2
h

+ ‖∂tu(tm+1)−Dum+1
h ‖20,Ω

)
.

We then conclude using the error estimate for u from Theorem 4.1, and the triangle inequality.
�
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Finally, to present an optimal error estimate, we show that, under the hypothesis that the
initial condition is well-chosen, the term involving ‖∂tu − Dun+1

h ‖0,Ω can be bounded in an
optimal way.

Theorem 4.2. Let us assume the hypotheses of Lemma 4.2, but now suppose that the initial
condition is given by u0

h := Ph(u0, 0). Then, for 1 ≤ n ≤ N , the following error estimate holds

n−1∑
m=0

δt‖λm+1
h − λ(tm+1)‖2− 1

2
,γ
≤ Ch2‖λ‖2C0(t1,tn;H) + Ch2‖u0‖22,Ω + Ch2‖λ(0)‖2H

+ Ch2δt2
(
‖∂tu‖2L2(0,tn;H2(Ω)) + ‖∂tλ‖2L2(0,tn;H)

)
+ C

(
δt2‖∂ttu‖2L2(0,tn;L2(Ω)) + h2‖λ‖2C0(t1,tn;H) + h2‖u‖2C0(t1,tn;H2(Ω)))

)
.

Proof. Based on the previous lemma, we just need to prove

n−1∑
m=0

δt‖∂tu(tm+1)−Dum+1
h ‖20,Ω +

∣∣∣∣∣∣∣∣∣(ûn − unh, λ̂n − λnh)
∣∣∣∣∣∣∣∣∣2
h

≤ C
(
δt2‖∂ttu‖2L2(0,tn;L2(Ω)) + h2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω)) + ‖∂tλ‖2L2(0,tn;H)

)
+ Ch2‖λ(0)‖2H.

(4.13)

We recall that ûs = Ph(u(ts), λ(ts)) and λ̂s = Rh(u(ts), λ(ts)). Once again, we decompose the
error as in (4.1)-(4.2). Using the triangle inequality, we have

n−1∑
m=0

δt‖∂tu(tm+1)−Dum+1
h ‖20,Ω =

n−1∑
m=0

δt‖∂tu(tm+1)−Du(tm+1) +Dθm+1
π +Dθm+1

h ‖20,Ω

≤ C
n−1∑
m=0

δt
(
‖∂tu(tm+1)−Du(tm+1)‖20,Ω + ‖Dθm+1

π ‖20,Ω + ‖Dθm+1
h ‖20,Ω

)
.

The first and second terms have already been bounded in (4.11)-(4.12). For the third term, we
use the modified Galerkin orthogonality (see Lemma 4.1) with µh = 0 and the definition of the
Ritz projection (3.1) to obtain

‖Dθm+1
h ‖20,Ω + a(θm+1

h , Dθm+1
h )− b(ym+1

h , Dθm+1
h )

= −(Dθm+1
π , Dθm+1

h )Ω − a(θm+1
π , Dθm+1

h ) + b(ym+1
π , Dθm+1

h )

+ (Du(tm+1)− ∂tu(tm+1), Dθm+1
h )Ω

= −(Dθm+1
π , Dθm+1

h )Ω + (Du(tm+1)− ∂tu(tm+1), Dθm+1
h )Ω.

Next, Young’s inequality yields

1

2
‖Dθn+1

h ‖20,Ω + a(θn+1
h , Dθn+1

h )− b(yn+1
h , Dθn+1

h )

≤ ‖Dθn+1
π ‖20,Ω + ‖Du(tn+1)− ∂tu(tn+1)‖20,Ω.(4.14)

In addition, using vh = 0 in (3.1), for 0 ≤ m ≤ n, gives

(4.15) b
(
µh, û

m
)

= −j(λ̂m, µh) + b(µh, g(tm)).

On the other hand, testing (2.9) at the level m(0 ≤ m ≤ n) with vh = 0 we obtain

(4.16) b(µh, u
m
h ) = −j(λmh , µh) + b(µh, g(tm)),
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where this is valid for m = 0 thanks to the choice u0
h = Ph(u0, 0), and where λ0

h = Rh(u0, 0). As
a result, from (4.15) - (4.16), we get

b(µh, θ
m
h ) = −j(ymh , µh),

for all µh ∈ Λh and 0 ≤ m ≤ N . Therefore, for 0 ≤ m ≤ N − 1, the following holds

b(ym+1
h , Dθm+1

h ) = −j(Dym+1
h , ym+1

h ).(4.17)

On the other hand, using the symmetry of a and j, we get

a(θm+1
h , Dθm+1

h ) =
1

2
Da(θm+1

h , θm+1
h ) +

δt

2
a(Dθm+1

h , Dθm+1
h ),

j(ym+1
h , Dym+1

h ) =
1

2
Dj(ym+1

h , ym+1
h ) +

δt

2
j(Dym+1

h , Dym+1
h ).

Then, replacing (4.17) and the last set of equalities in (4.14), we get

1

2
‖Dθm+1

h ‖20,Ω +
1

2
D(a(θm+1

h , θm+1
h ) + j(ym+1

h , ym+1
h ))

≤ ‖Dθm+1
π ‖20,Ω + ‖Du(tm+1)− ∂tu(tm+1)‖20,Ω.

Thus, multiplication by 2δt and summation over 0 ≤ m ≤ n− 1, leads to

n−1∑
m=0

δt‖Dθm+1
h ‖20,Ω + |||(θmh , ymh )|||2h

≤
∣∣∣∣∣∣(θ0

h, y
0
h)
∣∣∣∣∣∣2
h

+ C

n−1∑
m=0

δt
(
‖Dθm+1

π ‖20,Ω + ‖Du(tm+1)− ∂tu(tm+1)‖20,Ω
)
.

The only term that has not been bounded is the first one. To bound it, we use the linearity of
the Ritz projection to get

θ0
h = u0

h − Ph(u(0), λ(0)) = Ph(u(0), 0)− Ph(u(0), λ(0)) = −Ph(0, λ(0)),

y0
h = λ0

h −Rh(u(0), λ(0)) = Rh(u(0), 0)−Rh(u(0), 0)−Rh(0, λ(0)) = −Rh(0, λ(0)).

Hence, ∣∣∣∣∣∣(θ0
h, y

0
h)
∣∣∣∣∣∣
h

= |||(Ph(0, λ(0)), Rh(0, λ(0)))|||h.
The use of (3.3) gives

|Ph(0, λ(0))|1,Ω = |Ph(0, λ(0))− 0|1,Ω ≤ Ch
(
|0|2,Ω + ‖λ(0)‖H

)
= Ch‖λ(0)‖H,

and

j(Rh(0, λ(0)), Rh(0, λ(0))) = j(Rh(0, λ(0))− λ(0), Rh(0, λ(0))) + j(λ(0), Rh(0, λ(0)))

≤ C
(
j(Rh(0, λ(0))− λ(0)), Rh(0, λ(0))− λ(0)) + j(λ(0), λ(0))

) 1
2
(
j(Rh(0, λ(0)), Rh(0, λ(0))

) 1
2

≤ Ch‖λ(0)‖H
(
j(Rh(0, λ(0)), Rh(0, λ(0))

) 1
2
.

Thus, ∣∣∣∣∣∣(θ0
h, y

0
h)
∣∣∣∣∣∣2
h

= |||(Ph(0, λ(0)), Rh(0, λ(0)))|||2h ≤ Ch
2‖λ(0)‖2H,
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which, after using (4.11) and (4.12) leads to

n−1∑
m=0

δt‖Dθm+1
h ‖20,Ω + |||(θnh , ynh)|||2h

≤ C
(
h2‖λ(0)‖2H + δt2‖∂ttu‖2L2(0,tn;L2(Ω)) + h2δt2

(
‖∂tu‖2L2(0,tn;H2(Ω)) + ‖∂tλ‖2L2(0,tn;H)

))
for 1 ≤ n ≤ N . This proves (4.13), and then the proof is finished. �

Remark 4.3. The inf-sup stable case. Again, following very similar arguments, optimal error
estimates can be obtained for the method (2.8) under the assumption u0

h = Ph(u(0), 0).

Remark 4.4. We finish this section by remarking that the hypotheses made on the exact solution,
namely, that u(·, t) ∈ H2(Ω) and λ(·, t) ∈ H, are made just for simplicity. In fact, proceeding as
above, and optimal, O(hs) error estimate can be proven for the, more realistic case, in which we
suppose that u(·, t) ∈ H1+s(Ω) and λ(·, t) ∈ Hs(γi), i = 1, . . . ,M , for some s ∈ (0, 1). This lower
regularity is typical of problems solved with a fictitious domain method. In fact, the construction
of an extension of the datum f in such a way that the solution of (2.2) belongs to H2(Ω)×H at
every time t, appart from some preliminary results in [16], remains, up to our best knowledge,
an open problem.

5. Numerical studies

In this section, we report the results of numerical experiments that support the analytical
results of Sections 3 and 4. We present computations demonstrating the optimal convergence
using the space discretisation and the time discretisation defined in Section 2. We also verify
numerically that the choice of the initial condition u0

h = Ph(u0, 0) guarantees a uniform approx-
imation of λ, thus confirming the results in Theorem 4.2 and the analogous result for the inf-sup
stable case. It is also discussed that for other choices of discrete initial condition the results
for small time steps are not stable in the sense that the error blows up as the time step size
diminishes. All computations have been performed using FreeFem+ + [21].

We consider problem (2.1) with ω = {(x, y) ∈ R2 : x2 + y2 < 1}, and its reformulation (2.2)
using Ω = (−2.4, 4)× (−2, 2). We have taken T = 1.

Figure 3. Meshes for inf-sup stable case when n = 1.
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We have tested two examples with known analytical solution. We first choose f in Ω× (0, T )
such that the exact solution of (2.2) is given by

(5.1) u1(x, t) = et(x2 + y2 − 1) ,

thus giving g = 0 on γ × (0, T ). Also, we have chosen another case where g 6= 0 on γ given by

(5.2) u2(x, t) = et(x2 + xy).

We have discretised this problem using a sequence of uniform meshes. The starting point is
the mesh depicted in Fig. 3. To build the meshes, an integer number n is given. Then Ω is
divided horizontally into 20 · 2n segments and vertically into 20 · 2n segments. The resulting
quadrilateral mesh is then divided into triangles to form the mesh in Fig. 3 (where n = 1 is
depicted). To build the mesh on γ, (i.e., γh̃), we divide γ into 4 ·2n curved segments. The pair of
meshes Th× γh̃ is used to implement the inf-sup stable method (2.8). For the stabilised method
(2.9) we use Th × γh, where the mesh γh is obtained after dividing each segment ẽ of γh̃ into 4
equally spaced curved segments.

For both test problems we have λ = 0. To measure convergence, we have computed the norms

‖u− uh̃,δt‖
2
∗ := ‖uNh − u(tN )‖20,Ω +

N−1∑
m=0

δt|um+1
h − u(tm+1)|21,Ω ,

‖λ− λh̃,δt‖
2
∗∗ :=

N−1∑
m=0

δt‖λm+1

h̃
− λ(tm+1)‖20,γ ,

for Method (2.8), and

‖(u− uh,δt, λ− λh,δt)‖2+ := ‖uNh − u(tN )‖20,Ω +
N−1∑
m=0

δt
∣∣∣∣∣∣(um+1

h − u(tm+1), λm+1
h − λ(tm+1))

∣∣∣∣∣∣2
h
,

‖λ− λh,δt‖2++ :=
N−1∑
m=0

δt‖λm+1
h − λ(tm+1)‖20,γ ,

for the stabilised method (2.9). To balance the space and time discretisation error, we have
chosen δt = h in our experiments. The numerical results are depicted in Figs. 4- 7 and measured
the behavior of the corresponding norm with respect to h and δt. We observe that all errors
tend to zero as predicted by the theory. This behavior is independent of the choice of the initial
conditions. In particular, we observe optimal convergence of all variables using both u0

h = ih(u0)
and u0

h = Ph(u0, 0).
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Figure 4. Convergence history of (2.8) for Solution (5.1).

Figure 5. Convergence history of (2.8) for Solution (5.2).
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Figure 6. Convergence history of (2.9) for Solution (5.1).

Figure 7. Convergence history of (2.9) for Solution (5.2).

The results depicted on the right-hand side of the above figures are aligned with the results
presented in Section 4, even if some calculations have been performed using the wrong initial
condition. In fact, Lemma 4.1 does present an optimal convergence estimate independent of
the choice initial condition, although in a weak norm, which only measures the fluctuations of
λ, multiplied by a time step. To stress this fact, we have performed a numerical experiment
reminiscent of the one from [22]. That is, we have fixed one level n = 1 and have taken δt −→ 0.
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We have then measured ‖λ(δt) − λ1
h‖0,γ both considering u0

h = ih(u0) and u0
h = Ph(u0, 0)

defined before. The results, depicted in Figs. 8-11 show that, unless the initial condition is
chosen appropriately, the error in λ grows as δt −→ 0, i. e. the approximation of λ cannot be
guaranteed. These results confirm the sharpness of the stability results presented in Section 3.

Figure 8. Error ‖λ(δt) − λ1
h̃
‖0,γ in method (2.8) for a fixed mesh and δt → 0

for Solution (5.1).

Figure 9. Error ‖λ(δt) − λ1
h̃
‖0,γ in method (2.8) for a fixed mesh and δt → 0

for Solution (5.2).
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Figure 10. Error ‖λ(δt) − λ1
h‖0,γ in method (2.9) for a fixed mesh and δt → 0

for Solution (5.1).

Figure 11. Error ‖λ(δt) − λ1
h‖0,γ in method (2.9) for a fixed mesh and δt → 0

for Solution (5.2).

6. Conclusion

In this paper we have proposed and analised a stabilised finite element method for the tran-
sient heat equation solved with a fictitious domain strategy. The choice of stabilising terms
allows us to use any combination of meshes to define the finite element spaces for the primal
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variable and Lagrange multiplier. Concerning the time discretisation, the main result is that
unconditional stability and optimal convergence can be obtained assuming the right choice of
initial conditions. Interestingly, this is not exclusive to the stabilised finite element method, but
is also a requirement if an inf-sup stable method is used. This has been confirmed by numerical
experiments.
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