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INFLUENCE OF THE REGULARITY OF THE TEST FUNCTIONS FOR
WEAK CONVERGENCE IN NUMERICAL DISCRETIZATION OF SPDES

CHARLES-EDOUARD BRÉHIER

Abstract. This article investigates the role of the regularity of the test function when
considering the weak error for standard discretizations of SPDEs of the form dX(t) =
AX(t)dt + F (X(t))dt + dW (t), driven by space-time white noise. In previous results, test
functions are assumed (at least) of class C2 with bounded derivatives, and the weak order
is twice the strong order.

We prove, in the case F = 0, that to quantify the speed of convergence, it is crucial
to control some derivatives of the test functions, even when the noise is non-degenerate.
First, the supremum of the weak error over all bounded continuous functions, which are
bounded by 1, does not converge to 0 as the discretization parameter vanishes. Second,
when considering bounded Lipschitz test functions, the weak order of convergence is divided
by 2, i.e. it is not better than the strong order.

This is in contrast with the finite dimensional case, where the Euler-Maruyama dis-
cretization of elliptic SDEs dY (t) = f(Y (t))dt+ dBt has weak order of convergence 1 even
for bounded continuous functions.

1. Introduction

The numerical analysis of Stochastic Partial Differential Equations (SPDEs) has received
a lot of attention in the last two decades, see for instance the recent monographs [19], [24]
and [26]. Many temporal and spatial discretization schemes have been studied in the lit-
erature: Euler schemes, exponential Euler schemes, and spectral Galerkin methods, Finite
Element methods.

In this article, we consider semilinear, parabolic, equations, with additive noise, of the
type  dX = (∂ξξX + F (X))dt+ dW, t > 0, ξ ∈ (0, 1),

X(0, t) = X(1, t) = 0,
X(ξ, 0) = x(ξ),

on the interval (0, 1), with homogeneous Dirichlet boundary conditions. More precisely, we
consider Hilbert-space valued stochastic processes, which are solutions in H = L2(0, 1) of

(1) dX(t) = AX(t)dt+ F (X(t))dt+ dW (t), X(0) = x,

in the framework of [12], see equation (5) and Section 2 below for precise assumptions. The
drift coefficient F is assumed at least Lipschitz continuous, to ensure global well-posedness
of mild solutions. In fact, we will mainly focus on the case F = 0. The noise is given by
a cylindrical Wiener process, which is a mathematical model for Gaussian space-time white
noise.
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We are interested in weak convergence rates for numerical approximations of X(T ), for
arbitrary time T ∈ (0,∞). Recall that this notion corresponds to studying the weak error

(2) E[φ(X(T ))]− E[φ(Xh(T ))]

where Xh(T ) is the numerical approximation of X(T ), obtained by temporal and/or spatial
discretization of the equation (with discretization parameter h → 0), and φ : H → R is a
bounded continuous function. Recall also that strong convergence refers to the analysis of
the strong error

E|X(T )−Xh(T )|.
These notions have been extensively studied in the case of Stochastic Differential Equations
(SDEs) of the type

(3) dYt = f(Yt)dt+ σ(Yt)dBt, Y0 = y ∈ Rd,

with smooth coefficients f and σ, and a d-dimensional Brownian Motion B, see for instance
the classic monographs [21], [27].

Strong convergence for discretizations of the SPDEs (1), also with multiplicative noise
perturbation, have been studied, for instance, in [13], [17], [19], [28], [31], [34] (the list
is not exhaustive). Results concerning weak convergence rates have essentially been ob-
tained in the last decade, using different approaches. In the case of the stochastic equa-
tion with additive noise (F = 0 in (1)), see [15], [16], [22], [23]. For semilinear equa-
tions, see [2], [6], [14], [30], [32], [33], for an approach related to the Kolmogorov equation.
See [11], [18], [20], where a mild Itô formula is used. Finally, for semilinear equations with
additive noise, see [1] and [7] for different approaches. Deriving weak convergence rates
is fundamental in infinite dimension, see for instance [25]. Moreover, it is the appropriate
notion for the approximation of invariant distribution (in the asymptotic regime T → ∞),
see [5], [8], [9]. The extension of the results of this article in this regime is straightforward.

The results in the references mentioned above can be roughly summarized as follows: if the
strong error converges with order r, then the weak error converges with order 2r, for functions
φ which are sufficiently smooth, i.e. of class Cp, bounded and with bounded derivatives of
order 1, . . . , p, with p ≥ 2 (p depends on the model, for instance whether noise is additive or
multiplicative):

(4) E|X(T )−Xh(T )| ≤ C(T )hr , E[φ(X(T ))]− E[φ(Xh(T ))] ≤ C(T )‖φ‖ph2r,

where ‖φ‖p = supx∈H |φ(x)|+
∑p

j=1 supx∈H |Djφ(x)|. For spectral Galerkin discretization of
the SPDE (1), in dimension N , with h = 1

N
, one may choose r ∈ [0, 1

2
). For linear implicit

Euler discretization of (1), with time step size h = ∆t, one may choose r ∈ [0, 1
4
).

This article investigates whether (4) holds true if ‖φ‖p, where p ≥ 2, is replaced with
‖φ‖1 or ‖φ‖0. This question is motivated by the positive answer for hypoelliptic SDEs, for
instance in the additive noise case with constant σ; on the contrary, the contribution of this
article shows that the answer is negative for SPDEs, and we exhibit some family of functions
which allow us to identify the rate of convergence.

In the SDE case, consider the Euler-Maruyama discretization of (3) (see (15)), with time
step size h. Under an appropriate hypoellipticity assumption (which is satisfied in the
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additive non-degenerate noise case σ(x) = Id), using Malliavin calculus techniques and regu-
larization effect in the associated Kolmogorov equation, the authors in [3], [4] (see also [10]),
have proved that the standard approach of [29], to prove the weak error estimate for suffi-
ciently regular functions,

|E[φ(Y (T ))]− E[φ(Yh(T ))]| ≤ C(T )‖φ‖ph
with p ≥ 2, can be extended with ‖φ‖0 instead of ‖φ‖p on the right-hand side. In other words,
weak convergence is also of order 1 when considering bounded measurable test functions, in
particular for bounded continuous test functions.

Our contribution is to prove that the situation is quite different for SPDEs. Note that
thanks to (4), the weak error (2) converges to 0 when h → 0, for any given bounded
continuous function φ. Moreover, the Kolmogorov equation regularization effect also holds
true in the infinite dimensional setting, thanks to non-degeneracy of the noise in (1).

The main result of this paper states that the supremum over all bounded continuous
functions, bounded by 1, of the weak error (2), does not converge to 0: the precise statement
is Theorem 1. In addition, if one considers bounded Lipschitz continuous functions φ, and
set ‖φ‖1 = ‖φ‖0 + sup

x1,x2∈H

|φ(x2)−φ(x1)|
|x2−x1| , the weak error estimate in (4) is modified as

E[φ(X(T ))]− E[φ(Xh(T ))] ≤ C(T )‖φ‖1h
r,

see Theorem 2 for a precise statement: there is a loss in the order of convergence. Equiv-
alently, the optimal weak order for bounded Lipschitz continuous function is equal to the
strong order for SPDEs, in the setting considered in this article.

The regularity of the test functions, and the control of derivatives, is thus essential to quan-
tify the speed of convergence of the weak error (2) for numerical discretization of SPDEs (1).

Our proofs rely on academic examples of functions, which have low significance for con-
crete numerical approximation. It may be possible to define smaller families of non-regular
test functions, for which uniform convergence of the numerical schemes holds true with
better rates of convergence. This is expected to be obtained by the generalization of the
finite dimensional approach of [3], [4]: regularization effect in the Kolmogorov equation and
Malliavin calculus techniques. The identification of the appropriate setting is left for future
works.

Why the regularity of the test functions matters for SPDEs may be explained by the
properties of the solutions of associated Kolmogorov equations. Indeed, as emphasized
in [2], [6], [14], Sobolev-type regularity properties for the spatial derivatives of the solu-
tion of this infinite dimensional PDE are required to treat the most irregular terms in the
error expansion. Similar arguments appear in [11], [15] and related articles. The regularity
estimates have singularities at the initial time, even when the test function (seen as the
initial condition of the Kolmogorov equation) is regular.

For SDEs, the Kolmogorov equation preserves regularity of the initial condition. Singu-
larities only appear when a regularization effect is needed, in an hypoelliptic setting.

For SPDEs, exhibiting a rate of convergence in the error analysis is only possible when
using some spatial regularity property, as mentioned above. The better the spatial regularity,
the greater the order of convergence, but the stronger the singularity – with the constraint of
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remaining integrable. This approach yields the optimal order of convergence for regular test
functions. Weakening the regularity condition on the test functions then introduces even
stronger singularities, and less spatial regularity may be used: in turn the order of conver-
gence decreases. The optimality of these heuristic arguments is validated by Theorems 1
and 2.

The article is organized as follows. Assumptions on the model and numerical discretization
schemes are introduced in Section 2. Section 2.3 describes important spatial regularity
properties, which are very different for the discretized versions, compared with the exact
solution. Our main results, Theorem 1 (bounded continuous functions) and Theorem 2 are
stated in Section 3. Detailed proofs are provided in Section 4.

2. Setting

2.1. Model and assumptions. The model in this article is given by a Stochastic Partial
Differential Equation (SPDE),

(5) dX(t) = AX(t)dt+ dW (t), X(0) = 0,

i.e. by Equation 1, with F = 0. This choice is sufficient for our purpose and does not change
the conclusions of this article.

The initial condition in (5) is set to 0 for simplicity. Extending the results of this article
to arbitrary initial conditions is straightforward.

2.1.1. Linear operator A. Denote by 〈·, ·〉, resp. | · |, the inner product, resp. the norm, in
the separable Hilbert space H = L2(0, 1).

The operator A in the SPDE satisfies the following conditions.

Assumption 1. The mapping A is an unbounded, self-adjoint, linear operator on H.
Define, for all n ∈ N = {1, . . .},

λn = π2n2 , en =
√

2 sin
(
nπ·
)
.

Then the operator A and its domain D(A) are given by

Ax =
∑
n∈N

−λn〈x, en〉 , ∀ x ∈ D(A) =

{
x ∈ H ;

∑
n∈N

λ2
n〈x, en〉2 <∞

}
.

Recall that
(
en
)
n∈N is a complete orthonormal system of H.

Introduce the following notation.

Definition 1. (1) The operator A generates a strongly-continuous semigroup
(
etA
)
t≥0

on H, with
etAx =

∑
n∈N

e−λnt〈x, en〉 , ∀ x ∈ H, t ≥ 0.

(2) For all α ∈ [0, 1], set

|x|α =
(∑
n∈N

λ2α
n 〈x, en〉2

) 1
2 ∈ [0,∞], ∀ x ∈ H.
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2.1.2. Cylindrical Wiener process.

Assumption 2. Let
(
Ω,F ,P

)
denote a probability space, expectation is denoted by E.

Let
(
βn
)
n∈N be a sequence of independent standard R-valued Wiener processes.

Then set, for all t ≥ 0,

(6) W (t) =
∑
n∈N

βn(t)en.

It is a standard fact that, for all t ≥ 0, almost surely the series in (6) does not converge
in H. However, if Φ ∈ L(H) is an Hilbert-Schmidt operator, then ΦW (t) =

∑
n∈N βn(t)Φen

is a Wiener process in H, with covariance operator ΦΦ?.

2.1.3. Mild solution. Solutions of the SPDE (5) are interpreted in the mild sense: the unique
solution, which is often called stochastic convolution, is given by

X(t) =

∫ t

0

e(t−s)AdW (s) =
∑
n∈N

(∫ t

0

e−λn(t−s)dβn(s)
)
en, t ∈ (0,∞).

With the notation Xn(t) = 〈X(t), en〉 =
∫ t

0
e−λn(t−s)dβn(s), the process

(
Xn(t)

)
t≥0

are
independent Ornstein-Uhlenbeck processes. Thus,

(
X(t)

)
t≥0

is a centered Gaussian process
with values in H. Let µt denote the law of X(t), i.e. the centered Gaussian probability
distribution on H with covariance operator Qt ∈ L(H), given by Qten = 1

2λn

(
1− e−2λnt

)
=

E
[
|Xn(t)|2

]
for all n ∈ N and t ≥ 0.

2.2. Numerical schemes. Space and time discretization schemes are defined below. One
may also consider full-discretization schemes obtained by combining these two procedures.

2.2.1. Space discretization: spectral Galerkin method. For every N ∈ N, let PN ∈ L(H)
denote the orthogonal projection onto the finite-dimensional subspace Span

(
e1, . . . , eN

)
:

PNx =
N∑
n=1

〈x, en〉en, ∀ x ∈ H.

The process X(N) obtained by discretization in space of the SPDE (5), is solution of

dX(N)(t) = AX(N)(t)dt+ PNdW (t) , X(N)(0) = 0.

In fact, X(N)(t) = PNX(t), for all t ≥ 0 and N ∈ N.
Let then µ

(N)
t denote the law of the random variable X(N): it is a centered Gaussian

probability distribution, with covariance operator PNQt(PN)? = PNQt.

2.2.2. Time discretization: linear implicit Euler scheme. Let ∆t > 0 denote a time-step
size, without restriction we assume ∆t ∈ (0, 1). The scheme is defined such that for all
k ∈ N0 = {0, 1, . . .},

X∆t
k+1 = X∆t

k + ∆tAX∆t
k+1 + ∆Wk , X∆t

0 = 0,

with Wiener increments ∆Wk = W
(
(k + 1)∆t

)
−W

(
k∆t

)
.

Rigorously,
X∆t
k+1 = S∆tXk + S∆t∆Wk,

where S∆t =
(
I −∆tA

)−1 is a linear, self-adjoint, Hilbert-Schmidt, operator on H.
5



As a consequence, for every k ∈ N,

X∆t
k =

k−1∑
`=0

Sk−`∆t ∆W`,

and the law ν∆t
k of X∆t

k is a centered Gaussian probability distribution, with covariance
operator

Q∆t
k = ∆t

k−1∑
`=0

S
2(k−`)
∆t .

2.3. Space regularity properties. The aim of this section is to provide some important
results concerning the moments

∫
H
|x|2αµ(dx), for different values of α ∈ [0, 1]. The parameter

α is interpreted as indicating space regularity of the process. We emphasize on the key
observation: the behaviors are different when considering, on the one hand, µ = µt, and, on
the other hand, µ = µ

(N)
t or µ = ν∆t

n , which are obtained by the discretization schemes. We
will take advantage of this property in the study of the orders of convergence for bounded
continuous test functions.

First, consider the law µt at time t, of the solution of the SPDE (5): for any t ∈ (0,∞),

(7)
∫
H

|x|2αµt(dx) =
∑
n∈N

1

2λ1−2α
n

(
1− e−2λnt

)
<∞ ⇐⇒ α ∈ [0,

1

4
).

Now, consider the law µ
(N)
t , at time t, obtained by spatial discretization: for every t ∈

[0,∞),

(8)

∫
H

|x|2αµ
(N)
t (dx) <∞, ∀ α ∈ [0, 1], ∀ N ∈ N,

sup
N∈N

∫
H

|x|2αµ
(N)
t (dx) <∞ ⇐⇒ α ∈ [0,

1

4
).

Finally, consider the law ν∆t
k , at time k, obtained by the temporal discretization: for every

k ∈ N

(9)

∫
H

|x|2αν∆t
k (dx) <∞, ∀ α ∈ [0,

3

4
), ∀ ∆t ∈ (0, 1),

sup
∆t∈(0,1)

∫
H

|x|2αν∆t
k (dx) <∞ ⇐⇒ α ∈ [0,

1

4
).

Observe that in (8) and (9), one recovers the same behavior as in (7), only when the
supremum over all discretization parameters (N ∈ N and ∆t ∈ (0, 1)) is computed. For
fixed values of these parameters, some larger values of α ≥ 1

4
are allowed.

The proofs of estimates in (7) and (8) are straightforward. For completeness, let us give
a detailed proof of the estimates in (9). Similar arguments will be used again below.
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To prove the first statement in (9), let ∆t > 0, k ∈ N, and α ∈ [0, 1], then∫
H

|x|2αν∆t
k (dx) =

∑
n∈N

λ2α
n 〈Q∆t

k en, en〉 = ∆t
∑
n∈N

λ2α
n

k∑
`=1

1

(1 + λn∆t)2`

=
∑
n∈N

λ2α
n

λn(2 + λn∆t)

(
1− 1

(1 + λn∆t)2k

)
<∞ ⇐⇒ α ∈ [0,

3

4
).

To prove the second statement, first assume α ∈ [0, 1
4
), then 1 − 2α > 1

2
, thus for all

∆t ∈ (0, 1), and all k ∈ N, ∫
H

|x|2αν∆t
k (dx) ≤

∑
n∈N

1

2λ1−2α
n

<∞.

Now assume that α ≥ 1
4
. By a monotonicity argument, it is sufficient to consider the case

α = 1
4
. Let M ∈ N be an auxiliary integer, and choose ∆t = 1

N2 , with N ∈ N, N ≥M .∫
H

|x|21
4
ν

1
N2

k (dx) =
∑
n∈N

1

πn(2 + π2 n2

N2 )

(
1− 1

(1 + π2 n2

N2 )2k

)
≥ 1

N

∑
n≥ N

M

1

π n
N

(2 + π2 n2

N2 )

(
1− 1

(1 + π2 n2

N2 )2k

)
→

N→∞

1

π

∫ ∞
π
M

1

z(2 + z2)
(1− 1

(1 + z2)2k
)dz,

by a Riemann sum argument. Then lim inf
N→∞

∫
H
|x|21

4

ν
1
N2

k (dx) ≥ 1
π

∫∞
0

1
z(2+z2)

(1− 1
(1+z2)2k )dz =

∞, taking M →∞. This concludes the proof of the equivalence statement in (9).

3. Main results

Introduce the following notation:
• ‖φ‖0 = sup

x∈H
|φ(x)|, for φ ∈ C0(H,R), bounded and continuous functions from H to R,

• ‖φ‖1 = ‖φ‖0 + sup
x,y∈H,x 6=y

|φ(y)−φ(x)|
|y−x| , for φ ∈ C0,1(H,R), bounded and Lipschitz contin-

uous functions from H to R,
• ‖φ‖2 = sup

x∈H
|φ(x)|+ sup

x∈H,h∈H,|h|≤1

|Dφ(x).h|+ sup
x∈H,h1,h2∈H,|h1|≤1,|h2|≤1

|D2φ(x).(h1, h2)|, for

φ ∈ C2(H,R), bounded functions from H to R of class C2, with bounded first and
second order derivatives.

3.1. Statements. The main result of this article is Theorem 1, which may be interpreted
as follows: there is no rate of convergence to 0, for the weak error, when considering the
supremum over all bounded and continuous functions.
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Theorem 1. Let T ∈ (0,∞). Then

(10)
lim sup
N→∞

sup
φ∈C0(H,R),‖φ‖0≤1

|
∫
φdµT −

∫
φdµ

(N)
T | > 0,

lim sup
∆t→0

sup
φ∈C0(H,R),‖φ‖0≤1

|
∫
φdµT −

∫
φdν∆t

b T
∆t
c| > 0.

The proof of Theorem 1 is postponed to Section 4.1.
To explain why the statement of Theorem 1 may be surprising, recall that strong conver-

gence results, with order in [0, 1
4
), are available: for every r ∈ [0, 1

4
), and every T ∈ (0,∞),

(11) lim sup
N→∞

λ2r
NE
∣∣X(T )−X(N)(T )

∣∣2 <∞ , lim sup
∆t→0

1

∆t2r
E
∣∣X(T )−X∆t

b T
∆t
c

∣∣2 <∞.
Thus, for any bounded and continuous function φ ∈ C0(H,R), the convergence below is valid:∫

φdµ
(N)
T →

N→∞

∫
φdµT ,

∫
φdν∆t

b T
∆t
c →∆t→0

∫
φdµT .

However, the supremum of the error over all bounded continuous functions, bounded by 1,
does not converge to 0.

As will become clear in the proof of Theorem 1, see the stronger statement (17) below,
the issue is not the regularity of the functions φ – smooth functions are used – but the lack
of control of the growth of the derivatives.

It is also worth mentioning that if one considers the set of bounded measurable test
functions, instead of continuous test functions, in (10), the result is straightforward, see
Remark 1. Indeed, this corresponds to looking at the total variation distance between µT ,
and µ(N)

T of ν∆t
b T

∆t
c, and due to the results of Section 2.3, these distributions are singular.

We also prove the following statement, Theorem 2, which may be interpreted as follows:
the best order of convergence, for the weak error, when considering the supremum over all
bounded and Lipschitz continuous functions, is equal to the strong order of convergence.

Theorem 2. Let T ∈ (0,∞). Then

(12)

lim sup
N→∞

λrN sup
φ∈C0,1(H,R),‖φ‖1≤1

|
∫
φdµT −

∫
φdµ

(N)
T | =

{
0, ∀ r ∈ [0, 1

4
)

∞, ∀ r ∈ (1
4
, 1

2
)

,

lim sup
∆t→0

1

∆tr
sup

φ∈C0,1(H,R),‖φ‖1≤1

|
∫
φdµT −

∫
φddν∆t

b T
∆t
c| =

{
0, ∀ r ∈ [0, 1

4
)

∞, ∀ r ∈ (1
4
, 1

2
)

.

The results in Theorem 2 in the regime r ∈ [0, 1
4
) are not new, they are straightforward

applications of the strong convergence estimates in (11). The case r ∈ (1
4
, 1

2
) is treated in

Section 4.2.
For comparison, we state an additional result, considering test functions of class C2,

bounded, and with bounded first and second order derivatives.
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Proposition 1. Let T ∈ (0,∞).

(13)

lim sup
N→∞

λrN sup
φ∈C2(H,R),‖φ‖2≤1

|
∫
φdµT −

∫
φdµ

(N)
T | =

{
0, ∀ r ∈ [0, 1

2
)

∞, ∀ r ∈ (1
2
, 1)

,

lim sup
∆t→0

1

∆tr
sup

φ∈C2(H,R),‖φ‖2≤1

|
∫
φdµT −

∫
φddν∆t

b T
∆t
c| =

{
0, ∀ r ∈ [0, 1

2
)

∞, ∀ r ∈ (1
2
, 1)

.

The result of Proposition 1, in the regime r ∈ [0, 1
2
), has been proved in a more general

setting, for semilinear versions of (5), see the references in the introduction. In the case of
multiplicative noise, the results require that φ is at least of class C3, however the order of
convergence remains equal to 1

2
for such test functions. The case r ∈ (1

2
, 1) is obtained using

the lower bounds from [11].
Note that Theorems 1 and 2 are also valid when looking at the regime T →∞, i.e. at the

level of the invariant distributions of the process and of its discretized versions.
Comparing Theorems 1, 2 and Proposition 1 reveals that in infinite dimension, regularity

of the test functions and control of derivatives plays an important role in the analysis of the
numerical error in the weak sense.

3.2. Comparison with the finite dimensional situation. The situation described by
Theorems 1 and 2, and Proposition 1, is specific to the infinite dimensional situation. Indeed,
when considering Euler-Maruyama discretization of hypoelliptic SDEs (in finite dimension),
the order of convergence (equal to 1) does not change when considering either bounded
continuous functions, or bounded and Lipschitz continuous functions, or functions of class
C2.

Indeed, consider a SDE in Rd (see Equation (3), with additive non-degenerate noise),

(14) dY (t) = f(Y (t))dt+ dBt, Y (0) = y0,

where
(
Bt

)
t≥0

is a d-dimensional standard Wiener process, and f : Rd → Rd is a smooth
bounded function, with bounded derivatives.

Consider its Euler-Maruyma discretization, with time step size ∆t > 0: for k ∈ N0,

(15) Y ∆t
k+1 = Y ∆t

k + ∆tf(Y ∆t
k ) +B((k + 1)∆t)−B(k∆t) , Y ∆t

0 = y0.

The strong order of convergence in this case is equal to 1 (this is due to the fact that the
noise is additive, it would be equal to 1

2
in general):

lim sup
∆t→0

1

∆t2
E|Y (T )− Y ∆t

b T
∆t
c|

2 ∈ (0,∞).

Then, it is a remarkable fact that when considering bounded measurable test functions,
one still obtains an error which is of order 1, see [3], [4],

lim sup
∆t→0

1

∆t
sup

φ∈C0(H,R),‖φ‖0≤1

|Eφ(Y (T ))− Eφ(Y ∆t
b T

∆t
c)| ∈ (0,∞),

for every T ∈ (0,∞). Equivalently, there exists C(T ) ∈ (0,∞), such that for every bounded
continuous function φ,

(16) |Eφ(Y (T ))− Eφ(Y ∆t
b T

∆t
c)| ≤ C(T )‖φ‖0∆t.
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Theorem 1 indicates that in infinite dimension, the generalization of (16) is not valid, both
for the standard and widely used time and space discretization schemes we have considered.

4. Proofs

4.1. Bounded continuous test functions: proof of Theorem 1. In fact, a slightly
stronger result than Theorem 1 is proved below:

(17) lim sup
N→∞

sup
φ∈Φ
|
∫
φdµT −

∫
φdµ

(N)
T | > 0 , lim sup

∆t→0
sup
φ∈Φ
|
∫
φdµT −

∫
φdν∆t

b T
∆t
c| > 0,

where Φ ⊂ C∞(H,R) is such that ‖φ‖0 ≤ 1 for all φ ∈ Φ. In the examples given below,
the functions φ are smooth and have bounded derivatives of any order, however only ‖φ‖0

is uniformly bounded over Φ – precisely, sup {‖φ‖1, φ ∈ Φ} =∞.
We provide two different examples of sets Φ. The first family is constructed using the

results of Section 2.3, concerning regularity properties of the discretized versions of the SPDE,
see Remark 1. The second family contains functions with arbitrarily fast oscillations, and is
treated using some Riemann sums arguments. This proof is instructive, similar arguments
appear for proving Theorem 2.

4.1.1. First proof. Define Φ1 =
{
φ1
ε,M , ε ∈ (0, 1),M ∈ N

}
, where

(18) φ1
ε,M(x) = exp

(
−ε|PMx|21

4

)
, ∀ x ∈ H.

Then φ2
ε,M ∈ C∞(H,R), and ‖φ1

ε,M‖0 = 1. However, sup {‖φ‖1, φ ∈ Φ1} =∞.
Let

δ1
1(N) = sup

φ∈Φ1

|
∫
φdµT −

∫
φdµ

(N)
T |,

δ1
2(∆t) = sup

φ∈Φ1

|
∫
φdµT −

∫
φdν∆t

b T
∆t
c|.

For every N ∈ N, ε ∈ (0, 1), letting M →∞ gives

δ1
1(N) ≥

∣∣E[e
−ε|PMX(T )|21

4 ]− E[e
−ε|PMX(N)(T )|21

4 ]
∣∣ ≥ ∣∣0− E[e

−ε|X(N)(T )|21
4 ]|,

where almost surely |X(N)(T )|21
4

<∞, thanks to (8). On the contrary, using (7), E|X(T )|21
4

=

∞, and in fact almost surely |X(T )|21
4

=∞. More precisely,

E[e
−ε|PMX(T )|21

4 ] =
M∏
m=1

E[e−ελ
1
2
m|〈X(T ),em〉|2 ]

=
M∏
m=1

(
1 +

ε
√
λm
λm

(1− e−2λmT )
)− 1

2

= exp
(
−1

2

M∑
m=1

log
(
1 +

ε
√
λm
λm

(1− e−2λmT )
))

→
M→∞

0.
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Similarly,

δ1
2(∆t) ≥ E[e

−ε|X∆t

b T
∆t

c
|21
4 ],

with |X∆t
b T

∆t
c|

2
1
4

<∞ almost surely, thanks to (9).
Finally, letting ε→ 0, for all N ∈ N and ∆t ∈ (0, 1)

δ1
1(N) ≥ 1 , δ1

2(∆t) ≥ 1.

Thus

lim sup
N→∞

sup
φ∈Φ1

|
∫
φdµT −

∫
φdµ

(N)
T | = lim sup

N→∞
δ1

1(N) ≥ 1,

lim sup
∆t→0

sup
φ∈Φ1

|
∫
φdµT −

∫
φdν∆t

b T
∆t
c| = lim sup

∆t→0
δ1

2(∆t) ≥ 1,

hence (10). This concludes the first proof of Theorem 1.

Remark 1. Consider the bounded measurable function φ1 : H → R, given by

φ1(x) = 1|x| 1
4
<∞.

Then, thanks to the regularity results (7), (8) and (9) for all N ∈ N and ∆t ∈ (0, 1),∫
φ1dµT = 0 ,

∫
φ1dµ

(N)
T =

∫
φ1dν∆t

b T
∆t
c = 1.

This means that, µT and µ(N)
T , resp. µT and ν∆t

b T
∆t
c, are singular probability distributions on

the infinite dimensional space H, and their distance in total variation is equal to 1.
When ε → 0 and M → ∞, the continuous functions φ1

ε,M converge pointwise to the
measurable function φ

1
, hence the idea of the proof.

4.1.2. Second proof. Define Φ2 = {φ2
M , M ∈ N}, where

φ2
M(x) = exp

(
i
√
M〈θM , x〉

)
, θM =

M∑
m=M

2

em, ∀ x ∈ H.

In this example, it is convenient to consider complex-valued functions, however it is straight-
forward to get rid of this issue.

Like above, Φ2 ⊂ C∞(H,C), ‖φ‖0 = 1 for all φ ∈ Φ2, and sup {‖φ‖1, φ ∈ Φ2} =∞. Let

δ2
1(N) = sup

φ∈Φ2

|
∫
φdµT −

∫
φdµ

(N)
T | , δ2

2(∆t) = sup
φ∈Φ2

|
∫
φdµT −

∫
φdν∆t

b T
∆t
c|.

11



First, focus on δ2
1(N). Observe that for M ≥ 2N + 1, 〈θM , X(N)(T )〉 = 0 almost surely,

hence
∫
φ2
Mdµ

(N)
T = 1. On the contrary,∫
φ2
MdµT = E[ei

√
M〈θM ,X(T )〉] = exp

(
−M

M∑
m=M

2

1

2λm
(1− e−2λmT )

)

= exp
(
− 1

M

M∑
m=M

2

1

2π2
(
m
M

)2 + o(1)
)

→
M→∞

exp
(
−
∫ 1

1
2

1

2π2z2
dz
)
,

using a Riemann sum argument, and M
∑M

m=M
2

1
2λm

e−2λmT = O
(
e
−2λM

2
T ) →

M→∞
0.

As a consequence, for all N ∈ N, and letting M →∞ (with M ≥ 2N + 1), one obtains

δ2
1(N) ≥ 1− exp

(
−
∫ 1

1
2

1

2π2z2
dz
)
> 0.

Second, focus on δ2
2(∆t). In order to use a Riemann sum argument, it is convenient to

choose ∆t = T
M2 , and to write

δ2
2

( T
M2

)
≥ |
∫
φ2
MdµT −

∫
φ2
Mdν

∆t
M2|,

with
∫
φ2
MdµT →

M→∞
exp
(
−
∫ 1

1
2

1
2π2z2dz

)
, as above, and∫

φ2
Mdν

∆t
M2 = E[exp(i

√
M〈θM , X∆t

M2〉
)

= exp
(
−M

M∑
m=M

2

1

λm(2 + λm∆t)

(
1− 1

(1 + λm∆t)2M2

)

= exp
(
− 1

M

M∑
m=M

2

1

π2(m
M

)2(2 + π2(m
M

)2)
+ o(1)

)
→

M→∞
exp
(
−
∫ 1

1
2

1

π2z2(2 + π2z2)
dz
)
,

using a Riemann sum argument, and M
∑M

m=M
2

1

λm(2+ λm
M2 )

1

(1+ λm
M2 )2M2 = O

(
1

(1+ 1
2

)2M2

)
→

M→∞
0.

As a consequence, one obtains

lim sup
M→∞

δ2
2(

T

M2
) ≥ exp

(
−
∫ 1

1
2

1

π2z2(2 + π2z2)
dz
)
− exp

(
−
∫ 1

1
2

1

2π2z2
dz
)
> 0.

Finally,
lim sup
N→∞

δ2
1(N) > 0 , lim sup

∆t→0
δ2

2(∆t) > 0,

hence (10). This concludes the second proof of Theorem 1.
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4.2. Bounded Lipschitz test functions: proof of Theorem 2. As already explained,
it is sufficient to focus on the case r ∈ (1

4
, 1

2
).

The proof is based on introducing a family Φ3 =
{
φ3
α,M , α ∈ (1

4
, 1

2
], M ∈ N

}
⊂ C0,1(H,R),

of bounded and Lipschitz continuous test functions, such that ‖φ‖1 ≤ 1 for all φ ∈ Φ3.
Precisely, for α ∈ (1

4
, 1

2
] and N ∈ N, set

φ3
α,M(x) =

exp
(
−
∑∞

m=M
|〈x,em〉|
λαm

)
1 +

(∑∞
m=1

1
λ2α
m

) 1
2

.

In contrast with the families Φ1 and Φ2 introduced above, note that functions in the set Φ3

are not smooth. Introduce the notation Lα = 1 +
(∑∞

m=1
1
λ2α
m

) 1
2 ∈ (0,∞).

Let also

δ3
1(N) = sup

φ∈Φ3

|
∫
φdµT −

∫
φdµ

(N)
T | , δ3

2(∆t) = sup
φ∈Φ3

|
∫
φdµT −

∫
φdν∆t

b T
∆t
c|.

Let us introduce the following auxiliary function f : [0, 1]→ R:

f(θ) = − log
(
E[e−θ|Z|]

)
,

where Z is a standard real-valued Gaussian random variable.
It is straigthforward to check that f is of class C∞ on [0, 1], that it is bounded, and that

all its derivatives are bounded. Moreover, f(0) = 0, and f ′(0) =
√

2
π
: it is crucial in the

analysis below that f ′(0) 6= 0.

4.2.1. Spatial discretization. First, focus on δ3
1(N). For all N ∈ N, and α ∈ (1

4
, 1

2
], by the

indepencence property of the components of the process X,

E[φ3
α,1(X(T ))] = L−1

α exp
(
−
∞∑
n=1

f
( σn(T )√

2λnλαn

))
E[φ3

α,1(X(N)(T ))] = L−1
α exp

(
−

N∑
n=1

f
( σn(T )√

2λnλαn

))
,

with σn(T )2 = 1− e−2λnT . Thus

E[φ3
α,1(X(T ))]− E[φ3

α,1(X(N)(T ))] = E[φ3
α,1(X(T ))]

(
1− exp

( ∞∑
n=N+1

f
( σn(T )
√

2λ
α+ 1

2
n

)))
= E[φ3

α,1(X(T ))]
(

1− exp
( ∞∑
n=N+1

(
f ′(0)

σn(T )
√

2λ
α+ 1

2
n

+ εn(T )
)))

where εn(T ) = f
( σn(T )
√

2λ
α+ 1

2
n

)
− f ′(0) σn(T )

√
2λ
α+ 1

2
n

= O
( σn(T )2

2λ2α+1
n

)
.
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On the one hand,
∑∞

n=N+1 εn(T ) →
N→∞

0. On the other hand, when N →∞,

∞∑
n=N+1

σn(T )
√

2λ
α+ 1

2
n

=
∞∑

n=N+1

1√
2n2α+1π2α+1

+ O(e−λN+1T )

∼
N→∞

Cα
N2α

,

with Cα =
∫∞

1
1√

2π2α+1z2α+1dz ∈ (0,∞), by a Riemann sum argument.
Finally,

E[φ3
α,M(X(T ))]− E[φ3

α,M(X(N)(T ))] ∼
N→∞

f ′(0)E[φ3
α,M(X(T ))]Cα

λαN
.

We are now in position to conclude. Let r ∈ (1
4
, 1

2
). Then, choosing α ∈ (1

4
, r),

lim sup
N→∞

λrNδ
3
1(N) ≥ lim sup

N→∞
λrN
∣∣E[φ3

α,1(X(T ))]− E[φ3
α,1(X(N)(T ))]

∣∣ =∞.

This concludes the proof of Theorem 2 for spatial discretization.

4.2.2. Temporal discretization. Now, focus on δ3
2(∆t). It is convenient to choose ∆t = T

M2

and to consider functions φ3
α,M . We claim that, for any r ∈ (1

4
, 1

2
), choosing α ∈ (1

4
, r), then

(19) lim sup
M→∞

M2r
∣∣E[φ3

α,M(X(T ))]− E[φ3
α,M(X∆t

M2)]
∣∣ =∞.

On the one hand, the computations from the previous section prove that

E[φ3
α,M(X(T ))] = L−1

α exp
(
−

∞∑
m=M+1

f
( σm(T )
√

2λ
α+ 1

2
m

))
= L−1

α

(
1− f ′(0)Cα

M2α
+ O(

1

M4α
)
)
.

On the other hand, using similar arguments (in particular, a Riemann sum appears),

E[φ3
α,M(X∆t

M2)] = L−1
α exp

(
−

∞∑
m=M+1

f
( σm(T,M)

λ
α+ 1

2
m (2 + λm

M2 )
1
2

))
= L−1

α

(
1− f ′(0)Cα

M2α
+ O(

1

M4α
)
)
,

with σm(T,M)2 = 1− 1

(1+ λm
M2 )2M2 , and

Cα =

∫ ∞
1

1√
2 + π2z2π2α+1z2α+1

dz < Cα.

Thus

E[φ3
α,M(X(T ))]− E[φ3

α,M(X∆t
M2)] ∼

M→∞

f ′(0)(Cα − Cα)

LαM2α
.

This expression implies the claim (19) holds true, hence

lim sup
∆t→0

1

∆tr
δ3

2(∆t) =∞.

This concludes the proof of Theorem 2 for temporal discretization.
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