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SHORT TIME DIFFUSION PROPERTIES OF INHOMOGENEOUS

KINETIC EQUATIONS WITH FRACTIONAL COLLISION KERNEL

FRÉDÉRIC HÉRAU, DANIELA TONON, AND ISABELLE TRISTANI

Abstract. We prove regularization properties in short time for inhomogeneous kinetic
equations whose collision kernel behaves like a fractional power of the Laplacian in veloc-
ity. We treat a fractional Kolmogorov equation and the linearized Boltzmann equation
without cutoff (for hard potentials).
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1. Introduction and results

1.1. Models. In this paper, we consider two kinetic inhomogeneous equations on R
+ ×

T
d
x ×R

d
v (Td being the d-dimensional torus) with collision kernel having the behavior of a

fractional Laplacian in velocity:

(1)

{
∂tf + v · ∇xf = Lf

f |t=0 = f0,

where f = f(t, x, v) is the distribution of particles, and L is the collision kernel, roughly
behaving like a fractional power of the Laplacian in velocity, and acting only in velocity.

Fractional Kolmogorov equation. The simplest model entering in this family is the frac-
tional Kolmogorov equation: for s ∈ (0, 1], the corresponding collision kernel is given
by

(2) L := −(1−∆v)
s.

Linearized Boltzmann equation. We also deal with a more complicated model associated to
the linearized Boltzmann operator without cutoff for hard potentials in dimension d = 3.
Let us describe it more precisely. The Boltzmann collision operator is defined as

(3) Q(g, f) :=

∫

R3×S2

B(v − v∗, σ)
[
g′∗f

′ − g∗f
]
dσ dv∗.

Here and below, we are using the shorthand notations f = f(v), g∗ = g(v∗), f ′ = f(v′)
and g′∗ = g(v′∗). In this expression, v, v∗ and v′, v′∗ are the velocities of a pair of particles
before and after collision. We make a choice of parametrization of the set of solutions to
the conservation of momentum and energy (physical laws of elastic collisions):

v + v∗ = v′ + v′∗,

|v|2 + |v∗|2 = |v′|2 + |v′∗|2,
so that the post-collisional velocities are given by:

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ, σ ∈ S

2.

The Boltzmann collision kernel B(v− v∗, σ) only depends on the relative velocity |v − v∗|
and on the deviation angle θ through cos θ = 〈κ, σ〉 where κ = (v − v∗)/|v − v∗| and 〈·, ·〉
is the usual scalar product in R

3. By a symmetry argument, one can always reduce to the
case where B(v − v∗, σ) is supported on 〈κ, σ〉 ≥ 0 i.e. 0 ≤ θ ≤ π/2. So, without loss of
generality, we make this assumption. In the sequel, we shall be concerned with the case
when the kernel B satisfies the following conditions (which include the physical case of
the so-called hard potentials):

• it takes product form in its arguments as

(4) B(v − v∗, σ) = Φ(|v − v∗|) b(cos θ);
• the angular function b is locally smooth, and has a nonintegrable singularity for
θ → 0, it satisfies for some cb > 0 and s ∈ (0, 1/2)

(5) ∀ θ ∈ (0, π/2],
cb

θ1+2s
≤ sin θ b(cos θ) ≤ 1

cb θ1+2s
;
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• the kinetic factor Φ satisfies

(6) Φ(|v − v∗|) = |v − v∗|γ with γ > 0,

this assumption could be relaxed to assuming only that Φ satisfies Φ(·) = CΦ | · |γ
for some CΦ > 0.

We will consider µ the only global Maxwellian equilibrium of the equation with mass 1,
vanishing momentum and energy 3:

µ(v) := (2π)−3/2e−|v|2/2.

We are interesting in the linearized operator around the equilibrium µ (not the whole
nonlinear Boltzmann operator) which is defined at first order through

Λf := Q(µ, f) +Q(f, µ)− v · ∇xf

and we thus consider the evolution equation (1) with L given by

(7) Lf := −(Q(µ, f) +Q(f, µ))

with the collision operator Q defined through (3) and satisfying the conditions (4), (5), (6).

1.2. Notations. We will denote 〈w〉 := (1 + |w|2)1/2 for any w ∈ R
d. For convenience,

we introduce the following strictly positive operators

Λ2
v := 1−∆v, Λ2

x = 1−∆x

and the associated family of Fourier multipliers

Λαx := (1−∆x)
α/2, Λβv := (1−∆v)

β/2, α, β ∈ R

which act on a function in S(Td × R
d) in the following way

Λ̂αxf(ξ, η) = 〈ξ〉α f̂(ξ, η), Λ̂βvf(ξ, η) = 〈η〉β f̂(ξ, η)
where the hat corresponds to the Fourier transform in both x (with corresponding variable
ξ ∈ Z

3) and v (with corresponding variable η ∈ R
3). We also introduce the corresponding

Sobolev spaces

Hα,β
x,v =

{
f ∈ S ′, ΛαxΛ

β
vf ∈ L2

}
,

and we denote by ‖·‖α,β the corresponding norm defined by

‖f‖2
Hα,β

x,v
:=
∑

ξ∈Zd

∫

η∈Rd

〈ξ〉2α〈η〉2β f̂(ξ, η)2 dη.

Similarly, we introduce the weighted Sobolev spaces Hα,β
x,v (m) for m a weight function (the

typical example in the sequel will be m(v) = 〈v〉k for some k ≥ 0):

Hα,β
x,v (m) =

{
f ∈ S ′, ΛαxΛ

β
v (fm) ∈ L2

}
,

and we denote by ‖·‖
Hα,β

x,v (m)
the corresponding norm defined by

‖f‖2
Hα,β

x,v (m)
:= ‖fm‖2

Hα,β
x,v
.

We also define the classical weighted Sobolev space Hn
x,v(m), for n ∈ N by:

‖f‖2Hn
x,v(m) :=

∑

|α|≤ℓ, |β|≤n, |α|+|β|≤n
‖∂αv ∂βx (fm)‖2L2

x,v
.
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We use Fourier transform to define the general space Hr
x,v(m) for r ∈ R

+:

(8) ‖f‖2Hr
x,v(m) := ‖fm‖2Hr

x,v
=
∑

ξ∈Zd

∫

η∈Rd

(1 + |ξ|2 + |η|2)r |f̂m(ξ, η)|2 dη

where the hat still corresponds to the Fourier transform in x and v. In the case r ∈ N, the
norms given by the two previous formula are equivalent. We won’t make any difference
in the notation and will use one norm or the other at our convenience. It won’t have any
impact on our estimates since it will only add multiplicative universal constants.

Let us remark that by classical results of interpolation (see for example [5]), for any
r ∈ R

+, one can write

Hr
x,v(m) =

[
H⌊r⌋
x,v (m),H⌊r⌋+1

x,v (m)
]
r−⌊r⌋,2

.

The notation used above is the classical one of real interpolation. For sake of completeness,
we briefly recall the meaning of this notation. For C and D two Banach spaces which are
both embedded in the same topological separating vector space, for any z ∈ A + B, we
define the K-function by

K(t, z) := inf
z=c+d

(‖c‖C + t‖d‖D) , ∀ t > 0.

We then give the definition of the space [C,D]θ,p for θ ∈ (0, 1) and p ∈ [1,+∞]:

[C,D]θ,p :=
{
z ∈ C +D, t 7→ K(t, z)/tθ ∈ Lp

(
dt/t1/p

)}
.

1.3. Main results and known results.

Fractional Kolmogorov equation. With the notations introduced above, the fractional Kol-
mogorov equation reads

∂tf + v · ∇xf + Λ2s
v f = 0

and a natural question is wether f benefits from some regularization induced by the elliptic
properties of Λ2s

v . The main result concerning the fractional Kolmogorov equation is the
following:

Theorem 1.1. Let r ∈ R and f be a solution of (1) with L given by (2) with initial

data f0 ∈ Hr,0
x,v. Then, there exists a constant Cr > 0 independent of f0 such that for all

t ∈ (0, 1], we have

‖f(t)‖r,s ≤
Cr

t1/2
‖f0‖r,0 and ‖f(t)‖r+s,0 ≤

Cr

t1/2+s
‖f0‖r,0 .

This result has already been proved in the case s = 1 in [8] by the first author and
we give here a result concerning the cases s ∈ (0, 1) following essentially the same core of
the method as there: we introduce a functional which is a Lyapunov functional for our
equation for small times (see also [16] by Villani and the references therein for this type of
methods). From this property, we are then able to recover some regularization estimates
quantified in time. Let us emphasize that the main difficulty for the fractional case is to
find a good entropy function (it is of course not the same as in the non fractional case
s = 1). This type of result is of great use in the proof of the return to equilibrium in large
functional spaces of solutions of inhomogeneous kinetic equations as in [13] by Mischler
and Mouhot in the Fokker-Planck case (s = 1) following a general method also presented
in [13]. The homogeneous fractional Fokker-Planck case has been studied by the third
author in [14] where regularization properties in velocity (concerning the integrability of
the solution) are investigated thanks to a fractional Nash inequality. In Section 2, devoted
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to the fractional Kolmogorov equation, we pay attention to give a proof for Theorem 1.1
without using any kind of pseudodifferential tool (only Fourier multiplier).

Linearized Boltzmann equation without cutoff. In Section 3, what we aim to do is to
prove some similar regularization properties for the linearized inhomogeneous Boltzmann
equation without cutoff as we do for the fractional Kolmogorov equation (Theorem 1.1).
We recall that the Boltzmann equation is of type (1) in dimension 3 with L given by (7).
Here is the main result that we obtain on this model:

Theorem 1.2. Let r ∈ N, k′ ≥ 0, k > max(γ/2 + 3 + 2max(1, r)s, k′ + γ + 5/2) and f
be a solution of (1) with L given by (7) with initial data f0. Then, there exists a constant
Cr > 0 independent of f0 such that we have the following regularization estimates. If
f0 ∈ Hr,0

x,v(〈v〉k) or f0 ∈ (Hr,s
x,v(〈v〉k)′ where (Hr,s

x,v(〈v〉k))′ is the dual space of Hr,s
x,v(〈v〉k)

with respect to Hr,0
x,v(〈v〉k), for any t ∈ (0, 1],

‖f(t)‖Hr,s
x,v(〈v〉k′ ) ≤

Cr

t1/2
‖f0‖Hr,0

x,v(〈v〉k) or ‖f(t)‖Hr,0
x,v(〈v〉k′ ) ≤

Cr

t1/2
‖f0‖(Hr,s

x,v(〈v〉k))′ .

If f0 ∈ Hr,0
x,v(〈v〉k) or f0 ∈ (Hr+s,0

x,v (〈v〉k))′, where (Hr+s,0
x,v (〈v〉k))′ is the dual space of

Hr+s,0
x,v (〈v〉k) with respect to Hr,0

x,v(〈v〉k), we also have for any t ∈ (0, 1],

‖f(t)‖Hr+s,0
x,v (〈v〉k′ ) ≤

Cr

t1/2+s
‖f0‖Hr,0

x,v(〈v〉k) or ‖f(t)‖Hr,0
x,v(〈v〉k′ ) ≤

Cr

t1/2+s
‖f0‖(Hr+s,0

x,v (〈v〉k))′ .

First, we have to underline that it is the first result of regularization quantified in time
on the Boltzmann equation without cutoff and that it is a key point for the development
of the Cauchy theory of perturbative solutions in [9] by the same three authors for the
nonlinear Boltzmann equation without cutoff (the condition on the power k comes from
this paper).

The singularity of the Boltzmann kernel in the non cutoff case implies that the Boltz-
mann operator without cutoff (that we will describe later on) behaves as a fractional
Laplacian in velocity:

Q(g, f) ≈ −Cg(−∆v)
sf + lower order terms

with Cg depending only on the physical properties of g. This type of result has already
been studied in the homogeneous and non-homogeneous cases. The gain in velocity is quite
obvious to observe even if it is complicated to understand it precisely: up to now, the most
common way to understand it is through an anisotropic norm (see [7] by Gressman and
Strain and [4] by Alexandre et al.). It is then natural to expect that the transport term
allows to transfer the gain in velocity to the space variable. We refer to the references
quoted in [2] for a review of this type of properties. Let us mention that the paper [2] by
Alexandre et al. is the first one in which the hypoellipticity features of the operator have
been deeply analyzed.

Our strategy here is to use the same method as for Kolmogorov type equations intro-
duced in [8] by the first author. In short, except from the fact that the use of pseudo-
differential tools is required and thus there are many additional technical difficulties, the
method is the same as for the fractional Kolmogorov equation. For purposes of compar-
ison, we can also mention that this kind of strategy has also been applied successfully
to the Landau equation in [6] by Carrapatoso et al.. However, the study of this kind of
properties is much harder in the case of the Boltzmann equation without cutoff since the
gain in regularity is less clear and consists in an anisotropic gain of fractional derivatives:
we have to exploit the fact that one can write a part the Boltzmann linearized operator
as a pseudo-differential operator, in the spirit of what has been done in [2].
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Indeed, we adapt here some ideas from there allowing to do computations for operators
- including the Boltzmann one - whose symbols are in an adapted class called here SK ,
where K is a large parameter. Let us point out that those classes are complicated partly
because the order of the symbols does not decrease with derivation, which induces some
great technical difficulties. The computations are done using the Wick quantization, widely
studied in particular by Lerner (see [11] and [12]), which has very nice positivity properties.
This allows to adapt to the Boltzmann case the Lyapunov strategy already introduced
in [8] for the Kolmogorov case and in the second section of this article for the fractional
Fokker-Planck case.

It is also important to underline the fact that this pseudo-differential study is not done
on the whole linearized operator but only on a well-chosen part of it (this is the object of
Subsection 3.3). Indeed, thanks to Duhamel formula, we will then be able to recover an
estimate on the whole semigroup, the one associated to Λ (see Lemma 3.4).

Acknowledgments. This research has been supported by the École Normale Supérieure
through the project Analyse de solutions d’équations de la théorie cinétique des gaz. The
first author thanks the Centre Henri Lebesgue ANR-11-LABX-0020-01 for its support and
the third author thanks the ANR EFI: ANR-17-CE40-0030.

1.4. Outline of the paper. In Section 2, we prove Theorem 1.1 on the fractional Kol-
mogorov equation. In Section 3, we focus on the linearized Boltzmann equation and more
precisely on Theorem 1.2 and most of its proof. The remainder of which contains pseudo-
differential arguments and will be found in Section 4. In Section 5, we explain how to
generalize the result for higher order derivatives in the Boltzmann case. Finally, in the
Appendix, we present the pseudo-differential tools that we shall use in full generality.

2. The fractional Kolmogorov equation

This section is devoted to the proof of Theorem 1.1. Following [8], we shall show below
that this entropy functional is decreasing with time, and this will imply the result in the
last subsection.

2.1. A Lyapunov functional. Let f be a solution of (1) with L given by (2) and with
initial data f0. We first deal with the case r = 0. We follow the lines of the proof given
in [8] and introduce an adapted entropy functional defined for all t ≥ 0 by

H(t) := C ‖f‖2 +Dt
∥∥Λs−1

v ∇vf
∥∥2 + Et1+sRe

(
Λs−1
v ∇vf,Λ

s−1
x ∇xf

)
+ t1+2s

∥∥Λs−1
x ∇xf

∥∥2

for large constants C, D, E to be chosen later, where ‖·‖ is the usual L2 norm, (·, ·) is the
usual (complex) L2 scalar product, we also have denoted

∥∥Λs−1
w ∇wf

∥∥2 =
d∑

k=1

∥∥Λs−1
w ∂wk

f
∥∥2 for w = x, v

and

(
Λs−1
v ∇vf,Λ

s−1
x ∇xf

)
=

d∑

k=1

(
Λs−1
v ∂vkf,Λ

s−1
x ∂xkf

)
.

The first step in the study is to show that H is indeed non-negative. The lemma below
shows in addition that for all t ≥ 0, H(t) controls the Hs norm (where Hs := H0,s∩Hs,0).
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Lemma 2.1. If E ≤
√
D then for all t ≥ 0 we have H(t) ≥ 0. Precisely we have

0 ≤ C ‖f‖2 + D

2
t
∥∥Λs−1

v ∇vf
∥∥2 + 1

2
t1+2s

∥∥Λs−1
x ∇xf

∥∥2 ≤ H(t).

Proof. The proof is direct using the time-dependant Cauchy-Schwarz inequality

Ets
∣∣(Λs−1

v ∇vf,Λ
s−1
x ∇xf

)∣∣ ≤ E2

2

∥∥Λs−1
v ∇vf

∥∥2 + 1

2
t2s
∥∥Λs−1

x ∇xf
∥∥2 .

✷

The main ingredient in the proof of Theorem 1.1 is the following commutation equality:
for j ∈ J1, dK, [

∂vj , vj∂xj
]
= ∂xj .

In the same spirit, we shall need later the following lemma giving formulas for slightly
modified commutators. We denote from now onX := v ·∇x the Vlasov operator andXj :=

vj∂xj , so that X =
∑d

j=1Xj and the previous fundamental equality reads
[
∂vj ,Xj

]
= ∂xj .

Lemma 2.2. For k ∈ J1, dK, we have

[
Λs−1
v ∂vk ,X

]
= Λs−1

v ∂xk + (1− s)∂vk

d∑

j=1

∂vjΛ
s−3
v ∂xj

and [
Λs−1
v ∂vk ,Λ

2s
v

]
=
[
Λs−1
x ∂xk ,Λ

2s
v

]
=
[
Λs−1
x ∂xk ,X

]
= 0.

Proof. For the three last equalities, the result is immediate since differentiation in
velocity and spatial direction commute. Let us deal with the first one. Let j, k ∈ J1, dK.
We check that that the commutator

[
Λs−1
v ∂vk ,Xj

]
is in fact a Fourier multiplier whose

symbol reads

σ
([
Λs−1
v ∂vk ,Xj

])
=

1

i

{
〈η〉s−1 iηk, ivjξj

}

where we denote by {·, ·} the Poisson bracket of two functions. Let us mention that in the
Fourier formalism, we have that for α ∈ R,

σ(∂vk) = iηk, σ(∂xj ) = iξj, σ(Xj) = ivjξj, σ(Λαv ) = 〈η〉α , σ(−∆v) = |η|2.
We then have

σ
([
Λs−1
v ∂vk ,Xj

])
= iξj

{
〈η〉s−1 ηk, vj

}
= iξj

(
(s− 1)ηjηk 〈η〉s−3 + 〈η〉s−1 δkj

)

where δkj is the Kronecker delta of (k, j). Then, summing on j, we get:

σ
([
Λs−1
v ∂vk ,X

])
= i

d∑

j=1

ξj

(
(s− 1)ηjηk 〈η〉s−3 + 〈η〉s−1 δkj

)

= i 〈η〉s−3


ξk(1 + sη2k) +

∑

j 6=k
ηj((s − 1)ξjηk + ξkηj)


 .
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Coming back on the non-Fourier side, we obtain:

[
Λs−1
v ∂vk ,X

]
= (1− s∂2vk)Λ

s−3
v ∂xk + (1− s)∂vk

∑

j 6=k
∂vjΛ

s−3
v ∂xj −

∑

j 6=k
∂2vjΛ

s−3
v ∂xk

= (1−∆v)Λ
s−3
v ∂xk + (1− s)∂2vkΛ

s−3
v ∂xk + (1− s)∂vk

∑

j 6=k
∂vjΛ

s−3
v ∂xj

= Λs−1
v ∂xk + (1− s)∂vk

d∑

j=1

∂vjΛ
s−3
v ∂xj

which is the required result. ✷

We now show that H is indeed a Lyapunov function (entropy functional).

Lemma 2.3. For well chosen (arbitrarily large) constants C, D and E we have

d

dt
H(t) ≤ 0, ∀ t ∈ [0, 1].

Proof. Using the previous lemma, we shall compute the time derivative of each terms
appearing in the definition of H. For convenience we introduce the operator associated
the the Kolmogorov equation

P := X + Λ2s
v

so that f satisfies ∂tf + Pf = 0. We do below all the computations in (the complex) L2.
We first notice that

d

dt
‖f‖2 = −2Re (Pf, f) = −2Re ((X + Λ2s

v )f, f) = −2(Λ2s
v f, f)

since X is skew-adjoint. Using Parseval formula on the right-hand side we get that the
first term in the derivative of H is

(9)
d

dt
C ‖f‖2 = −

(
2C 〈η〉2s︸ ︷︷ ︸

I

f̂ , f̂
)
.

Note that this term is non-positive.
For the second term in the derivative of H, we have

d

dt

(
t
∥∥Λs−1

v ∇vf
∥∥2
)
=

d∑

k=1

(∥∥Λs−1
v ∂vkf

∥∥2 + t
d

dt
(Λs−1

v ∂vkf,Λ
s−1
v ∂vkf)

)
.
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Let us fix k ∈ J1, dK. The derivative of the k-th term in the last term writes

d

dt

∥∥Λs−1
v ∂vkf

∥∥2 =− 2Re (Λs−1
v ∂vkPf,Λ

s−1
v ∂vkf)

=− 2Re (Λs−1
v ∂vkΛ

2s
v f,Λ

s−1
v ∂vkf)− 2Re (Λs−1

v ∂vkXf,Λ
s−1
v ∂vkf)

=− 2Re (Λ2s
v Λs−1

v ∂vkf,Λ
s−1
v ∂vkf)− 2Re (XΛs−1

v ∂vkf,Λ
s−1
v ∂vkf)

− 2Re (
[
Λs−1
v ∂vk ,Λ

2s
v

]
f,Λs−1

v ∂vkf)− 2Re (
[
Λs−1
v ∂vk ,X

]
f,Λs−1

v ∂vkf)

=− 2Re (Λ2s
v Λs−1

v ∂vkf,Λ
s−1
v ∂vkf)

− 2Re (Λs−1
v ∂xkf + (1− s)∂vk

d∑

j=1

∂vjΛ
s−3
v ∂xjf,Λ

s−1
v ∂vkf)

=2Re (Λ4s−2
v ∂2vkf, f) + 2Re (Λ2s−2

v ∂xk∂vkf, f)

+ 2Re ((1− s)∂2vk

d∑

j=1

∂vjΛ
2s−4
v ∂xjf, f)

where we used that X is skew-adjoint and the commutation expressions in Lemma 2.2.
Writing the right-hand side on the Fourier side, summing over k and using Cauchy-Schwarz
inequality gives us:

d

dt

∥∥Λs−1
v ∇vf

∥∥2 ≤ −2(〈η〉4s−2 |η|2f̂ , f̂) + 2(2 − s)(〈η〉2s−1 〈ξ〉 f̂ , f̂)

≤ −2(〈η〉4s f̂ , f̂) + 2(〈η〉4s−2 f̂ , f̂) + 2(2− s)(〈η〉2s−1 〈ξ〉 f̂ , f̂).
The second term in H therefore satisfies

(10)
d

dt

(
Dt
∥∥Λs−1

v ∇vf
∥∥2
)

≤
((

D 〈η〉2s︸ ︷︷ ︸
i

− 2Dt 〈η〉4s︸ ︷︷ ︸
II

+2Dt 〈η〉4s−2

︸ ︷︷ ︸
ii

+2(2− s)Dt 〈η〉2s−1 〈ξ〉︸ ︷︷ ︸
iii

)
f̂ , f̂

)
.

We note that the term corresponding to II is non-positive, and that the three other ones
are non-negative. We now deal with the third term in the derivative of H:

d

dt

(
t1+sRe

(
Λs−1
v ∂vf,Λ

s−1
x ∂xf

))

= (1 + s)tsRe
(
Λs−1
v ∇vf,Λ

s−1
x ∇xf

)
+ t1+s

d

dt
Re
(
Λs−1
v ∇vf,Λ

s−1
x ∇xf

)

= (1 + s)tsRe
(
Λs−1
v ∇vf,Λ

s−1
x ∇xf

)
+ t1+s

d∑

k=1

d

dt
Re
(
Λs−1
v ∂vkf,Λ

s−1
x ∂xkf

)
.

The k-th derivative in the last term writes
d

dt
Re (Λs−1

v ∂vkf,Λ
s−1
x ∂xkf)

=− Re (Λs−1
v ∂vkPf,Λ

s−1
x ∂xkf)− Re (Λs−1

v ∂vkf,Λ
s−1
x ∂xkPf)

=− 2Re (Λ2s
v Λs−1

v ∂vkf,Λ
s−1
x ∂xkf)

− Re (Λs−1
v ∂vkXf,Λ

s−1
x ∂xkf)− Re (Λs−1

v ∂vkf,Λ
s−1
x ∂xkXf)

=− 2Re (Λ2s
v Λs−1

v ∂vkf,Λ
s−1
x ∂xkf)

− Re (
[
Λs−1
v ∂vk ,X

]
f,Λs−1

x ∂xkf)− Re (Λs−1
v ∂vkf,

[
Λs−1
x ∂xk ,X

]
f)

− Re (XΛs−1
v ∂vkf,Λ

s−1
x ∂xkf)− Re (Λs−1

v ∂vkf,XΛs−1
x ∂xkf).
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We use again that X is skew-adjoint and observe that it implies that the sum of the last
two terms is zero by compensation. The previous term is also zero since the commutator
inside is zero. With Lemma 2.2, we obtain

d

dt
Re (Λs−1

v ∂vkf,Λ
s−1
x ∂xkf) =− 2Re (Λ2s

v Λs−1
v ∂vkf,Λ

s−1
x ∂xkf)

− Re
(
Λs−1
v ∂xkf + (1− s)∂vk

d∑

j=1

∂vjΛ
s−3
v ∂xjf,Λ

s−1
x ∂xkf

)
.

Writing the right-hand side on the Fourier side then gives

d

dt
Re (Λs−1

v ∂vkf,Λ
s−1
x ∂xkf) = −(〈η〉3s−1 〈ξ〉s−1 ηkξkf̂ , f̂)− (〈η〉s−1 ξ2k 〈ξ〉s−1 f̂ , f̂)

+ (1− s)
d∑

j=1

(ηk 〈η〉s−3 ξk 〈ξ〉s−1 ηjξj f̂ , f̂).

Then, taking the sum overs k gives us (using Cauchy-Schwarz inequality):

d

dt
Re (Λs−1

v ∇vf,Λ
s−1
x ∇xf) ≤ d(〈η〉3s 〈ξ〉s f̂ , f̂)− (〈η〉s−1 |ξ|2 〈ξ〉s−1 f̂ , f̂)

+ (1− s)

(( d∑

j=1

ηjξj

)2

〈η〉s−3 〈ξ〉s−1 f̂ , f̂

)

≤ d(〈η〉3s 〈ξ〉s f̂ , f̂)− (〈η〉s−1 |ξ|2 〈ξ〉s−1 f̂ , f̂)

+ (1− s)(|η|2|ξ|2 〈η〉s−3 〈ξ〉s−1 f̂ , f̂)

≤ d(〈η〉3s 〈ξ〉s f̂ , f̂)− s(〈η〉s−1 〈ξ〉s+1 f̂ , f̂) + (〈η〉s−1 〈ξ〉s−1 f̂ , f̂).

We therefore get that the third term in H satisfies:

(11)
d

dt

(
Et1+sRe

(
Λs−1
v ∇vf,Λ

s−1
x ∇xf

))

≤
((

E(s + 1)ts 〈η〉s 〈ξ〉s︸ ︷︷ ︸
iv

+ dEt1+s 〈η〉3s 〈ξ〉s︸ ︷︷ ︸
v

− Est1+s 〈η〉s−1 〈ξ〉s+1

︸ ︷︷ ︸
III

+Et1+s 〈η〉s−1 〈ξ〉s−1

︸ ︷︷ ︸
vi

)
f̂ , f̂

)
.

We note that the term corresponding to III is non-positive, and that the three other ones
are non-negative.

We can now deal with the last term in the derivative of H. We write

d

dt

(
t1+2s

∥∥Λs−1
x ∇xf

∥∥2
)
= (1 + 2s)t2s

∥∥Λs−1
x ∇xf

∥∥2 + t1+2s d

dt

∥∥Λs−1
x ∇xf

∥∥2

= (1 + 2s)t2s
d∑

k=1

∥∥Λs−1
x ∂xkf

∥∥2 + t1+2s
d∑

k=1

d

dt

∥∥Λs−1
x ∂xkf

∥∥2 .

The k-th derivative of the last term writes
d

dt

∥∥Λs−1
x ∂xkf

∥∥2 =− 2Re (Λs−1
x ∂xkPf,Λ

s−1
x ∂xkf)

=− 2Re (Λ2s
v Λs−1

x ∂xkf,Λ
s−1
x ∂xkf)− 2Re (XΛs−1

x ∂xkf,Λ
s−1
x ∂xkf)

=− 2Re (Λ2s
v Λs−1

x ∂xkf,Λ
s−1
x ∂xkf).
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We used here the last commutations properties in Lemma 2.2 and again that X is skew-
adjoint. Writing the right-hand side on the Fourier side and summing on k gives

d

dt

∥∥Λs−1
x ∇xf

∥∥2 = −2(〈η〉2s 〈ξ〉2s−2 |ξ|2f̂ , f̂)

= −2(〈η〉2s 〈ξ〉2s f̂ , f̂) + 2(〈η〉2s 〈ξ〉2s−2 f̂ , f̂).

The fourth term in the derivative of H therefore satisfies:

(12)
d

dt

(
t1+2s

∥∥Λs−1
x ∇xf

∥∥2
)

≤
((

(1 + 2s)t2s 〈ξ〉2s︸ ︷︷ ︸
vii

− 2t1+2s 〈η〉2s 〈ξ〉2s︸ ︷︷ ︸
IV

+2t1+2s 〈η〉2s 〈ξ〉2s−2

︸ ︷︷ ︸
viii

)
f̂ , f̂

)
.

We note that the term corresponding to IV is non-positive, and that the other ones are
non-negative.

Now we look at the different terms appearing in formulas (9-12). We want to show
that with a good choice of constants C, D and E, the corresponding sum is non-positive,
and therefore H is indeed a Lyapunov functional. We shall study each non-negative term
(small letters (i) to (viii) ) and show that they can be controlled by combinations of terms
I to IV , using essentially the Hölder inequality in R

2. We restrict the study to t ∈ [0, 1].
The terms (i) and (ii) are immediately bounded by I/10 if

(13) 2D ≤ 2C/10.

since s ≤ 1. The term (iii) is a little bit trickier. We check that for any εiii > 0

t 〈η〉2s−1 〈ξ〉 ≤ ε−1
iii 〈η〉2s + εsiiit

1+s 〈η〉s−1 〈ξ〉s+1 .

Multiplying this inequality by 2D implies that (iii) ≤ I/10 + III/10 if the following
conditions are satisfied

(14) ε−1
iii 2(2 − s)D ≤ 2C/10, εsiii2(2 − s)D ≤ Es/10.

We now deal with the term (iv). We first check that for any εiv > 0

ts 〈η〉s 〈ξ〉s ≤ ε−1
iv 〈η〉2s + ε

1/s
iv t

1+s 〈η〉s−1 〈ξ〉s+1 .

Multiplying this inequality by E(s+ 1) implies that (iv) ≤ I/10 + III/10 if the following
conditions are satisfied

(15) ε−1
iv E(s+ 1) ≤ 2C/10, ε

1/s
iv E(s+ 1) ≤ Es/10.

For the term (v), we also have to give a refined estimate. We first check that for any
εv > 0

t1+s 〈η〉3s 〈ξ〉s ≤ ε−1
v t 〈η〉4s + εvt

1+2s 〈η〉2s 〈ξ〉2s .
Multiplying this inequality by dE implies that (v) ≤ II/10 + IV/10 if the following
conditions are satisfied

(16) ε−1
v dE ≤ 2D/10, εvdE ≤ 2/10.

The term (vi) is easily handled since s ≤ 1, and we directly get that (vi) ≤ I/10 if

(17) E ≤ 2C/10.

Now we study the term (vii). We first notice that for any εvii > 0

t2s 〈ξ〉2s ≤ ε−1
vii 〈η〉2s + ε

1−s
2s
vii t

1+s 〈η〉s−1 〈ξ〉s+1 .
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Multiplying this inequality by (1 + 2s) implies that (vii) ≤ I/10 + III/10 if the following
conditions are satisfied

(18) ε−1
vii(1 + 2s) ≤ 2C/10, ε

1−s
2s
vii (1 + 2s) ≤ Es/10.

To finish, the term (viii) is also easily handled since s ≤ 1, and we directly get that
(viii) ≤ I/10 if

(19) 2 ≤ 2C/10.

Now we can do the synthesis and check that we can choose (in order of reverse ap-
pearance) the constants C, D, E and the small constants εiii, εiv, εv and εvii such that
conditions (13-19) are satisfied. Note that D and after that C can be taken arbitrarily
large at the end of this procedure. We obtain therefore that

(20)
d

dt
H(t) ≤ − 1

10

(
(I + II + III + IV )f̂ , f̂

)
≤ 0

and the proof is complete. ✷

Then we are able to conclude the proof of the main result Theorem 1.1 concerning the
fractional Kolmogorov equation.

2.2. Proof of Theorem 1.1. We first prove the result for r = 0. Let C, D and E be
constants given by Lemmas 2.1 and 2.3 and let us take f0 ∈ S. From Lemma 2.3, we first
get that for all t ∈ [0, 1]

H(t) ≤ H(0) = C ‖f0‖2 .
Using now Lemma 2.1, we get in particular

D

2
t ‖Λsvf‖2 ≤ C ‖f‖2 + D

2
t
∥∥Λs−1

v ∂vf
∥∥2 ≤ H(t) ≤ C ‖f0‖2

and this implies the result for the velocity regularization. Similarly, using again Lemma 2.1,
we have

1

2
t1+2s ‖Λsxf‖2 ≤ C ‖f‖2 + 1

2
t1+2s

∥∥Λs−1
x ∂xf

∥∥2 ≤ H(t) ≤ C ‖f0‖2

and this gives the regularization result for r = 0 in the spatial direction.
For r ∈ R, we just use the fact that P commutes with Λrx which implies that for f

solution of ∂tf + Pf = 0 with initial data f0, Λ
r
xf is the solution of ∂tΛ

r
xf + PΛrxf = 0

with initial data Λrxf0. We can therefore apply the result on L2 to Λrxf and this directly
gives that

D

2
t ‖ΛsvΛrxf‖2 ≤ C ‖Λrxf0‖2 and

1

2
t1+2s

∥∥Λs+rx f
∥∥2 ≤ C ‖Λrxf0‖2 .

This provides us the estimates for any r ∈ R and f0 ∈ S. The general result for initial
data in the corresponding spaces follows by density of S. The proof is complete. ✷

3. The inhomogeneous Boltzmann without cutoff case

This section is devoted to the study of the Boltzmann equation without cutoff case and
more precisely, to the proof of Theorem 1.2 (we recall that in this section, the dimension
d equals 3). We start by making a few comments on this theorem:
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• The result is not optimal in the sense that there is a loss in weight in our estimates.
But we strongly believe that one could obtain a better estimate (concerning the
weights) carrying out a more careful study of the operator Λ. Indeed, in our proof,
we perform a rough splitting of it and we use Duhamel formula to recover an
estimate on the whole semigroup SΛ(t). We could have not split the operator and
study it completely, that would certainly provides us a better result. However,
the proof would be much more complicated and we are here interested in the gain
of regularity in terms of derivatives (not in terms of weights). Furthermore, the
result that we obtain is enough to develop our perturbative Cauchy theory in [9]
because we have some leeway in the weights in our proof.

• Another important fact is that Theorem 1.2 provides a “primal” and a “dual”
result of regularization, roughly speaking, from L2 into Hs and from H−s into L2.
The fact that we also develop a dual result is directly related to the use of this
theorem that we make in [9]. We will only present the proof of the dual result into
full details, we just explain how to adapt it in the primal case (which is easier to
handle) in Section 5.

3.1. Splitting of the operator for the dual result. As already mentioned above,
we are going to study the regularization properties only of a part of Λ, we thus start by
exhibiting a splitting of it. There are at least two types of splittings that one can consider to
separate grazing and non-grazing collisions, depending on the adopted troncature function:
one can cut the small θ or the small |v′−v|. For our purpose, we will work with the second
option which is more adapted to the study of hypoelliptic properties of the Boltzmann
collision operator. To do that we introduce the truncation function χ ∈ D(R) which
satisfies 1[−1,1] ≤ χ ≤ 1[−2,2] and χδ(·) := χ(·/δ) for δ > 0 and consider the troncature
function χδ(|v′ − v|). We denote Qδ the operator associated to the kernel:

Bδ(v − v∗, σ) := χδ(|v′ − v|) b(cos θ) |v − v∗|γ

and Qcδ the one associated to the remainder part of the kernel:

Bc
δ(v − v∗, σ) := (1− χδ(|v′ − v|)) b(cos θ) |v − v∗|γ .

We then have:

Λf = −v · ∇xf +Qδ(µ, f) +Qcδ(µ, f) +Q(f, µ)

=

(
−K〈v〉γ+2sf − v · ∇xf +

∫

R3×S2

Bδ(v − v∗, σ)(µ∗f
′ − µ′∗f) dσ dv∗

)

+

(
K〈v〉γ+2sf +

∫

R3×S2

Bδ(v − v∗, σ)(µ
′
∗ − µ∗)(f

′ + f) dσ dv∗

+

∫

R3×S2

Bc
δ(v − v∗, σ)(µ

′
∗f

′ − µ∗f) dσ dv∗ +Q(f, µ)

)

=: Λ1f + Λ2f

where K is a large positive parameter to be fixed later. Notice that in Λ1, we have a term
which is going to provide us some regularization

∫

R3×S2

Bδ(v − v∗, σ)(µ∗f
′ − µ′∗f) dσ dv∗

and another one which provides us some dissipativity:

−K〈v〉γ+2sf.
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3.2. Study of the controlled part Λ2. We first study the “nice” part of our splitting,
namely Λ2 which is “almost bounded” in the sense that it does not induce a loss of
regularity but only a loss in weight.

Lemma 3.1. Let m(v) := 〈v〉k with k ≥ 0. For any K > 0 and for any ℓ > 3/2, we have
the following estimate:

(21) ‖Λ2f‖Hς
x,v(m) . ‖f‖Hς

x,v(〈v〉γ+1+ℓm), ∀ ς ∈ R
+.

Proof. We only look at the case ς ∈ N and conclude that the result also holds for ς ∈ R
+

by an interpolation argument. Let us begin with the case ς = 0 i.e. the L2-case. We have

Λ2f = K〈v〉γ+2sf +

∫

R3×S2

Bδ(v − v∗, σ)(µ
′
∗ − µ∗)f

′ dσ dv∗

+

∫

R3×S2

Bδ(v − v∗, σ)(µ
′
∗ − µ∗) dσ dv∗ f +

∫

R3×S2

Bc
δ(v − v∗, σ)µ

′
∗f

′ dσ dv∗

−
∫

R3×S2

Bc
δ(v − v∗, σ)µ∗ dσ dv∗ f +Q(f, µ)

=: Λ21f + Λ22f + Λ23f + Λ24f + Λ25f + Λ26f.

The estimate on Λ21 is obvious:

‖Λ21f‖L2
x,v(m) . ‖f‖L2

x,v(〈v〉γ+2sm).

The analysis of Λ23 is also easy to perform using the cancellation lemma from [1], we have:

Λ23f = (S ∗ µ)f
with S satisfying the estimate |S(z)| . |z|γ . We deduce that |S ∗ µ|(v) . 〈v〉γ and thus

‖Λ23f‖L2
x,v(m) . ‖f‖L2

x,v(〈v〉γm).

To treat Λ24 and Λ25, we use the fact that the kernel Bc
δ is not singular since the grazing

collisions are removed. Since |v′ − v| ∼ |v − v∗| sin(θ/2), we have:

|Bc
δ(v − v∗, σ)| ≤ b(cos θ)|v − v∗|γ1|v′−v|≥δ . b(cos θ)|v − v∗|γ+1 sin(θ/2).

Consequently, we obtain using that m . m′m′
∗ that for ℓ > 3/2:

‖Λ24f‖2L2
x,v(m) .

∫

T3×R3

(∫

R3×S2

b(cos θ) sin(θ/2)|v − v∗|γ+1µ′∗ f
′ dσ dv∗

)2

m2 dv dx

.

∫

T3×R3×R3×S2

b(cos θ) sin(θ/2)|v − v∗|2(γ+1)(µ′∗m
′
∗)

2 (f ′m′)2 〈v∗〉2ℓ dσ dv∗ dv dx

where we have used Jensen inequality with the finite measure b(cos θ) sin (θ/2) dσ and
Cauchy-Schwarz inequality with the measure 〈v∗〉ℓdv∗. Then, using the basic inequality
〈v∗〉 . 〈v′〉〈v′∗〉 and the pre-post collisional change of variable, we get:

‖Λ24f‖2L2
x,v(m)

.

∫

T3×R3×R3×S2

b(cos θ) sin(θ/2)|v − v∗|2(γ+1)(µ∗m∗)
2 (fm)2 〈v〉2ℓ 〈v∗〉2ℓ dσ dv∗ dv dx

. ‖f‖2L2
x,v(〈v〉γ+1+ℓm) with ℓ > 3/2.

The treatment of Λ25 is easier and we directly obtain:

‖Λ25f‖L2
x,v(m) . ‖f‖L2

x,v(〈v〉γ+1m).
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Concerning Λ26, we have for any ℓ > 3/2:

‖Q(f, µ)‖L2
v(m) . ‖f‖L2

v(〈v〉γ+2s+ℓm)

where we used [3, Theorem 2.1]. We deduce that

‖Λ26f‖L2
x,v(m) . ‖f‖L2

x,v(〈v〉γ+2s+ℓm), ℓ > 3/2.

It now remains to deal with Λ22. Denoting M :=
√
µ, we have:

|Λ22f | ≤
∫

R3×S2

Bδ(v − v∗, σ)|M ′
∗ −M∗|(M ′

∗ +M∗)|f ′|dσ dv∗

.

∫

R3×S2

b(cos θ) sin(θ/2)|v − v∗|γ+1(M ′
∗ +M∗)|f ′|dσ dv∗

where we used that the gradient of M is bounded on R
d. Then we use that m . m′m′

∗
and m . 〈v − v∗〉km∗ to get:

‖Λ22f‖2L2
x,v(m) .

∫

T3×R3

(∫

R3×S2

b(cos θ) sin(θ/2)|v − v∗|γ+1M ′
∗|f ′|dσ dv∗

)2

m2dv dx

+

∫

T3×R3

(∫

R3×S2

b(cos θ) sin(θ/2)|v − v∗|γ+1M∗|f ′|dσ dv∗
)2

m2dv dx

.

∫

T3×R3

(∫

R3×S2

b(cos θ) sin(θ/2)|v − v∗|γ+1M ′
∗m

′
∗|f ′|m′ dσ dv∗

)2

dv dx

+

∫

T3×R3

(∫

R3×S2

b(cos θ) sin(θ/2)〈v − v∗〉γ+1+kM∗m∗|f ′|dσ dv∗
)2

dv dx

=: I1 + I2.

Using Jensen inequality and Hölder inequality as previously, we obtain for ℓ > 3/2:

‖Λ22f‖2L2
x,v(m)

.

∫

T3×R3×R3×S2

b(cos θ) sin(θ/2)|v − v∗|2(γ+1)µ′∗(m
′
∗)

2|f ′|2(m′)2〈v∗〉2ℓ dσ dv∗ dv dx

+

∫

T3×R3×R3×S2

b(cos θ) sin(θ/2)〈v − v∗〉2(γ+1+k)µ∗m
2
∗|f ′|2〈v∗〉2ℓ dσ dv∗ dv dx

=: I1 + I2.

The first term I1 is treated as Λ24 and we thus have:

I1 . ‖f‖2L2
x,v(〈v〉γ+1+ℓm).

Concerning I2, we first look at the integral

J :=

∫

R3×S2

b(cos θ) sin(θ/2)〈v − v∗〉2(γ+1+k)|f ′|2 dσ dv.

Then, for each σ, with v∗ still fixed, we perform the change of variables v → v′. This
change of variables is well-defined on the set {cos θ > 0}. Its Jacobian determinant is

∣∣∣∣
dv′

dv

∣∣∣∣ =
1

8
(1 + κ · σ) = (κ′ · σ)2

4
,

where κ = (v− v∗)/|v− v∗| and κ′ = (v′− v∗)/|v′− v∗|. We have κ′ ·σ = cos(θ/2) ≥ 1/
√
2.

The inverse transformation v′ → ψσ(v
′) = v is then defined accordingly. We have

cos θ = κ · σ = 2(κ′ · σ)2 − 1 and sin(θ/2) =
√

1− cos2(θ/2) =
√

1− (κ′ · σ)2,
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and also

|ψσ(v)− v∗| = |v − v∗|/κ · σ.
As a result, we get:

J =

∫

R3×S2

b(2(κ′ · σ)2 − 1)
√

1− (κ′ · σ)2〈ψσ(v′)− v∗〉2(γ+1+k)|f ′|2 dσ dv

=

∫

κ′·σ≥1/
√
2
b(2(κ′ · σ)2 − 1)

√
1− (κ′ · σ)2〈ψσ(v′)− v∗〉2(γ+1+k)|f ′|2 dσ 4 dv′

(κ′ · σ)2

=

∫

κ·σ≥1/
√
2
b(2(κ · σ)2 − 1)

√
1− (κ · σ)2〈ψσ(v)− v∗〉2(γ+1+k)|f |2 dσ 4 dv

(κ · σ)2

.

∫

κ·σ≥1/
√
2
b(2(κ · σ)2 − 1)

√
1− (κ · σ)2〈v − v∗〉2(γ+1+k)|f |2 dσ dv

.

∫

S2

b(cos(2θ)) sin(θ) dσ

∫

R3

f2m2〈v〉2(γ+1) dv 〈v∗〉2(γ+1)m2
∗.

From this, we deduce that

I2 . ‖f‖2L2
x,v(〈v〉γ+1m)

and this concludes the proof in the case ς = 0.
Let us now explain briefly how to treat higher order derivatives: we only deal with

the H1-case, the other cases being handled similarly. For the derivative in x, we have
immediately that for any ℓ > 3/2,

‖∇xΛ2f‖L2
x,v(m) . ‖∇xf‖L2

x,v(〈v〉γ+1+ℓm)

since the operators ∇x and Λ2 commute (Λ2 acts only in velocity). Concerning the deriv-
ative in v, we have to be more careful and in what follows, we only give the key points to
obtain the final estimate. For the first term, we have:

|∇vΛ21f | . 〈v〉γ+2s−1|f |+ 〈v〉γ+2s|∇vf |.
For Λ23, using the cancellation lemma, we have

∇v(Λ23f) = (S ∗ ∇vµ)f + (S ∗ µ)∇vf

and we also have |S ∗ ∇vµ| . 〈v〉γ . For Λ26 we can use the classical result (see [15]) that
tells us

∇vQ(f, µ) = Q(∇vf, µ) +Q(f,∇vµ).

In the same spirit that the latter formula is proven, one can show that

∇vΛ22f =

∫

R3×S2

Bδ(v − v∗, σ)((∇vµ)
′
∗ − (∇vµ)∗)f

′ dσ dv∗ + Λ22(∇vf),

∇vΛ24f =

∫

R3×S2

Bc
δ(v − v∗, σ)(∇vµ)

′
∗f

′ dσ dv∗ + Λ24(∇vf)

and

∇vΛ25f = −
∫

R3×S2

Bc
δ(v − v∗, σ)(∇vµ)∗ dσ dv∗ f + Λ25(∇vf).

The key elements to prove those relations are that ∇vBδ = −∇v∗Bδ and that we have for
any suitable function g:

(∇v +∇v∗)(g
′) = (∇vg)

′ and (∇v +∇v∗)(g
′
∗) = (∇vg)

′
∗ .

Gathering the previous remarks, we are then able to obtain that for any ℓ > 3/2:

‖∇vΛ2f‖L2
x,v(m) . ‖f‖L2

x,v(〈v〉γ+1+ℓm) + ‖∇vf‖L2
x,v(〈v〉γ+1+ℓm),
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which allows us to conclude. ✷

3.3. Regularization properties of Λ1 in the dual case. The main result of this Sub-
section is Proposition 3.2 and is about the regularization features of the semigroup associ-
ated to Λ1. Here, we just state the result and we postpone its proof to Section 4 in which
we develop pseudo-differential arguments.

Functional spaces. In the remainder part of this section, we consider three weights:




m(v) = 〈v〉k with k ≥ 0,

m0(v) = 〈v〉k0 with k0 > γ/2 + 3 + 2s

m1(v) = 〈v〉k1 with k1 = k0 + γ + 1 + ℓ and ℓ > 3/2.

We then denote for i = ∅, 0, 1:




Xi = L2
x,v(mi)

Yi = Hs,0
x,v(〈v〉γ/2mi)

Zi = H0,s
x,v(〈v〉γ/2mi)) ∩ L2

x,v(〈v〉(γ+2s)/2mi)

Y ′
i the dual of Yi w.r.t. Xi

Z ′
i the dual of Zi w.r.t. Xi.

We also introduce the (almost) flat spaces:




F = L2
x,v

G = Hs,0
x,v(〈v〉γ/2)

H = H0,s
x,v(〈v〉γ/2) ∩ L2

x,v(〈v〉(γ+2s)/2)

G′ the dual of G w.r.t. F

H ′ the dual of H w.r.t. F .

Remark on the dual embeddings. First, we notice that

(22) ∀ q1 ≤ q2, ς ∈ R
+, Hς

v(〈v〉q2) →֒ Hς
v(〈v〉q1).

This property is clear in the case ς ∈ N. Let us now treat the case ς ∈ R
+ \ N. Since the

weighted space Hς
v(〈v〉qi) is defined through

h ∈ Hς
v(〈v〉qi) ⇔ h〈v〉qi ∈ Hς

v

and that we have, using the standard real interpolation notations (see for example [5]):

Hς
v =

[
H⌊ς⌋
v ,H⌊ς⌋+1

v

]
ς−⌊ς⌋,2

,

one can prove that

Hς
v(〈v〉qi) =

[
H⌊ς⌋
v (〈v〉qi),H⌊ς⌋+1

v (〈v〉qi)
]
ς−⌊ς⌋,2

, i = 1, 2.

From this, since Hℓ
v(〈v〉q2) →֒ Hℓ

v(〈v〉q1) for ℓ ∈ N, we deduce the desired embedding result:
Hς
v(〈v〉q2) →֒ Hς

v(〈v〉q1).
We can now prove that the standard inclusions for dual spaces do not hold here. Indeed,

we have for example Y1 ⊂ Y0 and also Y ′
1 ⊂ Y ′

0 (the same for “Z-spaces” hold). This is
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due to the fact that the pivot spaces are Xi and not L2
x,v as usually. Indeed, using that

k1 ≥ k0 and (22), we have

‖f‖Y ′

0
= sup

‖ϕ‖Y0≤1
〈f, ϕ〉X0

= sup
‖ϕm0‖G≤1

〈
fm1, ϕ

m2
0

m1

〉

F

= sup
‖ψm2

1/m0‖G≤1

〈fm1, ψm1〉F

≤ sup
‖ψm1‖G≤1

〈fm1, ψm1〉F = sup
‖ϕ‖Y1≤1

〈f, ϕ〉X1 = ‖f‖Y ′

1
.

Reduction of the problem to a “simpler” framework. We start by explaining how to avoid
some difficulties coming from the spaces in which we are working. First, in order to
simplify the problem, since we work in weighted spaces, we are going to “include” the
weight in our operator. For this purpose, we define the operator Λm1 by

Λm1 f := mΛ1(m
−1f).

We notice that if f satisfies ∂tf = Λ1f , then h := mf satisfies ∂th = Λm1 h and we thus
have SΛm

1
(t)h = mSΛ1(t)f . Then, in order to avoid having to work in dual spaces, we

introduce formal dual operators for which we prove regularization properties in “positive”
Sobolev spaces. To this end, we introduce the (formal) adjoint operator (w.r.t. the scalar
product of L2

x,v) of Λ
m
1 that we denote Λm,∗1 and which is defined by:

Λm,∗1 ϕ :=

∫

R3×S2

Bδ(v − v∗, σ)µ
′
∗ (ϕ

′m′ − ϕm) dσ dv∗m
−1 −K〈v〉γ+2s ϕ+ v · ∇xϕ.

The advantage of working with this operator is that we can work in flat and positive
Sobolev spaces. We now write our main regularization estimate:

Proposition 3.2. For K large enough, we have the following estimates:

(23) ∀ t ∈ (0, 1], ‖SΛm,∗
1

(t)ϕ‖H .
1√
t
‖ϕ‖F and ‖SΛm,∗

1
(t)ϕ‖G .

1

t1/2+s
‖ϕ‖F .

The proof of Proposition 3.2 is to be compared with the one of Theorem 1.1. Indeed,
it is the same proof strategy, we introduce a functional which is going to be an entropy
for our equation for small times. However, it is much more complicated in this case and
our approach requires refined pseudo-differential tools, Section 4 is dedicated to its proof.
Before that, we explain how to use Proposition 3.2 to get our final result in Theorem 1.2.

3.4. Proof of the dual result of Theorem 1.2. The goal is first to prove the dual
result in Theorem 1.2 in the case r = 0. As already mentioned, in the case of the frac-
tional Kolmogorov equation, the proof will be exactly the same for other values of r since
the operator Λrx commutes with the Boltzmann operator. We can thus apply the result
obtained for r = 0 to Λrxf0 to recover the result for r 6= 0.

From Proposition 3.2, we can deduce an estimate on the semigroup associated to Λ1 in
the “original” (non flat) spaces:

Corollary 3.3. For K large enough, the following estimates hold:

(24) ∀ t ∈ (0, 1], ‖SΛ1(t)f‖X .
1√
t
‖f‖Z′ and ‖SΛ1(t)f‖X .

1

t1/2+s
‖f‖Y ′ .
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Proof. Let us consider K large enough so that the conclusion of Proposition 3.2 holds.
Using (23), we have for any t ∈ (0, 1]:

‖SΛ1(t)f‖X . ‖SΛm
1
(t)h‖F = sup

‖ϕ‖F≤1
〈SΛm

1
(t)h, ϕ〉 = sup

‖ϕ‖F≤1
〈h, SΛm,∗

1
(t)ϕ〉

. sup
‖ϕ‖F≤1

‖h‖H′‖SΛm,∗
1

(t)ϕ‖H .
1√
t
‖h‖H′ .

1√
t
‖f‖Z′

which is exactly the first part of (24). The second one is proven in the same way. ✷

Let us finally prove that the regularization properties of Λ1 are enough to conclude
that the whole operator Λ has some good regularization properties: even if we have a loss
of weight in the final estimate, Λ inherits regularization properties from Λ1 in terms of
fractional Sobolev norms.

Lemma 3.4. We have:

(25) ∀ t ∈ (0, 1], ‖SΛ(t)f‖X0 .
1√
t
‖f‖Z′

1
and ‖SΛ(t)f‖X0 .

1

t1/2+s
‖f‖Y ′

1
.

Proof. We recall that from [9], we have that Λ generates a semigroup in X0 and thus
we have the estimate

(26) ∀ t ∈ (0, 1], ‖SΛ(t)f‖X0 . ‖f‖X0 .

Then, we write Duhamel formula:

SΛ(t) = SΛ1(t) +

∫ t

0
SΛ(s)Λ2SΛ1(t− s) ds

from which we deduce, combining (26), (24) and (21) applied with the appropriate weights,
that for t ∈ (0, 1],

‖SΛ(t)h‖X0 . ‖SΛ1(t)f‖X0 +

∫ t

0
‖SΛ(s)Λ2SΛ1(t− s)f‖X0 ds

.
1√
t
‖f‖Z′

0
+

∫ t

0
‖Λ2SΛ1(t− s)f‖X0 ds

.
1√
t
‖f‖Z′

0
+

∫ t

0
‖SΛ1(t− s)f‖X1 ds

.
1√
t
‖f‖Z′

0
+

∫ t

0

1√
t− s

‖f‖Z′

1
ds

.
1√
t
‖f‖Z′

0
+

∫ 1

0

1√
s
‖f‖Z′

1
ds .

1√
t
‖f‖Z′

1
.

This concludes the proof of the first part of (25). Concerning the second one, we proceed
as before using that 1/2 + s < 1 since s < 1/2 and we obtain for any t ∈ (0, 1]:

‖SΛ(t)h‖X0 .
1

t1/2+s
‖f‖Y ′

1
.

✷
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4. Proof of Proposition 3.2

The aim of this section is the proof of Proposition 3.2 about the regularization properties
of the operator

Λm,∗1 ϕ =

∫

R3×S2

Bδ(v − v∗, σ)µ
′
∗ (ϕ

′m′ − ϕm) dσ dv∗m
−1 −K〈v〉γ+2s ϕ+ v · ∇xϕ.

This will be done with a pseudodifferential version of the Lyapunov trick developed in the
Fokker-Planck case and special classes of symbols that we recall in the Appendix.

4.1. Pseudodifferential formulation of the operator Λm,∗1 . The operator Λm,∗1 is very
similar to the operator L1,2,δ defined in [2, Proposition 3.1]. We shall thus take advantage
of the analysis of the pseudo-differential operator L1,2,δ and its symbol in [2]. If we extract
the collision part of the operator Λm,∗1 (forgetting the transport one and the addition of
the multiplicative term), we obtain

Λm,∗,collision1 ϕ :=

∫

R3×S2

Bδ(v − v∗, σ)µ
′
∗ (ϕ

′m′ − ϕm) dσ dv∗m
−1

In the case m = 1, this operator is actually the main one studied in [2]:

Λ1,∗,collision
1 = L1,2,δ =: −ã0(v,Dv),

where ã0 is a real symbol in (v, η) defined through

ã0(v, η) :=

∫

R3
h

dh

|h|3+2s

∫

E0,h

dα b̃(α, h)1|α|≥|h| χδ(h)µ(α + v) |α+ h|γ+1+2s (1− cos(η · h))

thanks to Carleman representation (see Lemma A.1). We recall here the main result
from [2] concerning the symbol ã0 (be careful, this symbol is denoted without tilde there):

Proposition 4.1 (Propositions 3.1 and 3.4 in [2]). The symbol ã0 satisfies the following
properties:

i) ã0 ∈ S(〈v〉γ (1 + |η|2 + |v ∧ η|2)s,Γ),
ii) ∀ ε > 0, ∇ηã0 ∈ S(ε 〈v〉γ (1 + |η|2 + |v ∧ η|2)s + ε−1 〈v〉γ+2s),

iii) ∃ c > 0, −c 〈v〉γ+2s + 〈v〉γ
(
1 + |η|2 + |v ∧ η|2

)s
. ã0 . 〈v〉γ

(
1 + |η|2 + |v ∧ η|2

)s
,

where Γ := |dv|2 + |dη|2 is the flat metric.

For convenience we denote by a0 the Weyl symbol of operator ã0(v,Dv), so that

aw0 = ã0(v,Dv).

Everywhere in what follows, any symbol with a tilde will refer to a classical quantization,
and when no tilde is present, the symbol will refer to the Weyl quantization. Both quan-
tizations are recalled in the beginning of Section A.2 in the Appendix. Note that a0 is
not real anymore, anyway we shall see later that it conserves good ellipticity properties.
Denoting then

a(v, η) :=
(
m−1♯a0♯m

)
(v, η) +K 〈v〉γ+2s ,

where ♯ denotes the usual Weyl composition and we omit the dependency of a with respect
to K in our notation, we have:

Λm,∗1 = −aw + v · ∇x.

For sake of simplicity, we introduce the following notation

A := aw,
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so that the collision part of operator Λm,∗1 writes

Λm,∗1 = −A+ v · ∇x

(recall that they depend on K). In order to study the symbolic properties of a, we now
introduce the main weights. We pose for (v, η) ∈ R

6

λ2v(v, η) := 〈η〉2 + 〈v ∧ η〉2 + 〈v〉2

and for given s ∈ (0, 1/2) and γ ∈ (0, 1) we pose

p(v, η) := 〈v〉γ λ2sv +K 〈v〉γ+2s

which will be the main reference symbol of our study (note that this symbol is denoted ãK
in [2]). Although p depends on K, we will omit in the following any subscript or reference
to this dependence. It will be shown in the next subsection that p is a good weight in
the sense of the Appendix. The following Lemma shows that a has good properties in the
class SK(p), the main class of symbols whose definition is recalled in full generality in the
Appendix.

Lemma 4.2. Let m(v) = 〈v〉k for k ∈ R. Then uniformly in K sufficiently large, we have
that Re a ≥ 0, a ∈ SK(p) and Re a is elliptic positive in this class.

Proof. We shall take profit of the estimates from [2] recalled above in Propostion 4.1.

We first note that because of the symbolic estimates on ã0 we can take ε = K−1/2 in ii)

and, using Lemma A.5, we get that ã0 ∈ SK(p) and then a0 ∈ SK(p). Adding K 〈v〉γ+2s

does not change the computation and we also get that

a0 +K 〈v〉γ+2s ∈ SK(p).
Now we can do the conjugation withm. We first note that clearly, with the same notations
as before, we have m ∈ SK(m) and m−1 ∈ SK(m

−1). This can be checked directly by
noticing that the derivatives of m in η are zero. The stability of the class SK from
Lemma A.4 implies then that

a = m−1♯a0♯m+K 〈v〉γ+2s = m−1♯
(
a0 +K 〈v〉γ+2s

)
♯m ∈ SK(p).

We can also notice that looking at the main terms in the asymptotic development of the ♯
product (see in particular Lemma A.5 and its proof), we have

a = a0 +K 〈v〉γ+2s + r = ã0 +K 〈v〉γ+2s + r′

with r and r′ ∈ K−1/2S(p) (note that r is exactly the Weyl symbol of m−1[aw0 ,m]). Since

from Propostion 4.1. iii), we have ã0 +K 〈v〉γ+2s & p (uniformly in K), we get that

Re a & p

so that Re a is non-negative and elliptic for K large (note that this proof is very close to
the one of Lemma A.5 in the appendix). ✷

4.2. Reference weights. We now introduce some weights involving the constant K
where K is a large constant to be defined later. Formally, 1/

√
K plays the role of a

small semiclassical parameter. We recall that for (v, η) ∈ R
6

λ2v(v, η) = 〈η〉2 + 〈v ∧ η〉2 + 〈v〉2

and for given s ∈ (0, 1/2) and γ ∈ (0, 1).

p(v, η) = 〈v〉γ λ2sv +K 〈v〉γ+2s .
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We shall need their counterparts in the ξ variable (considered as a parameter) instead of η
and thus also introduce

λ2x(v, η) := 〈ξ〉2 + 〈v ∧ ξ〉2 + 〈v〉2

and

q(v, η) := 〈v〉γ λ2sx +K 〈v〉γ+2s ,

where we omit the dependance onK and ξ again in the notations. We eventually introduce
a mixed symbol

ω(v, η) := −〈v〉γλs−1
x λs−1

v (η · ξ + (v ∧ η) · (v ∧ ξ))
which will be crucial in the analysis.

Following the Appendix, we have in particular:

Lemma 4.3. The symbols p, q and more generally 〈v〉ζ p̺qς for ζ, ̺ and ς ∈ R are
temperate with respect to Γ uniformly w.r.t. K and ξ.

Proof. These computations are done for e.g. in [2, Section 3.3]. ✷

The symbols p, q, and ω are then good symbols w.r.t. these classes, as the following
lemma shows.

Lemma 4.4. We have p ∈ SK(p), q ∈ SK(q), ω ∈ SK(
√
pq) and more generally 〈v〉ζ p̺qς ∈

SK(〈v〉ζ p̺qς) for ζ, ̺ and ς ∈ R, all this uniformly in K and ξ.

Proof. We only do the proof for p, the other being similar. We just have to differentiate
the symbol p. We study first the gradient with respect to η (which corresponds to the
case |β| = 1). We notice that

∇ηp = s 〈v〉γ λ2s−2
v ∇η(λ

2
v).

We also have that ∣∣∇η(λ
2
v)
∣∣ ≤ 2λv 〈v〉

from which we deduce that

|∇ηp| ≤ 2s 〈v〉γ+1 λ2s−1
v

= 2sK−1/2
(
K1/2 〈v〉γ/2+s

)
〈v〉γ/2+1−s λ2s−1

v

≤ 2sK−1/2p1/2 〈v〉γ/2 λsv ≤ 2sK−1/2p

which is the desired result. We skip the other similar computations. ✷

4.3. Technical lemmas. The main idea in the proof of the regularization result in Propo-
sition 3.2 is to mimic the proof of the Fokker-Planck case, using deeply the positivity
preserving property of the Wick quantization.

In what follows, we state a series of lemmas (from 4.5 to 4.9) which are crucial to be
able to “compare” our operator A with quantizations of the simpler symbols p and q we
introduced in the preceding subsection.

Lemma 4.5. There exists ca > 0 such that

2Re (Af, f) ≥ ca

(
pWickf, f

)
.
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Proof. We first notice that

Re (Af, f) = Re (awf, f) = ((Re a)wf, f)

thanks to the properties of the Weyl quantization. Using (57) for Re a, we therefore get
that

Re (Af, f) = ((Re a)wf, f) ≃
(
(Re a)Wickf, f

)
= Re

(
aWickf, f

)
.

Moreover, Re a ≃ p uniformly in K from Lemma 4.2. This implies that there exists ca > 0
such that Re a − cap ≥ 0. Using the positivity property of the Wick quantization gives
Re (a)Wick − cap

Wick ≥ 0 in the sense of operators. This proves the result. ✷

Lemma 4.6. There exists cp > 0 such that
(
pWickAf +A∗pWickf, f

)
≥ cp ((p2)Wickf, f).

Proof. We have from the definition of the Wick quantization (see (48))

pWickA+A∗pWick = ((p ⋆ N)♯a+ ā♯(p ⋆ N))w .

Using now Lemma A.5, we have that p ∈ SK(p) implies p ⋆ N ∈ SK(p) and from the
second point in Lemma A.4, we get that (p ⋆N)♯a+ ā♯(p ⋆N) is elliptic, real and positive
(from selfadjointness) in SK(p

2). We therefore get from (57) that

(((p ⋆ N)♯a+ ā♯(p ⋆ N))w f, f) ≃ (((p ⋆ N)♯a+ ā♯(p ⋆ N))Wick f, f)

Since (p ⋆ N)♯a + ā♯(p ⋆ N) ≃ p2 (uniformly in K), the positivity properties of the Wick
quantization imply the result. ✷

Lemma 4.7. There exists cq > 0 such that
(
qWickAf +A∗qWickf, f

)
≥ cq

(
(pq)Wickf, f

)
.

Proof. The proof is almost the same as the one of Lemma 4.6, the main difference being
that the symbol q now depends on a parameter ξ, with respect to which all estimates have
to be uniform. We write

qWickA+A∗qWick = ((q ⋆ N)♯a+ ā♯(q ⋆ N))w

where again a denotes the Weyl symbol of A. We have that q ∈ SK(q) uniformly in K and
ξ and this implies q⋆N ∈ SK(q). From a ∈ SK(p) and the second point in Proposition A.4,
we get that (q⋆N)♯a+ ā♯(q⋆N) is elliptic, real and positive in SK(pq). Together with (57),
this implies that there exists cq > 0 s.t.

(((q ⋆ N)♯a+ ā♯(q ⋆ N))w f, f) ≃ (((q ⋆ N)♯a+ ā♯(q ⋆ N))Wick f, f) ≥ cq((pq)
Wickf, f)

where the last inequality comes from the positivity properties of the Wick quantization. ✷

Lemma 4.8. There exist cω > 0 such that
∣∣∣
(
ωWickAf +A∗ωWickf, f

)∣∣∣ ≤ cω

(
(p3/2q1/2)Wickf, f

)
.
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Proof. We begin by denoting θ := p3/4q1/4 so that θ2 = p3/2q1/2. Using Lemma 4.4, we
get that θ is elliptic positive in SK(θ). Note also that

ωWickA+A∗ωWick = ((ω ⋆ N)♯a+ ā♯(ω ⋆ N))w

using the definitions of the Wick quantization and still denoting again a the Weyl symbol
of operator A. From Lemma 4.4, ω ∈ SK(

√
pq) so that ω ⋆ N is also in SK(

√
pq) by

Lemma A.5. On the other hand, a ∈ SK(p) and using the stability Proposition A.4, we
therefore get that

(27) (ω ⋆ N)♯a+ ā♯(ω ⋆ N) ∈ SK(p
3/2q1/2) = SK(θ

2).

We then write∣∣∣
(
ωWickAf +A∗ωWickf, f

)∣∣∣

=

∣∣∣∣
(
(θ−1)Wick ((ω ⋆ N)♯a+ ā♯(ω ⋆ N))w (θ−1)Wick

︸ ︷︷ ︸
Operator Ω

((θ−1)Wick)−1f, ((θ−1)Wick)−1f

)∣∣∣∣.

Let us prove that operator Ω is bounded. For this, we first note that (θ−1)Wick = (θ−1⋆N)w

and recall that θ is elliptic positive. Lemma A.4 implies that θ−1 is positive elliptic in
SK(θ

−1) too and from Lemma A.5, the same is true for θ−1 ⋆ N . The Weyl symbol of Ω
can be written

symb(Ω) = (θ−1 ⋆ N)♯ ((ω ⋆ N)♯a+ ā♯(ω ⋆ N)) ♯(θ−1 ⋆ N)

and from the stability Lemma A.4 and (27), this symbol is in SK(1). In particular, the
operator Ω is bounded on L2. We have that

|(Ω((θ−1)Wick)−1f, ((θ−1)Wick)−1f)| ≤ C
∥∥∥((θ−1)Wick)−1f

∥∥∥
2

≤ C ′
∥∥∥θWickf

∥∥∥
2
≤ C ′′((θ2)Wickf, f).

(28)

The first inequality comes from the fact that Ω is bounded. The last inequality is just a
consequence of (56). Let us precise the arguments used for proving the second inequality:
we have

∥∥∥((θ−1)Wick)−1f
∥∥∥
2
=
∥∥((θ−1 ⋆ N)w)−1f

∥∥2 ≃
∥∥((θ−1 ⋆ N)−1)wf

∥∥2(29)

using the definition of the Wick quantization and (54). We also check by direct com-
putation that (θ−1 ⋆ N)−1 is elliptic positive in in SK(θ) using Lemmas A.5 (see also
Remark A.6) and A.4 b). This implies by (55) applied with τ = (θ−1 ⋆ N)−1 that

(30)
∥∥((θ−1 ⋆ N)−1)wf

∥∥2 ≃ ‖θwf‖2 ,
and we get then by (56)

(31) ‖θwf‖2 ≃ ((θ2)Wickf, f).

The estimate (29-31) yield the second inequality in (28).
✷

To conclude this subsection, we state a lemma which will be useful in the sequel, and
whose proof is direct using positivity properties of the Wick quantization.

Lemma 4.9. We have the following estimates:
(
(〈v〉2γλ4sv )Wickf, f

)
≤
(
(p2)Wickf, f

)
≤ 2(1 +K2)

(
(〈v〉2γλ4sv )Wickf, f

)
,
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(
pWickf, f

)
=
(
(〈v〉γλ2sv )Wickf, f

)
+K

(
(〈v〉γ+2s)Wickf, f

)
,

(
(〈v〉2γλ2sv λ2sx )Wickf, f

)
≤
(
(pq)Wickf, f

)
≤ (1 +K)2

(
(〈v〉2γλ2sv λ2sx )Wickf, f

)
.

4.4. The Lyapunov functional. From now on, we fix once and for all the constant K so
that the conclusions of Lemmas 4.5 to 4.9 are true. In the same spirit as in Subsection 2.1
for the Fokker-Planck case, we build below a Lyapunov functional corresponding to the
following equation

∂tϕ = v · ∇xϕ−Aϕ,

and we consider ϕ a solution. Then, since A acts only on the velocity variable, we can take
the Fourier transform of our equation in x ∈ T

3 and see the associated Fourier variable
ξ ∈ Z

3 as a parameter in our equation. We thus consider ψ = Fxϕ to be a solution of

∂tψ−iv · ξψ +Aψ = 0

with initial data ψ0. We then follow the lines of the proof given in Section 2 and we
introduce an adapted entropy functional defined for all t ≥ 0 by

(32) H(t) := C ‖ψ‖2 +Dt
(
pWickψ,ψ

)
+ Et1+s

(
ωWickψ,ψ

)
+ t1+2s

(
qWickψ,ψ

)

for large constants C, D, E to be chosen later, where ‖·‖ is the usual L2 norm and (·, ·) is
the usual (complex) L2 scalar product.

Lemma 4.10. If E ≤
√
D then for all t ≥ 0, we have H(t) ≥ 0. Precisely, we have

0 ≤ C ‖ψ‖2 + D

2
t
(
pWickψ,ψ

)
+

1

2
t1+2s

(
qWickψ,ψ

)
≤ H(t).

Proof. The first part of the inequality comes from the positivity property (49). For the
bound on H(t), we start by noticing that using Cauchy-Schwarz inequality:

|η · ξ + (v ∧ η) · (v ∧ ξ)| ≤ λxλv.

Then, the time-dependent Cauchy-Schwarz inequality gives

−Ets〈v〉γλs−1
x λs−1

v (η · ξ + (v ∧ η) · (v ∧ ξ)) ≤ E2

2
〈v〉γλ2sv +

1

2
t2s〈v〉γλ2sx .

The positivity of the Wick quantization and the fact that E2 ≤ D imply that

Et1+s
(
ωWickψ,ψ

)
≥ −D

2
t
(
pWickψ,ψ

)
− 1

2
t1+2s

(
qWickψ,ψ

)

which proves the statement. ✷

We now show that H is indeed a Lyapunov function (entropy functional).

Lemma 4.11. For well chosen (arbitrarily large) constants C, D and E, we have

d

dt
H(t) ≤ 0, ∀ t ∈ (0, 1].

Proof. Let us define

P := pWickA+A∗pWick, Ω := ωWickA+A∗ωWick, Q := qWickA+A∗qWick.

Then, for each term in the sum, we have

(33)
d

dt
C ‖ψ‖2 = −2C Re (Aψ,ψ) ,
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(34)
d

dt

(
Dt
(
pWickψ,ψ

))
= D

(
pWickψ,ψ

)
−Dt (Pψ,ψ) +Dt

(
{p, v · ξ}Wickψ,ψ

)
,

(35)

d

dt

(
Et1+s

(
ωWickψ,ψ

))

= (1 + s)Ets
(
ωWickψ,ψ

)
− Et1+s (Ωψ,ψ) +Et1+s

(
{ω, v · ξ}Wickψ,ψ

)
,

(36)

d

dt

(
t1+2s

(
qWickψ,ψ

))

= (1 + 2s)t2s
(
qWickψ,ψ

)
− t1+2s (Qψ,ψ) +t1+2s

(
{q, v · ξ}Wickψ,ψ

)
,

where, in the first term we used the skew-adjointness of the transport operator and in the
last term of (34), (35), (36), we used (50).

The right hand side in (33) is non-positive (thanks to the property of positivity of the
Wick quantization (49)) and using Lemma 4.5 and Lemma 4.9, it can be estimated as

−2CRe (Aψ,ψ) ≤ −caC
(
pWickψ,ψ

)

≤ − caC
(
(〈v〉γλ2sv )Wickψ,ψ

)

︸ ︷︷ ︸
I

− caCK
(
(〈v〉γ+2s)Wickψ,ψ

)

︸ ︷︷ ︸
II

.

Analogously, we can deduce a bound for the first term in (34). Indeed, we recover two
non-negative terms

D
(
pWickψ,ψ

)
≤ D

(
(〈v〉γλ2sv )Wickψ,ψ

)

︸ ︷︷ ︸
i

+DK
(
(〈v〉γ+2s)Wickψ,ψ

)

︸ ︷︷ ︸
ii

.

Moreover, using the positivity of the Wick quantization (49), the second term in (34) is
non-positive and, using Lemma 4.6 and Lemma 4.9, it can be estimated as

−Dt (Pψ,ψ) ≤ −cpDt
(
(p2)Wickψ,ψ

)
≤ − cpDt

(
(〈v〉2γλ4sv )Wickψ,ψ

)

︸ ︷︷ ︸
III

.

Concerning the third term in (34), let us compute {p, v · ξ}:
{p, v · ξ} = ∇ηp · ∇v(v · ξ)−∇vp · ∇η(v · ξ) = 〈v〉γ(∇ηλ

2s
v ) · ξ

= 2s〈v〉γλ2s−2
v (η · ξ + (v ∧ η) · (v ∧ ξ))

≤ 2s〈v〉γλxλ2s−1
v ,

where we used the fact that |η · ξ + (v ∧ η) · (v ∧ ξ)| ≤ λxλv. Hence, for any ε1 > 0, we
obtain two non-negative terms

Dt
(
{p, v · ξ}Wickψ,ψ

)

≤ 2sε1
−1D

(
(〈v〉γλ2sv )Wickψ,ψ

)

︸ ︷︷ ︸
iii

+2sεs1Dt
1+s
(
(〈v〉γλs+1

x λs−1
v )Wickψ,ψ

)

︸ ︷︷ ︸
iv

.

Let us now consider (35). Using the fact that ω ≤ 〈v〉γλsxλsv, we can bound the first
term in (35), for any ε2 > 0, with two non-negative terms

Ets
(
ωWickψ,ψ

)
≤ ε−1

2 E
(
(〈v〉γλ2sv )Wickψ,ψ

)

︸ ︷︷ ︸
v

+ ε
1/s
2 Et1+s

(
(〈v〉γλs+1

x λs−1
v )Wickψ,ψ

)

︸ ︷︷ ︸
vi

.
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For the second term in (35), Lemma 4.8 implies

(Ωψ,ψ) ≤ cω

(
(p3/2q1/2)Wickψ,ψ

)

and, for any ε3 > 0, we have

t1+sp3/2q1/2 ≤ ε−1
3 tp2 + ε3t

1+2spq.

Therefore, we can bound the second term in (35), using Lemma 4.9, for any ε3 > 0, by

− Ets+1 (Ωψ,ψ)

≤ cωε
−1
3 Et

(
(p2)Wickψ,ψ

)
+ cωε3Et

1+2s
(
(pq)Wickψ,ψ

)

≤ 2(1 +K2)cωε
−1
3 Et

(
(〈v〉2γλ4sv )Wickψ,ψ

)

︸ ︷︷ ︸
vii

+ (1 +K)2cωε3Et
1+2s

(
(〈v〉2γλ2sv λ2sx )Wickψ,ψ

)

︸ ︷︷ ︸
viii

where (vii) and (viii) are non-negative.
Let us now observe that

(∇ηλ
2
v) · ξ = 2(η · ξ + (v ∧ η) · (v ∧ ξ)),

and

∇η(η · ξ + (v ∧ η) · (v ∧ ξ)) · ξ = λ2x − 〈v〉2.
We then compute

{ω, v · ξ}
= ∇ηω · ∇v(v · ξ)−∇vω · ∇η(v · ξ) = ∇ηω · ξ
= −〈v〉γλs−1

x λs−1
v ∇η(η · ξ + (v ∧ η) · (v ∧ ξ)) · ξ

− 〈v〉γλs−1
x (η · ξ + (v ∧ η) · (v ∧ ξ))(∇ηλ

s−1
v ) · ξ

= −〈v〉γλs+1
x λs−1

v + 〈v〉γ+2λs−1
x λs−1

v − (s− 1)〈v〉γλs−1
x λs−3

v (η · ξ + (v ∧ η) · (v ∧ ξ))2.

In the last expression of {ω, v ·ξ}, we first notice that since s−1 < 0 and min(λx, λv) ≥ 〈v〉,
the second term is bounded as follows:

〈v〉γ+2λs−1
x λs−1

v ≤ 〈v〉γ+2s.

Gathering the first and third terms, we use Cauchy-Schwarz inequality and s < 1 to find:

− 〈v〉γλs+1
x λs−1

v − (s− 1)〈v〉γλs−1
x λs−3

v (η · ξ + (v ∧ η) · (v ∧ ξ))2

≤ −〈v〉γλs+1
x λs−1

v + (1− s)〈v〉γλs−1
x λs−3

v (λ2x − 〈v〉2)(|η|2 + |v ∧ η|2)
= −〈v〉γλs+1

x λs−1
v + (1− s)〈v〉γλs+1

x λs−3
v (|η|2 + |v ∧ η|2)

− (1− s)〈v〉γ+2λs−1
x λs−3

v (|η|2 + |v ∧ η|2)
≤ −〈v〉γλs+1

x λs−1
v + (1− s)〈v〉γλs+1

x λs−1
v − (1− s)〈v〉γ+2λs+1

x λs−3
v

≤ −s〈v〉γλs+1
x λs−1

v .

Thus we have:

{ω, v · ξ} ≤ −s〈v〉γλs+1
x λs−1

v + 〈v〉γ+2s.
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Hence, the third term in (35) can be estimated as

Ets+1
(
{ω, v · ξ}Wickψ,ψ

)

≤ − sEts+1
(
(〈v〉γλs+1

x λs−1
v )Wickψ,ψ

)
)

︸ ︷︷ ︸
IV

+Ets+1
(
(〈v〉γ+2s)Wickψ,ψ

)

︸ ︷︷ ︸
ix

,

where (−IV ) is non-positive and (ix) is non-negative.
It remains to consider (36). Observing that, for any ε4 > 0,

t2s〈v〉γλ2sx ≤ ε−1
4 〈v〉γλ2sv + ε

1−s
2s

4 t1+s〈v〉γλs−1
v λs+1

x ,

we have that the first term in (36) can be bounded for any ε4 > 0, by

(1 + 2s)t2s
(
qWickψ,ψ

)

≤ (1 + 2s)ε−1
4

(
(〈v〉γλ2sv )Wickψ,ψ

)

︸ ︷︷ ︸
x

+(1 + 2s)ε
1−s
2s

4 t1+s
(
(〈v〉γλs−1

v λs+1
x )Wickψ,ψ

)

︸ ︷︷ ︸
xi

+K(1 + 2s)t2s
(
(〈v〉γ+2s)Wickψ,ψ

)

︸ ︷︷ ︸
xii

where (x), (xi), (xii) are non-negative terms.
Moreover, using Lemma 4.7 and Lemma 4.9, the second term in (36) can be estimated as

−t1+2s (Qψ,ψ) ≤ −cqt1+2s
(
(pq)Wickψ,ψ

)
≤ − cqt

1+2s
(
(〈v〉2γλ2sv λ2sx )Wickψ,ψ

)

︸ ︷︷ ︸
V

where (−V ) is non-positive. Finally, since q does not depend on η, the Poisson bracket
{q, v · ξ} vanishes, hence the third term in (36) is null.

We conclude the proof as we did for Theorem 1.1, checking that we can choose (in order
of reverse appearance) the constants C, D, E and the small constants εj , j = 1, . . . , 4 such
that for t ∈ (0, 1],

−I + i+ iii+ v + x ≤ − 1

10
I,

−II + ii+ ix+ xii ≤ − 1

10
II,

−III + vii ≤ − 1

10
III,

−IV + iv + vi+ xi ≤ − 1

10
IV,

−V + viii ≤ − 1

10
V.

Note that D and C can be taken arbitrarily larger at the end of this procedure. This ends
the proof. ✷

4.5. Proof of Proposition 3.2. We can now prove Proposition 3.2. Consider ϕ the
solution of

∂tϕ = v · ∇xϕ−Aϕ,

with initial data ϕ0 and ψ = Fxϕ to be the solution of

∂tψ−iv · ξψ +Aψ = 0
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with initial data ψ0 = Fxϕ0. From Lemma 4.11, we know that

H(t) ≤ H(0) = C ‖ψ0‖2 ,

and using Lemma 4.10, this gives for all t ∈ (0, 1]

(37)
(
pWickψ,ψ

)
≤ 2C

D

1

t
‖ψ0‖2 and

(
qWickψ,ψ

)
≤ 2C

t1+2s
‖ψ0‖2 ,

where we used the fact that both left members are non-negative according to Proposi-
tion A.8. Working in the class SK(p) again, gives through Proposition A.8 and Lemma A.7
(see there the definition of HR)

∥∥∥〈v〉γ/2 〈Dv〉s ψ
∥∥∥
2
=
∥∥∥〈v〉γ/2 〈Dv〉s ((p1/2)

w
)−1(p1/2)

w
ψ
∥∥∥
2

= ‖ 〈v〉γ/2 〈Dv〉s ((p1/2)
−1

)w︸ ︷︷ ︸
bounded operator

HR (p1/2)
w
ψ‖2

.
∥∥∥(p1/2)wψ

∥∥∥
2
,

where we used that the operator 〈v〉γ/2 〈Dv〉s has its Weyl symbol in SK(p
1/2) (this Weyl

symbol is 〈v〉γ/2 ♯ 〈η〉s), and that (p1/2)
−1 ∈ SK(p

−1/2) , so that 〈v〉γ/2 〈Dv〉s ((p1/2)−1
)w

is a bounded operator. Using then (56) and (37), we get

∥∥∥〈v〉γ/2 〈Dv〉s ψ
∥∥∥
2
.
∥∥∥(p1/2)wψ

∥∥∥
2
≃
(
pWickψ,ψ

)
.

1

t
‖ψ0‖2 .

Similarly,

∥∥∥〈v〉γ/2+s ψ
∥∥∥
2
.

1

t
‖ψ0‖2 ,

and working in SK(q) gives, in the same way,

∥∥∥〈v〉γ/2 〈ξ〉s ψ
∥∥∥
2
.

1

t1+2s
‖ψ0‖2 .

Taking the inverse Fourier transform in the x variable finally yields

∥∥∥〈v〉γ/2 〈Dv〉s ϕ
∥∥∥
2
.

1

t
‖ϕ0‖2 ,

∥∥∥〈v〉γ/2+s ϕ
∥∥∥
2
.

1

t
‖ϕ0‖2

and
∥∥∥〈v〉γ/2 〈Dx〉s ϕ

∥∥∥
2
.

1

t1+2s
‖ϕ0‖2 .

This is exactly the statement of Proposition 3.2, the proof is thus complete. ✷

5. Adaptation of the proof for the primal result and generalization
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5.1. Adaptation of the proof for the primal result. If we want to prove the “primal”
regularization property in Theorem 1.2, as in Subsection 3.1, we split Λ into two parts:

Λf =

(
−K〈v〉γ+2s − v · ∇xf +

∫

R3×S2

Bδ(v − v∗, σ)µ
′
∗(f

′ − f)

)
dσ dv∗

(38)

+

(
K〈v〉γ+2s +

∫

R3×S2

Bδ(v − v∗, σ)(µ
′
∗ − µ∗)f dσ dv∗(39)

+

∫

R3×S2

Bc
δ(v − v∗, σ)(µ

′
∗f

′ − µ∗f) dσ dv∗ +Q(f, µ)

)
(40)

=: Λ̃1f + Λ̃2f.(41)

Then, the study of Λ̃m1 is totally similar to the one of Λ∗,m
1 (the only differences being in

the fact that the roles of m and m−1 are inverted and the sign in front of the transport
operator is opposite). We thus just have to adapt the signs in the Lyapunov functional:

the sign of ω has to be changed in Subsection 4.2. The other part Λ̃2 is controlled as well
as Λ2. The proof is thus done in the same way and we do not enter into details.

5.2. Generalization to higher order estimates. Theorem 1.2 deals with regularization
in close to L2 spaces: for example, it says that that the semigroup associated to Λ =
L − v · ∇x with L given in (7) goes from L2 to Hs type spaces, with suitable weights
and explicit norms. One can wonder if an higher order quantitative regularization is
also available. This is the aim of the following Theorem, for which we give a condensed
statement in the primal case and in homogeneous Hℓs spaces (see notation (8) and below).

Theorem 5.1. Let ℓ ∈ N
∗ and k′ ≥ 0, k > max(γ/2 + 3 + 2ℓs, k′ + γ + 5/2). Let f

be a solution of (1) with L given by (7) with initial data f0 ∈ Hℓs
x,v(〈v〉k). Then, there

exists a constant Cℓ > 0 independent of f0 such that we have the following regularization
estimates: for any t ∈ (0, 1] we have

‖f(t)‖Hℓs
x,v(〈v〉k) ≤

Cℓ
t1/2+s

‖f0‖H(ℓ−1)s
x,v (〈v〉k′ ).

In this Section we shall not give the complete proof of this result, since this is very
close to the one of Theorem 1.2, but only elements of it. The remaining of this Section is
devoted to these elements.

Elements of proof of Theorem 5.1. In all the following, we consider ℓ ∈ N
∗ given

by the theorem as well as k and k′ given there. Recall that the statement gives a (primal)
regularization result on the solution f(t) of ∂tf = Λf where Λ = −v · ∇x + L where L is
the linearized Boltzmann collision kernel given in (7).

As a first step we split operator Λ into two parts following (38)

Λ = Λ̃1 + Λ̃2.

Adapting the proof of Lemma 3.1, we have for suitable functions h

(42) ‖Λ̃2h‖H(ℓ−1)s
x,v (〈v〉k) . ‖h‖

H
(ℓ−1)s
x,v (〈v〉k′ )

where k and k′ are given in the statement of Theorem 5.1. We shall in a moment prove
that
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Proposition 5.2. We have for all t ∈ (0, 1],
∥∥∥SΛ̃1

(t)h
∥∥∥
Hℓs

x,v(〈v〉k)
.

1

t1/2+s
‖h‖

H
(ℓ−1)s
x,v (〈v〉k′ ).

Taking this result into account and together with (42) we can write

SΛ(t) = SΛ̃1
(t) +

∫ t

0
SΛ(t− s)(Λ̃2SΛ̃1

)(s) ds

for t ∈ [0, 1). Arguing as in the proof of Lemma 3.4 we easily get the Theorem (this
strongly uses s < 1/2). We omit the details. ✷

Elements of proof of Proposition 5.2. We notice that it is sufficient to prove the
following two estimates :

(43)
∥∥∥SΛ̃m−1

1 (t)
ϕ
∥∥∥
Gℓ

.
1

t1/2+s
‖ϕ‖Fℓ−1

,
∥∥∥SΛ̃m−1

1 (t)
ϕ
∥∥∥
Hℓ

.
1

t1/2
‖ϕ‖Fℓ−1

where similarly to the beginning of Subsection 3.3, we define (here in the primal case)




F = L2
x,v

Gℓ = Hℓs,0
x,v (〈v〉ℓγ/2)

Hℓ = H0,ℓs
x,v (〈v〉ℓγ/2) ∩ L2

x,v(〈v〉ℓ(γ+2s)/2)

and Λ̃m
−1

1 = m−1Λ̃1m. The proof is very close to the one given in the dual case in the
Section 3. As mentioned in the previous subsection, we essentially have to replace m there
by m−1 here, change the sign in front of the drift v.∇x, we also have to work in Gℓ or
Hℓ instead of G(= G1) and H(= H1) introduced in Subsection 3.3 for getting Proposition
3.2.

In fact by interpolation, estimates (43) are direct consequences of the following esti-
mates:

(44)
∥∥∥S

Λ̃m−1
1 (t)

ϕ
∥∥∥
Gℓ

.
1

tℓ(1/2+s)
‖ϕ‖F ,

∥∥∥S
Λ̃m−1
1 (t)

ϕ
∥∥∥
Hℓ

.
1

tℓ/2
‖ϕ‖F .

We shall in fact give an idea on how to prove the preceding result using the same tools
as in Section 4. Let us recall that a fundamental large parameter K is involved there and

enters here in the definition of Λ̃m
−1

1 . Following the strategy of Section 4, we get that

Λ̃m
−1

1 = −bw − v · ∇x

where b has exactly the same properties than a in Section 4. In particular as in Lemma 4.2,
Re b ≥ 0 and Re (b) is elliptic positive in the class SK(p) as there. We pose B = bw and
recall the definitions of the symbols in Subsection 4.2: for given s ∈ (0, 1/2) and γ ∈ (0, 1),

p(v, η) = 〈v〉γ λ2sv +K 〈v〉γ+2s ,

q(v, η) = 〈v〉γ λ2sx +K 〈v〉γ+2s ,

and

ω(v, η) = −〈v〉γλs−1
x λs−1

v (η · ξ + (v ∧ η) · (v ∧ ξ)).
Since we are in the primal and not dual case (he sign in front of the transport term is
opposite), we have to take the opposite of ω that we call ω̃ := −ω.
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The main point of the analysis is then to introduce, such as in Subsection 4.4, a suitable
functional which is here:

(45) Hℓ(t) := C ‖ψ‖2 +
∑

0≤α+β≤ℓ−1

Dα,βt
1+α+β(1+2s)

((
p1+αqβ

)Wick
ψ,ψ

)

+ Eα,βt
1/2+α+(1/2+β)(1+2s)

((
pαqβω̃

)Wick
ψ,ψ

)

+ Fα,βt
α+(1+β)(1+2s)

((
pαq1+β

)Wick
ψ,ψ

)

for well chosen constants C, Dα,β, Eα,β and Fα,β. We note that for ℓ = 1, we get H1 = H
defined in (32). The computations exactly follow the ones done in Subsection 4.4 using
estimates similar to the ones given in Subsection 4.3, with the same roles of each term as
there in the preceding decomposition. Note that we were note able to restrict the analysis
to α+ β = ℓ− 1 due to too high order terms after time derivation, this explains that the
full range of α and β is needed to close the estimates and conclude that

d

dt
Hl(t) ≤ 0.

We omit the details of the computation as well as the last parts of the proof of (44) which
leads to Proposition 5.2, since it follows the end of Section 4 . ✷

Appendix A

A.1. Carleman representation. We state here a classical tool in the analysis of Boltz-
mann operator: the Carleman representation. We refer to [2] for more details on the
version that we state here.

Lemma A.1 (Carleman representation). Let F be a measurable function defined on (R3)4.
For any vector h ∈ R

3, we denote by E0,h the (hyper)vector plane orthogonal to h. Then,
when all sides are well defined, we have the following equality :

∫

R3×S2

b(cos θ)|v − v∗|γF (v, v∗, v′, v′∗) dv∗ dσ

=

∫

R3
k

dh

∫

E0,h

dα b̃(α, h)1|α|≥|h|
|α+ h|γ+1+2s

|h|3+2s
F (v, v + α− h, v − h, v + α)

where b̃(α, h) is bounded from above and below by positive constants and b̃(α, h) = b̃(±α,±h).
A.2. Pseudodifferential calculus. We first recall the definitions of the quantizations
we shall use in the following. Let us consider a temperate symbol σ ∈ S, we define its
standard quantization σ(v,Dv) for f ∈ L2(Rd) by

σ(v,Dv)f(v) :=
1

(2π)d

∫
eiv·ησ(v, η)f̂ (η) dη.

The Weyl quantization is defined by

σwf(v) :=
1

(2π)d

∫∫
ei(v−w)·ησ

(
v + w

2
, η

)
f(w) dη dw.

We recall that for two symbols σ and τ we have

(46) σwτw = (σ♯τ)w, σ♯τ = στ +

∫ 1

0
(∂ησ♯θ∂vτ − ∂vσ♯θ∂ητ) dθ
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where for V = (v, η) we have ♯ = ♯1 and for θ ∈ (0, 1],

σ♯θτ(V ) :=
1

2i

∫∫
e−2i[V−V1,V−V2]/θσ(V1)τ(V2) dV1 dV2/(πθ)

d

with [V1, V2] = v2 · η1 − v1 · η2 the canonical symplectic form on R
2d. We shall also use

the Wick quantization, which has very nice properties concerning positivity of operators
(see [10, 11, 12] for more details on the subject). For this, we first introduce the Gaussian
in phase variables

(47) N(v, η) := (2π)−de−(|v|2+|η|2)/2.

The Wick quantization is then defined by

(48) σWickf(v) := (σ ⋆ N)wf(v),

where ⋆ denotes the usual convolution in (v, η) variables. Recall that one of the main
property of Wick quantization is its positivity:

(49) ∀ (v, η) ∈ R
6, σ(v, η) ≥ 0 ⇒ σWick ≥ 0,

and that the following relation holds (see e.g. [10, Proposition 3.4]):

(50) [gWick, iv · ξ] = {g, v · ξ}Wick.

The previous definitions extend to symbols in S ′ by duality.

A.3. The weak semiclassical class SK(g). Let Γ := |dv|2 + |dη|2 be the flat metric
on R

6
v,η. The first point is to verify that the introduced symbols and weights are indeed

in a suitable symbolic calculus with large parameter K uniformly in the parameter ξ. For
this, we first recall that a weight 1 ≤ g is said to be temperate with respect to Γ if there
exist N ≥ 1 and CN such that for all (v, η), (v′, η′) ∈ R

6

g(v′, η′) ≤ CN g(v, η)(1 + |v′ − v|+ |η′ − η|)N

We now introduce adapted classes of symbols.

Definition A.2. Let g be a temperate weight. We denote by S(g) the symbol class of all
smooth functions σ(v, η) (possibly depending on parameters K and ξ) such that

∣∣∣∂αv ∂βη σ(v, η)
∣∣∣ ≤ Cα,βg(v, η)

where for any multiindex α and β, Cα,β is uniform in K and ξ. We denote also SK(g) the
symbol class of all smooth functions σ(v, η) (possibly depending on K and ξ again) such
that

|σ| ≤ C0,0g and ∀ |β| ≥ 1,
∣∣∣∂αv ∂βη σ

∣∣∣ ≤ Cα,βK
−1/2g

uniformly in K and ξ. Note that SK(g) ⊂ S(g) and that these definitions are with respect
to the flat metric.

Eventually, we shall say that a symbol σ is elliptic positive in S(g) or SK(g) if in addition
σ ≥ 1 and there exists a constant C uniform in parameters such that C−1g ≤ σ ≤ Cg.

Before focusing on the class SK(g), we first recall one of the main results concerning
the class without parameter (and without weight) S(1):

Lemma A.3 (Calderon Vaillancourt Theorem). Let σ ∈ S(1), then σw is a bounded
operator with norm depending only on a finite number of semi-norms of σ in S(1).

The classes SK and S have standard internal properties:

Lemma A.4. For K sufficiently large, we have the following:
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a) Let g be a temperate weight and consider σ an elliptic positive symbol in SK(g)
then for all ν ∈ R, σν ∈ SK(g

ν);
b) Let g, h be temperate weights and consider σ in SK(g), τ in SK(h), then στ is in

SK(gh).

Proof. For point a), just notice that if σ is an elliptic positive symbol in SK(g), then
σ ≃ g so that σν ≃ gν . We also have directly for β a multiindex of length 1

∣∣∣∂βη σν
∣∣∣ = |ν|σν−1

∣∣∣∂βη σ
∣∣∣ ≤ Cgν−1K−1/2g = CK−1/2gν

using σ ≃ g. Estimates on higher order derivatives are straightforward.
For point b), the computation is also straightforward using the Leibniz rule. ✷

Now we can quantize the previously introduced symbols. The main semiclassical idea
behind the introduction of the class SK for K large is that invertibility and powers of
operators associated to symbols are direct consequences of similar properties of symbols,
essentially independently of the quantization.

We first check that the class SK is essentially stable by change of quantization.

Lemma A.5. Let g be a temperate weight and consider σ̃ a positive elliptic symbol in
SK(g). We denote σ the Weyl symbol of the operator σ̃(v,Dv) so that σw = σ̃(v,Dv) and
recall that the Weyl symbol of σWick is σ ⋆ N . Then σ and σ ⋆ N are both in SK(g). If in
addition σ̃ is elliptic positive, then Re σ and Re σ ⋆ N are elliptic positive.

Proof. We first prove the result for σ supposing that σ̃ is elliptic positive. From for
e.g. [12] and an adaptation of Lemma 4.4 in [2], we know that

(51) σ − σ̃ ∈ K−1/2S(g).

Since K−1/2S(g) ⊂ SK(g), this gives that σ ∈ SK(g). If in addition σ̃ is elliptic positive,
then let us prove that Re σ also is. There exist constants C, C ′ uniform in K large such
that

C−1g − C ′K−1/2g ≤ Re σ ≤ Cg + C ′K−1/2g

if C−1g ≤ σ ≤ Cg. Taking K sufficiently large then gives the result.
We now deal with σ ⋆ N , supposing that σ is in SK(g). For V = (v, η) we have

σ ⋆ N(V ) =

∫∫
σ(V −W )N(W )dW

and using the temperance property of g, we get uniformly in all other possible parameters
(including K)

|σ ⋆ N(V )| ≤
∫∫

Cg(V )(1 + |W |)NN(W ) dW ≤ C ′g(V ).

For the derivatives, we get similarly for multiindex α and β with |β| ≥ 1
∣∣∣∂αv ∂βη σ ⋆ N(V )

∣∣∣ ≤
∫∫ ∣∣∣∂αv ∂βη σ(V −W )

∣∣∣N(W ) dW

≤ CK−1/2

∫∫
g(V −W )N(W ) dW

≤ C ′K−1/2

∫∫
g(V )(1 + |W |)NN(W ) dW

≤ C ′′K−1/2g(V ).

(52)
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Suppose now that in addition σ̃ is elliptic positive, then Re σ is elliptic positive and
C−1g(V ) ≤ Re σ(V ) ≤ Cg(V ) for a constant C > 0. Since Re σ ⋆ N is positive, this
implies with the temperance of g that

(53) c′g(V )≤
∫∫

C−1C−1
N g(V )(1 + |W |)−NN(W )dW

≤ Re σ ⋆ N(V ) ≤
∫∫

CCNg(V )(1 + |W |)NN(W )dW = C ′g(V )

for some positive constants c′ and C ′, so that Re σ ⋆ N is indeed elliptic positive. ✷

Remark A.6 Note that using exactly the same argument as in the proof before, we also
get that if τ is a given elliptic positive symbol in SK(g), with g a temperate weight, then
τ ⋆ N is also an elliptic positive symbol in SK(g).

The next technical lemma is also proven in [2]:

Lemma A.7 (Lemma 4.2 in [2]). Let g be a temperate weight and σ ∈ SK(g). Then for
K sufficiently large (depending on a finite number of semi-norms of σ), the operator σw

is invertible and there exists HL and HR bounded invertible operators that are close to
identity as well as their inverse such that

(σw)−1 = HL(σ
−1)w = (σ−1)wHR.

The norms of operators HL and HR and their inverse can be bounded uniformly in param-
eters (including K).

Note that by “close to identity uniformly in parameters”, we mean that

‖HLf‖ ≃ ‖HRf‖ ≃ ‖f‖ .
with constants uniform in parameters (including K sufficiently large).

Proof. The proof follows exactly the lines of the one given in [2, Lemma 4.2. i)]. ✷

We now give the main Proposition that will be used in the proof of the technical Lemmas
in Subsection 4.3.

Proposition A.8. Let g be a temperate weight and consider σ an elliptic positive symbol
in SK(g). Then for K sufficiently large, we have the following

(54)
∥∥∥(σw)1/2f

∥∥∥ ≃
∥∥∥(σ1/2)wf

∥∥∥ and
∥∥(σw)−1f

∥∥ ≃
∥∥(σ−1)wf

∥∥ .

In addition, suppose that τ is another elliptic positive symbol in SK(g) then

(55) ‖σwf‖ ≃ ‖τwf‖ .
In particular, we have

(56) ‖σwf‖2 ≃
∥∥∥σWickf

∥∥∥
2
≃
(
(σ2)Wickf, f

)

and

(57) (σwf, f) ≃
(
σWickf, f

)

uniformly in parameters (in particular K).
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Proof. We first prove (54). For the second almost equality, we just have to notice that
from Lemma A.7, we have

∥∥(σw)−1f
∥∥ =

∥∥HL(σ
−1)wf

∥∥ ≃
∥∥(σ−1)wf

∥∥

since HL is close to identity (uniformly in parameters). For the first part of (54), we write
that

‖σwf‖2 = ((σ♯σ)wf, f) = ((σ2)wf, f) + (rwf, f)(58)

where r = σ♯σ − σ2 ∈ K−1/2S(g2) by standard symbolic calculus. More precisely, we can
write from (46)

r =

∫ 1

0
(∂vσ♯θ∂ησ − ∂ησ♯θ∂vσ) dθ

and using that ∂vσ ∈ S(g) and ∂ησ ∈ K−1/2S(g) gives the result by stability of the flat
symbol class S(g). We therefore get that

|(rwf, f)| =
∣∣((σw)−1rw(σw)−1σwf, σwf)

∣∣
=
∣∣(HL(σ

−1)wrw(σ−1)wHRσ
wf, σwf)

∣∣.

Now σ−1♯r♯σ−1 ∈ K−1/2S(1) since σ−1 ∈ S(g), so that (σ−1)wrw(σ−1)w is a bounded

operator with norm controlled by a constant times K−1/2. Since HL and HR are bounded
operators independently of K, there exists a constant such that

|(rwf, f)| ≤ CK−1/2 ‖σwf‖2 .
This estimate and (58), gives that for K sufficiently large,

1

2
‖σwf‖2 ≤ ((σ2)wf, f) ≤ 2 ‖σwf‖2 .(59)

Taking σ1/2 ∈ SK(g
1/2) (by Lemma A.4) instead of σ, we obtain

∥∥∥(σ1/2)wf
∥∥∥
2
≃ (σwf, f) =

∥∥∥(σw)1/2
∥∥∥
2

and the proof of (54) is complete.
Concerning (55), we just have to prove one inequality since the result is symmetric in

τ and σ. For K sufficiently large, we have

‖τwf‖ =
∥∥τw(σw)−1σwf

∥∥ =
∥∥τw(σ−1)wHRσ

wf
∥∥ =

∥∥(τ♯(σ−1))wHRσ
wf
∥∥ ≤ C ‖σwf‖

since τ♯(σ−1) ∈ S(1), so that (τ♯(σ−1))w is bounded (with bound independent of K). By
symmetry, this proves (55).

We then prove (56). We first recall that σWick = (σ ⋆ N)w and that σ ⋆ N is elliptic
positive in SK(g) by Lemma A.5. From (55), this directly yields

‖σwf‖ ≃ ‖(σ ⋆ N)wf‖ =
∥∥∥σWickf

∥∥∥ .

By direct computation (σ2 ⋆ N)1/2 is also in SK(g) by point b) of Lemma A.4 with ν = 2
and ν = 1/2, respectively, and Lemma A.5. Using again (55) and (54), yields that

‖σwf‖ ≃
∥∥∥((σ2 ⋆ N)1/2)wf

∥∥∥ ≃
∥∥∥((σ2 ⋆ N)w)1/2f

∥∥∥ = ((σ2 ⋆ N)wf, f) = ((σ2)Wickf, f).

The proof of the last point (57) follows exactly the same lines and we skip it. ✷



SHORT TIME DIFFUSION WITH FRACTIONAL COLLISION KERNEL 37

References

[1] Alexandre, R., Desvillettes, L., Villani, C., and Wennberg, B. Entropy dissipation and
long-range interactions. Arch. Ration. Mech. Anal. 152, 4 (2000), 327–355.
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[9] Hérau, F., Tonon, D., and Tristani, I. Cauchy theory and exponential stability for inhomogeneous
Boltzmann equation for hard potentials without cut-off. In progress.

[10] Lerner, N. The Wick calculus of pseudo-differential operators and some of its applications. Cubo
Mat. Educ. 5, 1 (2003), 213–236.

[11] Lerner, N. Some facts about the Wick calculus. In Pseudo-differential operators, vol. 1949 of Lecture
Notes in Math. Springer, Berlin, 2008, pp. 135–174.

[12] Lerner, N. Metrics on the phase space and non-selfadjoint pseudo-differential operators, vol. 3 of
Pseudo-Differential Operators. Theory and Applications. Birkhäuser Verlag, Basel, 2010.
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Research University, 45 rue d’Ulm, 75005 Paris, France E-mail: isabelle.tristani@ens.fr


