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Abstract. With the rapid growth of multimedia applications and technologies,
objective image quality assessment (IQA) became a topic of fundamental interest.
No-Reference (NR) IQA algorithms are more suitable to real-world applications
where the original image is not available. In order to be more consistent with
human perception, this paper proposes a new NR-IQA metric where the input
image is firstly decomposed to several frequency sub-bands which mimic the hu-
man visual system (HVS). Then, the statistical features are extracted from these
frequency bands and used to fit a multivariate Gaussian distribution (MVGD).
Finally, the model obtained by training predicts the quality of the input image.
Experimental results demonstrate the method effectiveness and show its robust-
ness when tested by different databases. Moreover, the predicted quality is more
consistent with human perception.

Keywords: image quality assessment, no reference, human visual system, visual
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1 Introduction

From the last two decades, a great number of researches have been conducted to design
robust No-Reference Image Quality Assessment (NR-IQA) algorithms. As they don’t
use the reference image, these algorithms can be embedded in the development of new
multimedia services. NR-IQA algorithms aim at predicting image quality from objec-
tive features extracted from distorted images. To reach this goal, these algorithms, either
assume a priori knowledge of involved distortions, or look for a generic approach by
directly assessing the image quality regardless the type of image distortion [1]. For spe-
cific approaches, metrics are mainly designed to quantify distortions induced by image
encoders such as JPEG and JPEG2000. In studies [2] [3], the block effect is estimated
in the spatial domain while studies [4] [5] quantify the same effect in the frequency
domain. Assessment algorithms for blur effect are proposed in [6] [7] . Distortions in-
duced by JPEG2000 such as blur and ringing are considered in [8] [9]. The blur effect
is characterized by an increase of the spread of edges while the ringing effect produces
halos and/or rings near sharp object edges. As a result, the proposed metrics are gener-
ally based on the measurement of edges spreading. All of these metrics are interesting
and some of them perform very well. However they remain limited by the distortions
that they have to know.



Generic approaches aim to be universal and look to address all applications fields. Usu-
ally, the generic approaches follow two trends: Signal based approach that extracts and
analyzes features in image signals and visually based approach that aims to mimic
the human visual system (HVS) properties. Signal based approaches present a good
trade-off between performance and complexity. Generally, these approaches require
two steps. In the first one, relevant features are extracted while in the second, these
features are pooled in order to produce the quality score of the image under test. The
first step has been the subject of several investigations [10] [11] [12]. In contrast, the
second step usually uses conventional combinations. To overcome this drawback, sta-
tistical modeling of natural images has been considered where the features extraction
procedure is followed by a learning step. In the case of no-reference metrics which is
the context of this paper, these learning methods can well map features and subjective
assessments [13] [14] [15] [16] [17] [23].
Since the result of evaluation ultimately depends on the final observer, the visually-
based trend looks for designing metrics according to HVS behavior when assessing
quality. Several metrics based on one or more HVS properties, are proposed in litera-
ture. The HVS sensitivity to image signals is used in [24] [25]. The HVS sensitivity to
spatial frequencies, luminance and/or structural information is pointed out in [26] [27]
[28]. Nowadays, several HVS models are proposed in image quality assessment and
their experimental results are very promising.

The goal of this paper is to combine the advantages of visually-based methods and
the interesting results [29] of learning techniques in the context of NR-IQA metrics.
More specifically, it uses the spatial frequency sensitivity of HVS to decompose the test
image, extracts the statistical features of each visual sub-band and combines them using
a multivariate Gaussian distribution, to assess the quality.

The rest of this paper is organized as follows: The proposed metric is presented in
Section II. The visual sub-band decomposition is described in Section III. The experi-
mental results are shown and discussed in section IV.

2 The LEVIQI Index

2.1 General framework

Fig. 1 gives the overall framework of the proposed method.
The first block models the spatial frequency selectivity of the human visual system

and performs a perceptual decomposition on both training and testing images. The steer-
able pyramid [30] is used to achieve the perceptual decomposition described in Section
2.2. The steerable pyramid is a multi-scale, multi-orientation ans self inverting image
decomposition. With this decomposition, the image is divided into a set of sub-bands
localized in scale and orientation. An example of the first level image decomposition
where four oriented band-pass filters are used, is given Fig. 2.

The second block extracts the statistical features of each filtered visual channel.
Instead of looking to define new features, this paper will exploit some features derived
from well-known metrics.



The computed features and the DMOS (Difference of Mean Opinion Scores) values
of training images are then used by the learning block to fit an IQA Multivariate Gaus-
sian Distribution. Due to its simple parametric form, the MVGD is widely used for
modeling vector-features signals and has been a sound choice in many image and video
applications. Therefore, the resulting model, namely LEarning-based and Visual-based
Image Quality Index (LEVIQI) is given by:

LEV IQI (x) =
1

(2π)k/2 |Σ|1/2
exp

(
−1

2
(x− β)T Σ−1 (x− β)

)
(1)

where x = (f1, ..., fk, DMOS) corresponds to the extracted features to which is added
the DMOS of training distorted images. β andΣ denote the mean and covariance matrix
of the MVGD model and are estimated using the maximum likelihood method. The
features extracted from testing images with DMOS values lying between 0 and 100
with a step of 0.5, are fed into the learned LEVIQI to assess objective quality of image
under test. The DMOS of the test image is the one that maximizes the distribution
p (x, β,Σ).

Fig. 1. Overall framework of the proposed method.

The probabilistic model is trained on the LIVE IQA database, for which, one has
access to DMOS values. To ensure a robustness of results, multiple training sets were
constructed. In each, the image database was subdivided into distinct training and test
sets (completely content-separate). For each train set, 80% of the LIVE IQA Database
content was chosen, inducing that the remaining 20% is considered for the test set.
Specifically, each training set contained images derived from 23 original images, while
each test set contained the images derived from the remaining 6 original images. 1000
randomly chosen training and test sets were obtained and the prediction of the quality
scores was run over the 1000 iterations.

2.2 Visual Sub-band decomposition

It is well known that the retinal image is processed by different frequency channels
that are narrowly tuned around specific spatial frequencies and orientations. Numerous



Fig. 2. Steerable pyramid-based image decomposition. Illustration of the first level image decom-
position (radial selectivity) where four oriented band-pass filters are used (angular selectivity).
The second level of decomposition is the result of the same process performed on low-pass filter
1 (low-pass filter 0 downsampled by the factor 2)

Fig. 3. Perceptual decomposition.



psychophysical experiments have been conducted to estimate the bandwidth of these
channels. Quiet different values have been obtained by different types of experiments.

According to these experiments, most of the proposed decompositions suggest a
spatial frequency bandwidth of approximately one octave and an orientation sensitivity
that varies between 20◦ and 60◦ depending on the spatial frequency.
This study uses the decomposition of Fig. 3. Discussed in [31], this decomposition uses
a radial frequency selectivity that is symmetric on a log-frequency axis with bandwidths
nearly constant at one octave. It consists of one isotropic low-pass and three band-pass
channels. The angular selectivity is constant and equal to 30◦.

2.3 Selected features
All features considered in this paper are extracted from nine commonly used learning-
based NR-IQA metrics : 1) BRISQUE [18], 2) QAC [19], 3) BLIINDS-II [17], 4) NIQE
[23], 5) DIIVINE [16], 6) BIQI [15], 7) IL-NIQE [20], 8) SSEQ [21] and 9) OG-IQA
[22]. A reason of the choice of those trial algorithms is motivated by the fact that the
code of all of them is publicly available.

Yet, since around 200 features are available from all the trial algorithms, only the
most relevant are selected. Furthermore, some of them modelize similar visual charac-
teristics, e.g., luminance sensitivity, sub-band anisotropy, and so on. So, it is not neces-
sary to select features which modelize similar characteristics.

All features are computed for all original images (and their associated degraded
version) of the LIVE IQA database [33]. Then, the Spearman Rank-Order Correlation
Coefficient (SROCC) between values of features and subjective DMOS is computed.
Finally, only the 10 highest correlated attributes are considered to design LEVIQI under
the constraint that the selected features do not modelize similar characteristics.

Feature from Description # features

BRISQUE
shape parameter and the variance of GGD fit of the MSCN (mean sub-
tracted contrast normalized) coefficients

2

BLIINDS2 Coefficient of Frequency Variation 1
BLIINDS2 Energy Subband ratio Measure 1
DIIVINE Across scale and spatial correlations 2

SSEQ local spatial and spectral entropy features 2
IL-NIQE Chromatic Statistics 2

Table 1. Selected features to design LEVIQI

Table 1 presents the selected distinct features. Yet, these attributes have not been
used as they have been defined in their associated NR-IQA schemes, but have been
modified to adapt the visual sub-band decomposition.

GGD fit parameters: The first set of features, derived from BRISQUE, includes the
shape parameter α and the variance σ2 of generalized Gaussian distribution (GGD) fit
of the MSCN (mean subtracted contrast normalized) coefficients for each sub-band.
The MSCN coefficients refer to the transformed luminances Î(i, j) given by:

Î(i, j) =
I (i, j)− µ (i, j)
σ (i, j) + C

, (2)



where (i,j) are spatial indices, C=1, and µ (i, j) =
∑3
k=−3

∑3
l=−3 ωk,lIk,l (i, j) , and

σ (i, j) =
√∑3

k=−3
∑3
l=−3 ωk,l (Ik,l (i, j)− µ (i, j))

2
, ω is a 2D circularly-symmetric

Gaussian weighting function.
The shape α and the variance σ2 parameter of the GGD are computed over all

subbdands and then pooled by computing the lowest 10th percentile average of the
local α scores and the local σ2 scores across the sub-bands.

Coefficient of Frequency Variation: This feature, derived from BLIINDS2, is defined
for each subband as:

ζ =
σ|X|

µ|X|
=

√
Γ (1/γ)Γ (3/γ)

Γ 2 (2/γ)
− 1 (3)

where σ|X| and µ|X| are the standard deviation and mean of the frequency coefficient
magnitudes |X|, respectively.

The feature ζ is computed for all sub-bands of the image and pooled by taking the
highest 10th percentile and over all of the sub-band scores of the image.

Energy Sub-band ratio Measure: This attribute, also derived from BLIINDS2, is
used to capture local spectral signature. This feature is defined as:

Rn,k =

∣∣∣En,k − 1
n−1

∑
j<nEj,k

∣∣∣
En,k +

1
n−1

∑
j<nEj,k

(4)

where En,k = σ2
n,k is the average energy in the frequency sub-band n for a given radial

band k, where n ∈ {1, 2, 3, . . . , 6} and k ∈ {1, 2, 3}. The mean of (Rn,k)n∈[2,...,6] is
computed on the three radial bands k of the image and pooled by computing the highest
10th percentile average of the scores of the image.

Across scale and Spatial correlations These two features are derived from features
designed for DIIVINE. In order to capture the statistical dependencies between high-
pass (HP) responses of natural images and their band-pass (BP) counterparts, a struc-
tural correlation is modeled as ρ = (2σxy + C2)/(σ

2
x + σ2

y + C2) where σxy is the
cross-variance between the windowed regions from the BP and HP bands, and σ2

x, σ
2
y

are their windowed variances respectively; C2 is a stabilizing constant. The mean of the
18 correlation values (corresponding to the 18 sub-bands) is computed.

In order to capture spatial correlation statistics, the joint empirical distribution be-
tween coefficients at (i, j) and the set of spatial locations at a distance of τ is computed
for each dθ1, θ ∈ {0o, 30o, 60o, 90o, 120o, 150o}. The correlation between these two
variables denoted X and Y is estimated by:

ρ (τ) =
EPXY (x,y)

[(
X − EPX(x) [X]

)T (
Y − EPY (y) [Y ]

)]
σXσY

(5)



where EPX(x) [X] is the expectation of X with respect to the marginal distribution
pX(x) (similarly for Y and (X,Y)). ρ (τ) is plotted for various distance across distor-
tions and the obtained curve is fitted with a 3rd order polynomial. The coefficients of
the polynomial and the error between the fit and the actual ρ (τ) form an 30 dimen-
sional feature vector (5 values for each direction). The mean of ρ (τ) is computed over
the three radial bands and pooled by computing the highest 10th percentile average of
the scores.

Local spatial and spectral entropy features: The spatial entropy is computed on the
obtained image after applying the first non-directional lower-pass filter applying.

Concerning the spectral entropy, a modified version of the attribute designed for
SSEQ is defined. The variance across the six orientations per radial band var (E [Rθ])
is computed. (E [Rθ]) is the average of the Renyi entropy Rθ [n] per orientation for the
three sub-bands (one per radial band) of orientation θ.

Finally, the mean of the three variance values per radial band is computed.

Chromatic Statistics: This attributed is derived from IL-NIQE and is computed on the
color image before applying the DCP transform. From the RGB coordinates system, a
logarithmic-scale opponent color space RGB is defined as R = logR − µR, G =
logG− µG and B = logB − µB

where µR (resp. µG and µB) is the mean logR (resp. logG and logB) over the
image. Finally, the following linear color transform is applied on the RGB color space
as l1 = (R+ G + B)/

√
3, l2 = (R+ G − 2B)/

√
6, l3 = (R− G)/

√
2.

The distributions of each channel l1, l2, l3 conforms to a Gaussian probability law.
In this paper, only the chromatic channels l2 and l3 are considered, since l1 refers to a
luminance channel. Finally, the two model parameters µC and σ2

C are estimated using
a multivariate Gaussian model.

3 Performance evaluation

3.1 Experimental setup

Trial databases: To provide comparison of NR-IQA algorithms, two publicly available
databases are used: 1) TID2013 database [32] and 2) CSIQ database [34]. Since the
LIVE database [33] has been used to train both the proposed metric and most of the trail
NR-IQA schemes, it has not been used to evaluate performances of NR-IQA methods.

The TID2013 database contains images with multiple distortions. This database
consists of 25 original images on which 24 different type of distortions have been ap-
plied using five degradation levels per distortion. A total of 3000 distorted images are
generated. It is worth noting that seven new types of degradations have been intro-
duced with respect to the 17 types of degradation existing in the previous version of the
database, known as TID2008. The database contains 524340 subjective ratings from
971 different observers, and ratings are reported in the form of MOS.

The CSIQ Database consists of 30 original images, each is distorted using six dif-
ferent types of distortions at four to five different levels of distortion. A total of 866
distorted images have been generated. The database contains 5000 subjective ratings
from 35 different observers, and ratings are reported in the form of DMOS.



TID2013 subset BRISQUE BLIINDS2 DIIVINE SSEQ ILNIQE LEVIQI
Additive Gaussian Noise 0.852 0.722 0.855 0.807 0.876 0.881

Additive Noise in Color Components 0.709 0.649 0.712 0.681 0.815 0.817
Spatially Correlated Noise 0.491 0.767 0.463 0.635 0.923 0.899

Masked Noise 0.575 0.512 0.675 0.565 0.512 0.779
High Frequency Noise 0.753 0.824 0.878 0.860 0.868 0.891

Impulse Noise 0.630 0.650 0.806 0.749 0.755 0.801
Quantization Noise 0.798 0.781 0.165 0.468 0.873 0.860

Gaussian Blur 0.813 0.855 0.834 0.858 0.814 0.851
Image Denoising 0.586 0.711 0.723 0.783 0.750 0.812

JPEG Compression 0.852 0.864 0.629 0.825 0.834 0.867
JPEG2000 Compression 0.893 0.898 0.853 0.885 0.857 0.901

JPEG Transmission Errors 0.315 0.117 0.239 0.354 0.282 0.217
JPEG2000 Transmission Errors 0.360 0.620 0.060 0.561 0.524 0.662
Non Eccentricity Pattern Noise 0.145 0.096 0.060 0.011 0.080 0.121
Local Block-wise Distortions 0.224 0.209 0.093 0.016 0.135 0.217

Mean Shift 0.124 0.128 0.010 0.108 0.184 0.211
Contrast Change 0.040 0.150 0.460 0.204 0.014 0.521

Change of Color Saturation 0.109 0.017 0.068 0.074 0.162 0.471
Multiplicative Gaussian Noise 0.724 0.716 0.787 0.679 0.693 0.771

Comfort Noise 0.008 0.017 0.116 0.033 0.359 0.315
Lossy Compression of Noisy Images 0.685 0.719 0.633 0.610 0.828 0.831

Color Quantization with Dither 0.764 0.736 0.436 0.528 0.748 0.892
Chromatic Aberrations 0.616 0.539 0.661 0.688 0.679 0.699

Sparse Sampling and Reconstruction 0.784 0.816 0.834 0.895 0.865 0.899
Cumulative subsets 0.367 0.393 0.355 0.332 0.494 0.501

Table 2. SROCC values computed between predicted scores using NR-IQA schemes from which
some attributes are extracted to design LEVIQI and MOS values for TID2013 Images database.

Trial NR-IQA: To assess the performance of the proposed metric, nine commonly
used NR-IQA schemes are used to compare LEVIQI with. The trial metrics are those
mentioned in section 2.3. Only NR-IQA schemes whose at least one feature has been
adapted to design LEVIQI index, i.e., BRISQUE, BLIINDS2, DIIVINE, SSEQ and
ILNIQE are used to compare the performance of LEVIQI with.
Statistical Significance and hypothesis testing: Results obtained from the proposed
metric are compared to results provided by all trial NR-IQA algorithms. To perform this
evaluation, the Spearman Rank Order Correlation Coefficient (SROCC) is computed
between the DMOS values and the predicted scores obtained from NR-IQA algorithms.
In addition, to ascertain which differences between NR-IQA schemes performance are
statistically significant, we applied an hypothesis test using the residuals between the
DMOS values and the ratings provided by the IQA algorithms. This test is based on the
t-test that determines whether two population means are equal or not. This test yields us
to take a statistically-based conclusion of superiority (or not) of an NR-IQA algorithm.

3.2 Experimental results
Table 2 gives SROCC mean values computed between predicted scores from NR-IQA
schemes from which some extracted features are used to design LEVIQI and MOS val-
ues for the TID2013 Images database. When considering the whole database, LEVIQI



overperforms BRIQUE, BLIINDS2, DIIVINE, SSEQ ad ILNIQE. In 67% of cases (16
subsets out of 24), scores predicted by LEVIQI allow to have a better correlation (higher
SROCC value) with human judgments than that of any other tested NR-IQA. For the
remaining cases (8 remaining subsets), the performance of LEVIQI is very close to the
best values. If we consider multidistorted images associated to the seven last subset of
Table 2, LEVIQI performs better than trial quality schemes except for ’Multiplicative
Gaussian Noise’ and ’Comfort Noise’. Yet, obtained SROCC values are highly compet-
itive with the best quality index.

Similar results as those of Table 2 are given in Table 3 for CSIQ Images database.
For this database also, The global performance (SROCC value of cumulative subsets)
of LEVIQI is higher than that of trial metrics. More specifically, LEVIQI performs
better 4 times over 6. For the two remaining distortions ’Gaussian Noise’ and ’Additive
Gaussian Pink Noise’, LEVIQI presents the second best performance.

CSIQ subset BRISQUE BLIINDS2 DIIVINE SSEQ ILNIQE LEVIQI
JP2K 0.866 0.895 0.830 0.848 0.906 0.911
JPEG 0.903 0.901 0.799 0.865 0.899 0.915

Gaussian Noise 0.252 0.379 0.176 0.872 0.850 0.862
Add. Gaussian Pink Noise 0.925 0.801 0.866 0.046 0.874 0.909

Gaussian Blur 0.903 0.891 0.871 0.873 0.858 0.931
Global Contrast Decrement 0.029 0.012 0.396 0.200 0.501 0.590

Cumulative subsets 0.566 0.577 0.596 0.528 0.815 0.821
Table 3. SROCC values computed between predicted scores from which some attributes are
extracted to design LEVIQI and MOS values for CSIQ Images database.

In addition, Table 4 gives obtained results when a One-sided t-test is used to pro-
vide statistical significance of NR-IQA/LEVIQI quality scores on the 6 multidistortions
subsets of TID2013 database (the 6 last subsets in Table 2). Each entry in this table is
coded using six symbols. The position of each symbol corresponds to one subset ( first
position corresponds to ’Change of Color Saturation’ subset, second position for ’Mul-
tiplicative Gaussian Noise’ subset etc..). Each symbol gives the result of the hypothesis
test on the subset. If the symbol equals ’1’, the NR-IQA on the row is statistically better
than the NR-IQA on the column (’0’ means worse, ’-’ is used when NR-IQAs are indis-
tinguishable). Results confirm that, most of the time, LEVIQI is more consistent with
human judgments than trial NR-IQA schemes from which some features have been ex-
tracted. As multidistortions subsets are not common to LIVE database, these results are
more reliable.

BRISQUE BLIINDS2 DIIVINE SSEQ ILNIQE
LEVIQI 1111111 1111111 10111-1 11111-- 110-1--

Table 4. Statistical significance comparison of trial NR-IQA/LEVIQI quality scores on TID2013
database multidistortions subsets.

In a similar way, Table 5 gives obtained results when a One-sided t-test is used to
provide statistical significance of NR-IQA/LEVIQI quality scores on CSIQ database.
One can notice that distortions present in CSIQ database are also present in LIVE
database. For these learned distortions, LEVIQI exceeds in several cases all of the trial
NR-IQA schemes.



BRISQUE BLIINDS2 DIIVINE SSEQ ILNIQE
LEVIQI 1-1-111 --11111 1111111 1101111 ---111-

Table 5. Statistical significance comparison of NR-IQA/LEVIQI quality scores on CSIQ database
subsets.

Finally, to compare the computational complexity of the proposed algorithm, we
measured the average computation time required to assess an image of size 512× 512,
using a computer with Intel Core-I7 processor at 2.2GHz. Table 6 reports the measure-
ment results, which are rough estimates only, as no code optimization has been done
on our Matlab implementations. LEVIQI is superior to DIIVINE and BLIINDS2 while
inferior to BRISQUE and SSEQ and similar to ILNIQE.

NR-IQA BRISQUE BLIINDS2 DIIVINE SSEQ ILNIQE LEVIQI
time 1.33 87.13 27.33 2.69 11.85 12.38

Table 6. Comparison of computational time (in second/image)

4 Conclusion
In this paper, a machine learning-based and human vision-based quality index called
LEVIQI has been proposed in the purpose of no reference quality evaluation. The model
utilizes ten derivative relevant attributes from five well-known and highly competitive
NR-IQA schemes. The selected attributes address human vision characteristics such as
frequency sensitivity, chromatic sensitivity, anisotropy and contrast sensitivity. These
attributes have been adapted to be computed on 18 sub-bands generated from three
different radial bands and six different orientations, to simulate human perception sen-
sitivity. Obtained results show that the performance of LEVIQI is competitive with
top-performing NR-IQA schemes. The potential of this model to be used in real ap-
plications is the subject of investigations where real-time implementation of LEVIQI
index is considered using efficient vectorization.
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