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GEODESICS TOWARD CORNERS IN FIRST PASSAGE PERCOLATION
KENNETH S. ALEXANDER AND QUENTIN BERGER

ABSTRACT. For stationary first passage percolation in two dimensions, the existence and
uniqueness of semi-infinite geodesics directed in particular directions or sectors has been
considered by Damron and Hanson [4], Ahlberg and Hoffman [1], and others. However the
main results do not cover geodesics in the direction of corners of the limit shape B, where
two facets meet. We construct an example with the following properties: (i) the limiting
shape is an octagon, (ii) semi-infinite geodesics exist only in the four axis directions, and
(iii) in each axis direction there are multiple such geodesics. Consequently, the set of points
of OB which are in the direction of some geodesic does not have all of B as its convex hull.

1. INTRODUCTION

We consider stationary first passage percolation (FPP) on a lattice L with site set Z2,
and with a set of bonds which we denote £. We are mainly interested in the usual set of
nearest-neighbor bonds €& = {(z,y); ||z — y|[1 = 1}, though in Section 2 we consider £ with
added diagonal bonds to construct a simpler example. Each bond e of £ is assigned a random
passage time 7. > 0, and the configuration 7 is assumed stationary under lattice translations;
the measure on the space ) = [0,00)¢ of configurations 7 is denoted P, with corresponding
expectation E. For sites x,y of L, a path v from x to y in L is a sequence x = xq,..., 2, =y
with z;, x;,1 adjacent in L for all 7; we may equivalently view v as a sequence of edges. The
passage time T(7) of v is T'(y) = 3_ . Te. For sites x,y we define

T(x,y) = inf{T(vy) : v is a path from x to y}.

A geodesic from z to y is a path which achieves this infimum. A semi-infinite geodesic T’
from a site x is a path with (necessarily distinct) sites x = xg, x1, ... for which every finite
segment is a geodesic, and the direction of I, denoted Dir(I"), is the set of limit points of
{zn/|xn| : n > 1}. It is of interest to understand semi-infinite geodesics, and in particular
the set of directions in which they exist.

It is standard to make the following assumptions, from [6].

Assumption Al.

i) P is ergodic with respect to lattice translation;
g P
(i) E(72%¢) < oo for any e € &, for some € > 0.

Under A1, Boivin [2] showed that for each x € Z? the limit

p(z) = lim (0, n)

n—00 n
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2 K. S. ALEXANDER AND Q. BERGER

exists. This u extends to Q? by restricting to n for which nz € Z?, and then to R? by
continuity; the resulting function is a norm. Its unit ball is a nonempty convex symmetric
set which we denote B. The wet region at time t is B(t) = {z + [—3, 3] : T(0,z) < ¢}. The
shape theorem of Boivin [2] says that with probability one, given e > 0, for all sufficiently
large t we have

(l—E)BC@C(l—FG)B,

so B is called the limit shape. Haggstrom and Meester [5] showed that every compact
convex B arises as the limit shape for some stationary FPP process.
We add the following assumptions, also from [6].

Assumption A2.

(iii) P has all the symmetries of the lattice L;

(iv) if «,~y are finite paths, with the same endpoints, differing in at least one edge then
T(o) #T(7) a.s;

(v) P has upward finite energy: for any bond e and any ¢ such that P(7, > t) > 0, we
have

P(re >t | {rs: f#e})>0;

(vi) the limit shape B is bounded (equivalently, yu is strictly positive except at the origin.)

Thanks to (iv), the union of all geodesics from a fixed site  to sites y € Z? is a tree, and
we denote it 7, = T,(7). By [6], T, contains at least 4 semi-infinite geodesics, and Brito and
Hoffman [3] give an example in which there are only 4 geodesics, and the direction for each
corresponds to an entire closed quadrant of the lattice.

To describe the directions in which semi-infinite geodesics may exist, we introduce some
terminology. A facet of B is a closed line segment F' contained in 9B; the unique linear
functional equal to 1 on F' is denoted pr. For each angle from 0 there corresponds a unique
point of OB in the ray from 0 at that angle; a facet thus corresponds to a sector of angles,
or of unit vectors. We say a point v € 0B is of type i (i = 0,1,2) if v is an endpoint of i
facets. We may divide points of 0B (or equivalently, all angles) into 6 classes:

(1) exposed points of differentiability, that is, exposed points of OB where 0B is differen-
tiable, necessarily type 0;

(2) facet endpoints of differentiability, or equivalently, type-1 points where 0B is differ-
entiable;

(3) facet interior points, necessarily type-0;

(4) half rounded corners, that is, type-1 points where 0B is not differentiable;

(5) fully rounded corners, that is, type-0 points where 0B is not differentiable;

(6) true corners, meaning type-2 points.

Associated to any semi-infinite geodesic I' = {xg,z1,...} is its Busemann function Br :
7Z* x 7* — R given by

Br(z,y) = lim (T'(z, zn) = T(y, zp))-

n—o0
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From [1, Theorems 2.5 and 2.6], we know the following, under Assumptions Al and A2.
There exists a linear functional pr on R? with the property that By is linear to pr, that is,

. 1
lim —
|z| =00 ‘.’E’

1Br(0.2) — pr(a)| = 0.

The set {pr = 1} is always a supporting line of B, so its intersection with 9B is either an
exposed point v or a facet F', and then Dir(T") is equal to {v} or contained in F' (modulo
normalizing to unit vectors.) Thus Dir(I") determines pr, unless Dir(I") consists of only a
corner of some type. Furthermore, there is a closed set C, of linear functionals such that the
set of functionals pr which appear for some I' is almost surely equal to C..

In [1], Ahlberg and Hoffman define a random coalescing geodesic (or RC' geodesic), which
is, in loose terms, a mapping which selects measurably for each 7 a semi-infinite geodesic
Iy = I'o(7) in To(7), in such a way that when the mapping is applied via translation to
obtain I', € T, 'y and I', coalesce a.s. for all x. The following statements are valid under
Assumptions A1l and A2: they are part of, or immediate consequences of, results of Ahlberg
and Hoffman [1, Theorems 12.1 and 12.2], strengthening earlier results from [6] and [4].

(I) For each exposed point of differentiability v € 0B, there is a.s. a unique RC geodesic
I’ with Dir(T") = {v/|v|}.

(IT) For each half rounded corner v € 0B, there is a.s. at least one RC geodesic I' with
Dir(T") = {v/|v|}; for one such I the linear functional pr corresponds to a limit of
supporting lines taken from the non-facet side of v. This uses the fact that C, is
closed.

(III) For each fully rounded corner v € 9B, there are a.s. at least two RC geodesics T’
with Dir(I') = {v/|v|}, with distinct linear functionals pr corresponding to limits of
supporting lines from each side of v.

(IV) Given a facet F' with corresponding sector S of unit vectors, there is a.s. a unique
RC geodesic T' with Dir(I') € S and pr = pp. If F has one facet endpoint of
differentiability, then Dir(I") contains it; if it has two then Dir(I') = Sp. For any
other RC geodesic I' with Dir(I") N Sy # (), this intersection is a single endpoint of
Sr which must be a corner.

But little has been proved about geodesics in the directions of true corners. One may ask,
must every true-corner direction be in Dir(I") for some geodesic I'? Equivalently, must the
convex hull of

Veeo := {v € 9B : v/|v| € Dir(I') for some semi-infinite geodesic I'}
be all of B? Further, we can consider the nonuniqueness set
N :={u e S": there exist multiple semi-infinite geodesics I' with Dir(T') = {u}}.

For each fully rounded corner v we have P(v € N) = 1. For each non-corner v € 9B we
have P(v € N') = 0, but in the case of B with no corners this does not mean A is empty. If
every point of 0B is an exposed point of differentiability then there is at least one geodesic
in every direction; the union of all semi-infinite geodesics from 0 is therefore a tree with
infinitely many branches, and each branching produces a point of NV, so N is infinite a.s. In
the example of Brito and Hoffman [3], the limit shape is a diamond with true corners on the
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axes, and for each of these corners v there is a.s. no geodesic I' with Dir(T") = {v/|v|}, so
P(v € N) = 0. This suggests the question, must P(v € N') = 0 for true corners?

Our primary result is an example of FPP process, which we call fast diagonals FPP, in
which some true corners have no geodesic, and others have multiple geodesics a.s. This means
in particular that the convex hull of Ve, is not all of B.

Theorem 1. The fast diagonals FPP process (defined in Section 3.2) satisfies Assump-
tions A1-A2, and has the following properties:

(i) The limit shape is an octagon, with corners on the azes and main diagonals.
(ii) Ewvery semi-infinite geodesic I' is directed in an azis direction (that is, Dir(T") consists
of a single axis direction.)
(iii) For each axis direction there exist at least two random coalescing geodesics directed
wn that direction.

We first introduce a simpler example in Section 2, which does not satisfy Assumption A2
(in particular (iv) and (v)), but encapsulates the key ideas of our construction. The re-
maining main part of the paper is devoted to modifying this example in order to satisfy
Assumption A2, which brings many complications, see Section 3.

2. SIMPLE EXAMPLE: DIAGONAL HIGHWAYS ONLY

For this section we consider the lattice L with site set Z2, with the set of bonds & =
{(z,y); ||* —yl|loo = 1}, which adds diagonal bonds to the usual square lattice. We frequently
identify bonds and path steps by map directions: either SW/NE or SE/NW for diagonal
bonds, and N, NE, etc. for steps. By axis directions we mean horizontal and vertical, or N,
E, W, S, depending on the context. For a preceding b in a path -, we write v[a, b] for the
segment of v from a to b.

We assign all horizontal and vertical bonds passage time 1. Let % <6 <1land (20)7! <
n < 1. For diagonal bonds, for k > 1, a highway of class k consists of 2¥ — 1 consecutive
bonds, all oriented SW/NE or all SE/NW. The collection of all highways of all classes is
denoted H, and a highway configuration, denoted w, is an element of {0,1}%. When a
coordinate is 1 in w we say the corresponding highway is present in w. To obtain a random
highway configuration, for each of the two orientations we let southernmost points of class-k
highways occur at each x € Z? independently with probability (6/2), for each k > 1. Every
diagonal bond is a highway of class 0. For each diagonal bond e we have

ok 2k_1
1 P(e is in a present class-k highway) =1— 1 — — <@k k>1
ok

so with probability one, e is in only finitely many present highways. Thus for diagonal e we
can define k(e) = max{k : e is in a present class-k highway} if this set is nonempty, and
k(e) = 0 otherwise, and then define its passage time

VRO i ke)
73 if k(e)

v

I;

(2) 0



GEODESICS TOWARD CORNERS IN FIRST PASSAGE PERCOLATION 5

For all horizontal and vertical bonds we define 7. = 1. Note that the value 3 ensures non-
highway diagonal bonds never appear in geodesics.
Let A;, As denote the positive horizontal and vertical axes, respectively, each including 0.

Let
W
=k

so that P(e is in some present highway of class > k) < ry. We fix C' and take ky large enough
SO

(3) n* <3y

the last being possible by our choice of 7.

4C
Ty <5, 01 2k (=t — M) > o for all k > ko,

Proposition 1. The stationary first passage percolation process defined as above has the
following properties:

(i) The limit shape is an octagon, with corners on the azes and main diagonals.
(ii) The only infinite geodesics are vertical and horizontal lines.

Proof. Tt is readily shown (see Section 3.4, for the modified example) that the asymptotic
speed is 1 in each axis and diagonal direction, so the radius of B is 1 in those directions,
and that B has a facet in each of the 8 sectors of angle /4 between an axis and a diagonal.
This proves item (i) and we focus on item (ii).

Step 1. Construction of a “success” event. For x in the first quadrant W, let A(z) denote the

distance in the SW direction from z to A; U Ay. Let G, = {reW:Ax) = (251 +1)v2},
which is a translate of A; U Ay. For j > k define three random sets of highways:

Gr,; = {all present SW/NE highways of class j intersecting both A; U A and @k},
Gr.; = {all present SW/NE highways of class j crossing A; U Ay but not Gy},

Gy ; = {all present SW/NE highways of class j crossing G, but not A; U A,}.

Note that these three sets are independent of each other, and intersections with each along
any given line have density at most /. Intersections with Gy, have density (over sites)

k

(4) P(0 € Gea) > 1 —exp(—04/2) >

Here 0 € Gy, is a shorthand notation for 0 being in a highway in Gy ;. Let
ﬁi,k = the highway intersecting A; closest to 0 among all in U;>,G;, @ =1,2,

and let U), = ()A( 1k, 0) and Vi = (0, X, k) denote the corresponding intersection points in Ay
and As. Let Qk denote the open reglon bounded by A; U A, Gk, H1 &, and H2 1k, see Figure 1.
We define the event Fk 1, &N Mk (success at stage k) where
(i) Ik max(Xy , Xox) < C/ry,,  with C from (3);
(ii) M : every SW/NE highway intersecting € is in classes 1,...,k — 1.
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C/rk

/U, Ay

FIGURE 1. Representatlon of the region Q;.c, which is enclosed by Al,AQ,Gk and
H1 > H2 k- Here, the event Ik is realized.

Note that a highway intersecting Qk cannot intersect both A; U Ay and @k, by definition

of ﬁ@k.
We claim there exists A > 0 such that
(5) P(F},) > A for all k > kq.

Let us first prove that P(ﬁ) is bounded away from 0. Similarly to (4), we have that
P(0 € Ujsk Gr,j) > ri/3, so for i = 1,2, by independence,

(6) P(X; > C/r) <exp(—C/3) =1 <1, forall k> k.

By independence, we get that P(Ik) (1-¢)~

We next prove that P(Mk | 1) is bounded away from 0 for k > ko. In fact, by the
above-mentioned independence of the three sets of highways, by (1) and (3) we have

P(]\/f\k | fk) > min P(]\/Z;,C | )?17;? = 531,)?2,1@ =125)> min (1 —r)" % > 720,
z1,22<C/1g, z1,22<C/1g,
This completes the proof of (5). A slight modification of this proof shows that for fixed ¢, for
k sufficiently large we have P(Fj, | o(F1, ..., Fy)) > A/2, and it follows that P(Fj i.0.) = 1.

Step 2. Properties of geodesics in case of a success. We now show that when Fk occurs,
for every x §Z ATUA U Qk in the first quadrant, every geodesic FOx from 0 to z follows A;
from 0 to Uk, or Ay from 0 to Vk. Since x is in the first quadrant, it is easily seen that any
geodesic from 0 to x has only N, NE and E steps. Let p, = (r, s) be the first site of f()x not
in A; UAyU Qk Besides the geodesic an: [0, p], we define an alternate path v, from 0 to p,
as follows; for this we assume p, is in the first quadrant on or below the main diagonal, and
make the definition symmetric for p, elsewhere.

(i) If p, € ]T.ll,k we let 1, follow A; east from 0 to (A]k, then NE from ﬁk to p, on ]/-\Il,k.
(ii) If p, is in the horizontal part of Gy we let U} be the intersection of Hij with the

vertical line through p,, and let 1, be the path east from 0 to ﬁk, then NE to ﬁ,’f,
then north to p,.

(iii) Otherwise p, is adjacent to A; and the final step of Ton [0, p.] is from some (7,2’ € A
to P, N or NE. We let ¢, go east from 0 to [7,;’, then take one step (N or NE) to p,.
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In case (i ) the path v, has no N steps, and it is easily seen that any path in A; U Ay U §2
from 0 to p, containing some N steps will be strictly slower than ., and hence is not a
geodesic. Thus every geodesic from 0 to p, has s NE and r — s E steps. Since success
occurs at stage k, any « diagonal bonds in f(]x [0, ﬁm]\f[ 1.k have passage time strictly more than
V2(1 41 ), making Lo, [0, p,] strictly slower than t,, a contradiction. It follows that we
must have FOx [0, pz] = 15, which means FOI indeed follows A, from 0 to Uj.

In case (ii), we have s =281+ 1and 0 <7 —s5 < XLk. Let g be the number of NE steps
in fOI[O, Dz), so it must have s — ¢ N and r — ¢ E steps. Each of the diagonal bonds has
passage time at least \/5(1 +nF71), so its passage time satisfies

T(Too[0,P2]) = V2(1 47" N+ (s—q)+(r—q) = V2(1+5" g +2(s —q) = V2(L+5")s.
By contrast, the northward segment of 1, has length X 1k — (r—1s), s0
T(ve) < 2X14 — (r = 5) + V2(1+7%)(r = X1z)
< 2X1 4+ V2(1+1)s

< ﬁ(uﬂw%.
Hence by (3),
T(Cosf0 5:]) = T(a) = V20" = )5 = % = 2+ DVR( T =) - % >0,

But this means fOI is not a geodesic, a contradiction. Thus we cannot have p, in the
horizontal part of ék — and similarly not in the vertical part.

In case (iii), since the unique geodesic between any two points of A; is a segment of Ay,
it is straightforward that we must have f()x [0, px] = 1,. Again, f()x follows A; from 0 to ﬁk

Step 3. Conclusion. 1If T is any semi-infinite geodesic from 0 which has infinitely many
points in the (closed) first quadrant then for each of the infinitely many k for which ﬁk
occurs, the initial segment of T must follow an axis from the origin to Uk or Vk But since
X 1k X2 r — 00, this means T itself must be one of these axes. It follows that all horizontal
and vertical l1nes are semi-infinite geodesics, and no other paths. 0

3. MODIFICATION FOR SQUARE LATTICE, FINITE ENERGY, AND UNIQUE GEODESICS

The preceding simpler example does not satisfy A2 (iv) or (v), and it does not allow
the use of results known only for the usual square lattice. To create an example on the
square lattice, the main changes we have to make are as follows: replace diagonal highways
with zigzag highways (alternating horizontal and vertical steps) as done in [5]; introduce
horizontal /vertical highways; make highways of class k£ not have a fixed length; add auxiliary
randomization. This adds significant complications. Primarily, since the graph is planar,
there is sharing of bonds between, for example, horizontal and zigzag highways where they
cross. Since the passage times are different in the two types of highways, each shared bond
slows or speeds the total passage time along at least one of the highways, compared to what
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it would be without the other highway. We must ensure that the number of such crossings
is not a primary determinant of which paths are geodesics.

Once we have properly define a passage time configuration (the fast diagonals FPP), our
strategy will be similar to that of the simple example of Section 2: we will define a “success”
event, and show that when a success occurs geodesics approximately follow an axis for a long
distance, at least until they reach a very fast zigzag highway.

3.1. Definition of the fast diagonals FPP process. We will need auxiliary random-
ization, so for each bond e we let &, &, be uniform in [0, 1], independent of each other and
from bond to bond. We select parameters n,ﬁ,Q,g,u as follows: fix ¢y € (0.4,0.5). Then
co/(1 — cg) > 2/3 and 2-%/(—) < 7/8 so we can choose 0 < 4§ < ¢z < 1 such that
cocy/ (1 — co(cz — 40)) > 2/3 and 27/ (1=co(5-49) < 7/8. Then let

(7) g =27, =2, goa/l-eoles9) <y < in (2 92/3) < 2—19
and
(8) Il < 1 < min(gce’ n, (9n>1709(c§f45)974c95>.

Note that since cycy < 0.5, the third condition in (7) guarantees n > 6; since ¢y < 1/2 this
also means

(9) 206 > 20% > 1,

guaranteeing that (3) holds. Further, the first inequality in that third condition is equivalent
to 0 < (On)t—ce(cg=49) g4 Together these show i can be chosen to satisfy (8).

Highways and types of bonds. A zigzag highway is a set of (adjacent) bonds in any finite
path which either (i) alternates between N and E steps, starting with either, called a SW/NE
highway, or (ii) alternates between N and W steps, starting with either, called a SE/NW
highway. If the first step in the path is N, we say the highway is V-start; if the first step
is W or E we say it is H-start. A SW/NE highway is called upper if it is above the main
diagonal, and lower if it is below, and analogously for SE/NW highways. Note a SW/NE
highway does not have a direction toward SW or NE, it is only a set of bonds, and similarly
for SE/NW. The length |H| of a zigzag highway H is the number of bonds it contains, and
class(H) denotes its class. To each zigzag highway H we associate a random variable Wy
uniformly distributed in [0, 1] and independent from highway to highway.

For each k > 1 we construct a configuration w®) of zigzag highways of class k: these
highways can have any length 1,...,2¥3. Specifically, for each length j < 2¥*2 and each
x € Z*, a SW-most endpoint of a present length-j H-start SW/NE highway of class k occurs
at x with probability #*/22%+4 independently over sites x, with the same for V-start, and
similarly for SE/NW highways. Formally we can view w®) as an element of {0, 1}, where
H,, is the set of all possible class-k zigzag highways; when a coordinate is 1 in w®) we say the
corresponding highway is present in w®. We write w = (w™,w®,...) the configuration of
zigzag highways of all classes.

A horizontal highway of length k is a collection of k£ consecutive horizontal bonds, and
similarly for a wvertical highway. Highways of both these types are called HV highways. For
each k > 1 we construct a configuration ©*) of HV highways of class k: these highways can
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have any length 1,...,2%, and for each length j < 2% and each x € Z2, a leftmost endpoint
of a present length-j horizontal highway of class k occurs at x with probability 6%/22%,
independently over sites , and similarly for vertical highways. We write @ = (@™, &®,...)
for the configuration of HV highways of all classes.

We now combine the classes of zigzag highways and “thin” them into a single configuration
by deletions. We do this in two stages, first removing those which are too close to certain
other zigzag highways, then those which are crossed by a sufficiently long HV highway.

Specifically, for stage-1 deletions we define a linear ordering (a ranking) of the SW/NE
highways in w, as follows. Highway H’ ranks above highway H if one of the following holds:
(i) class(H') > class(H); (ii) class(H') = class(H) and |H'| > |H]; (iii) class(H') = class(H),
|H'| = |H|, and Wy > Wg. Let di(A, B) denote the ¢; distance between the sets A and
B of sites or bonds. We then delete any SW/NE highway H from any w®) if there exists
another SW/NE highway H’, with di(H, H") < 22 which ranks higher than H. We then
do the same for SE/NW highways. The configuration of highways that remain in some w®
after stage-1 deletions is denoted w“®™Mi™! Here the condition dy(H, H') < 22 is chosen to
follow from d;(H, H') < 3/(1 —n) — 1; we have chosen 1 < 7/8 in (7) so the value 22 works.

For stage-2 deletions, we let ¢ = §/(cz—0), and for each m > 1 we delete from w*& ™™ each
zigzag highway of class m which shares a bond with an HV highway of class (1 4 ¢)m/cz or
more. The configuration of highways that remain in some w®) after both stage-1 and stage-2
deletions is denoted w?&™in2  For a given class-m zigzag highway H in w”&inl for each
bond e of H there are at most 2¢ possible lengths and 2¢ possible endpoint locations for a
class-¢ HV highway containing e, so the probability H is deleted in stage 2 is at most

(10) amts N 2% 8 2=¢m
22¢ 1 5 )
£>(14¢)m/c;

Following stage-2 deletions we make one further modification, which we call stage-3 trim-
ming. Suppose H, H' are zigzag highways of opposite orientation (SW/NE vs SE/NW) in
w4sthin2 “and x is an endpoint of H. If d(x, H') < 1, then we delete from H the 4 final
bonds of H, ending at z. The resulting configuration is denoted w?&™®  This ensures that
for any SW/NE zigzag highway H and SE/NW zigzag highway H’', either H and H’ fully
cross (meaning they intersect, and there are at least 2 bonds of each highway on either side
of the intersection bond) or they satisfy dy(H, H') > 2.

This construction create several types of bond, which will have different definitions for
their passage times. A bond e which is in no highway in w”&"" but which has at least one
endpoint in some highway in w”&™" is called a boundary bond. A bond e in any highway in
wiethin is called a zigzag bond. A HV bond is a bond in some HV highway in some @®. An
HV-only bond is an HV bond which is not a zigzag bond. A backroad bond is a bond which
is not a zigzag bond, HV-only bond, or boundary bond.

Moreover, there are special types of boundary and zigzag bonds that arise when a SW/NE
zigzag highway crosses a SE/NW one, so we need the following definitions for bonds in
wAethin - For zigzag bonds, we distinguish:
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(i) The first and last bonds (or sites) of any zigzag highway are called terminal bonds
(or terminal sites.) Bonds which are not the first or last bond of a specified path are
called interior bonds.

(ii) An adjacent pair of zigzag bonds in the same direction (both N/S or both E/W,
which are necessarily from different highways, one SW/NE and one SE/NW) is called
a meeting pair, and each bond in the pair is a meeting zigzag bond.

(iii) A zigzag bond for which both endpoints are meeting-pair midpoints is called an
intersection zigzag bond. Equivalently, when a SW/NE highway intersects a SE/NW
one, the bond forming the intersection is an intersection zigzag bond.

(v) A zigzag bond which is not a meeting, intersection, or terminal zigzag bond is called
a normal zigzag bond.

For boundary bounds, we distinguish the following:

(vi) A boundary bond is called a semislow boundary bond if either (a) it is adjacent to
two meeting bonds (and is necessarily parallel to the intersection bond, separated by
distance 1), called an entry/exit bond, or (b) it is adjacent to an intersection bond.

(vi) A boundary bond e is called a skimming boundary bond if one endpoint is the terminal
site of a zigzag highway, and the corresponding terminal bond is perpendicular to e.

(vii) A boundary bond which is not a semislow or skimming boundary bond is called a
normal boundary bond.

These special type of bonds are represented in Figure 2.

normal zigzag bond, o} = 0.7
— terminal bond, af = 0.8
== meeting bond, a} = 0.8

MR intersection bond, af = 0.5

- - - boundary bond, o} =1
.. oL semi-slow boundary bond, a 1.1
S skimming boundary bond, af = 0.9

FIGURE 2. Different types of bonds near a crossing of two zigzag highways, and their
compensated core passage times, see (13).

Definition of the passage times. For each edge e we associate its zigzag class

K(e) = {max{k: : e is in a class-k zigzag highway in w?s®™in} if this set is nonempty,

0, otherwise,
and its HV class
~ max{k : e is in a class-k HV highway in @®} if this set is nonempty,
0, otherwise.
We then define a bond e to be slow if
(11> gé < 4—k(e)\/E(e).

Slow bonds exist only to make clear that upward finite energy holds.
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We next define the raw core passage time o, = a (@, w" i)

ideas of the simple example of Section 2. For non-slow e we set

of each bond e, mimicking

0.7 if e is a zigzag bond
a. = ¢ 0.9 if eis an HV-only bon
(12) 0.9 ifei HV-only bond
1 if e is a backroad bond or non-HV boundary bond,

and for slow e, we set a, = 1.2. Then we define the compensated core passage time o =

o (w, w?ethin) for non-slow e by
(0.5 if e is an intersection zigzag bond
0.7 if e is a normal zigzag bond
(13) oF = 0.8 if e is a meeting or terminal zigzag bond
c 0.9 if e is an HV-only bond which is non-boundary or skimming boundary
1 if e is a backroad bond or normal boundary bond
(1.1 if e is a semislow boundary bond,

and for slow e, we set ) = 1.2. The term “compensated” refers mainly to the following:
when an HV highway crosses a zigzag one, it typically intersects one normal zigzag bond
and two normal boundary bonds. The sum of the raw core passage times for these 3 bonds
is 0.9 + 0.7 + 0.9 = 2.5, whereas in the absence of the zigzag highway the sum would
be 3 x 0.9 = 2.7. With the compensated times, the sum is restored to 2.7, and in that
sense the HV highway does not “feel” the zigzag highway. The compensation picture is
more complicated when the HV highway crosses near the intersection of a SW/NE highway
and a SE/NW highway (which necessarily fully cross.) It must be done so that (15) and
(16) below hold, whether the HV highway contains intersection bonds, meeting bonds or
entry/exit bonds, see Figure 2.

The idea in the definition of o is that we compensate for the “too fast” zigzag bonds
in an HV highway (0.7 vs 0.9) by extracting a toll of 0.1 for entering or exiting a zigzag
highway. If the entry/exit is through a terminal or meeting zigzag bond (as when passing
through a meeting block), then the toll is paid by increasing the time of that bond from 0.7
to 0.8. In the meeting case, to avoid increasing the total time along the zigzag highway, the
core passage time of the adjacent intersection bond is reduced to 0.5. If the entrance/exit
for the zigzag highway is made through any other type of zigzag bond, the toll is paid by
increasing the adjacent boundary bond in the path from 0.9 (if it’s an HV bond) to 1. There
is an exception in an entry/exit bond, which may be both entrance and exit: the toll for
such a bond is 0.2.

Due to the stage-1 deletions, any two parallel zigzag highways H, H' in w*&'hin gatisfy

(14) di(H, H') > 23,

and as a result, no further type of compensation beyond (13) needs to be considered.
We thus have the following property: suppose H is an HV highway for which the first and
last bonds are HV-only. Then

(15) > ap=09[H|.

ecH
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End effects may alter this for general HV highways, but it is easily checked that every HV
highway H satisfies

(16) ‘Za; —0.9|H|‘ <04.

ecH
We can now define the full passage times 7, (based on the configuration w“&hin) by
(17) Te = Qb + o,
where o, is defined to be 0.1&] if e is a slow bond, and for non-slow e

Nk k¢, if e is a zigzag bond,
(18) 0. =0.1 x { ) 4-#e¢,  if e is an HV-only bond,
e, if e is a boundary bond which is not HV.

We refer to the resulting stationary FPP process as the fast diagonals FPP process. We stress
that the presence of the independent variables &, ensures that Assumption A2(iv) is satisfied,
and the presence of slow bonds ensures A2(v); the rest of A1 and A2 are straightforward.

First observations and notations. It is important that since > 7, passage times along
long zigzag highways are much more affected by the class of the highway than are times
along HV highways. In fact, by increasing ko we may assume (27)% < nko < 1/16. Then if
H is an HV or zigzag highway of class k (so of length at most 2¥*3), we have

(19) D o <01 ([ +7FE) < 16(2m)F < 0.1,

ecH eeH

so the maximum effect on ) __, 7. of all the variables involving 7 is less than 0.1, which is
less than the effect of the o value for any single bond e.

Henceforth we consider only & > ko. Let r, = Z;’ik 07 and 7, = Z;’ik 0i. Define
qr = 10gy(2C/11,) = cok + b where b is a constant.

The following subsections prove Theorem 1. The strategy is similar to that of Section 2:
we first construct in Section 3.2 an event Fj that a.s. occurs for a positive fraction of all £’s,
and then show in Section 3.3 that when F}, occurs geodesics have to stay near the axis.

3.2. Construction of a “success” event. Analogously to Section 2, we construct a ran-
dom region €2, (which is an enlarged random version of Qk), and a deterministic region Oy
which may contain €, as follows.

As before we write Ay, As for the positive horizontal and vertical axes, and now also As, Ay
for the negative horizontal and vertical axes, respectively. We write G, for the set {z € W :
A(z) = 2%/2} (formerly denoted G,) and G2 for {z € W : A(z) = (28 +4)v/2}; successively
rotating the lattice by 90 degrees yields corresponding sets G2, i3, G and é G’ 54 in the
second, third and fourth quadrants, respectively. Let Hypg 1k and Hyeuk be the lower and

upper zigzag highways in w”&™hin? of class k or more, mtersectmg both G1 and G , which
intersect A; and As, respectively, closest to 0. Let UMY = (X fvlf, 0) be the leftmost pomt of

Ay N Hygrg, and VVNE = (0, Xév,f) the lowest point of Ay N Hyg k. Rotating the lattice

90 degrees yields analogous highways Hyw . and Hyw i each intersecting éi and éi,
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and intersections points UM = (X", 0) and VY = (0, X)) with axes A3 and A,

respectively. Here we have used G and not G so that stage-3 trimming does not prevent
H. .. from reaching appropriate G%.

Let ¢1 and ¢35 be the vertical lines {£2C'/r;} x R crossing A; and Aj respectively,
and ) and {4 the horizontal lines R x {£2C'/r;} crossing A and A,. Let Jy, (and
Js k. respectively) denote the lowest (and highest) horizontal highway above (and below) the
horizontal axis intersecting both ¢,  and ¢5 ;. Analogously, let Jgx (and Jyy k) be the leftmost
(rightmost) vertical highway to the right (left) of the vertical axis intersecting both ¢5 5 and
lyr. Let (Yg,0) be the intersection of Jg with A, and analogously for (0, Yn k), (Yw,0)
and (0,Ysy) in Ay, Az, and Ay.

Let QNF be the open region bounded by Hyp .k, Hvevk, Gi, and G3, and let QYY" be
the open region bounded by Hyw.rx, Hxwuk, Gz, and Gy. Then let Q = QYW UQYF (an
X-shaped region), see Figure 3 below.

Let hyg,r i and hypyy denote the SW/NE diagonal lines through (C'/r, 0) and (0, C/ry)
respectively, and let hyw,x and let hywyy denote the SE/NW diagonal lines through
(—=C/ri,0) and (0,C/ry), respectively. Let ©NF denote the closed region bounded by
hNE,LJﬁ,hNE,U,k,G,lC and Gi, and @,ZCVW the closed region bounded by hNWL,k,hNW7U7k,Gi
and G}. Then let O, = ON" U ONF. In the event of interest to us, the nonrandom region
O will contain the random region €.

Jw,k e
Tk LA
|G
4
,
,
,
,
,
,
, ,
7/ 4
, HNE,Lk s hNpLK
,
7 e
Ve 4
7 e
’, ,
7 4
, ,
, ,
7’ s :
7 4 HaoWS
, *
YNk il JIN .k
Ywk YE & / ’
7
s Clry 2C /1y, A
Ys.k /('J'v s /Tk /7K 1
7
, s,k
,
,
’
,
,
L ’
,
/] ,

FIGURE 3. Representation of the different regions of interest (the picture focuses on the
upper-right quadrant, and the scales are not respected): Q{f E is the region enclosed by
Hyguk, Hve L,k and G}c (i =1,2); @kNE is the region enclosed by Ang,uk, hne, L,k and
G4 (i =1,2). The construction of QMW and O is symmetric by rotation of 90°.

We now construct an event Fj, which we will show occurs for a positive fraction of all &,
a.s. We show in Section 3.3 that F}, ensures that all finite geodesics from 0 to points outside
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Q) must stay near one of the axes until leaving Q" NQYF. For m > czqr/(1+¢) let Ry,
be the number of class-m zigzag highways in w(™ intersecting J, ;, in Oy, for x = N, E, S, W.
Here ( is from the definition of stage-2 deletions. Note that since the class of J,  is at least
q, any intersecting highways of class m < czqi/(1 + () are removed in stage-2 deletions, so
R} ,,, counts those which might remain (depending on the class of J. ).

Fix ¢ € (0,C) and define the events

I ::{£<X;jkg9fom:1,2}, for x = NE, NW, I, =LYEn 1YW,

rE Tk

~e . Jevery SW/NE highway H ¢ {Hyg.rk, Hve vk} NW
M= {in w intersecting ONF is in classes 1,...,k—1 [~ and analogously for M,

and let My, = MN® N MW Define also

~ C
Dk . |Yv*?k| < — fOI‘*:E,N,W,S.

qk

Eve: Y Rpn™ <a@P0 )% (u )k, for « = E,N,W,S.

m>czqi/(1+C)

with ¢; to be specified and § from (7), noting that by the bound on 7 in (7) we have 072 < 1,
and

E, . : there are no slow bonds in any J, (x = N, E, S, W)
nor in any H, . (* = NE, NW, .= U, L).

Finally, we set Fj, = I, N M N lN)k N Ey ;N Ey . Note that when Fj, occurs we have (2, C Oy,

Lemma 1. There exists some k1 such that

R
(20) hggolf - Z lp, > K1 as.
k=1
Moreover, letting ny(w) < na(w) < --- be the indices for which w € Fy, we have
(21) limsup 2 =1 as.
joo T

Proof. In the events [}, and My, the highways H., ; and associated values X7} are taken from
the configuration w”&™in2  Using instead the configuration w”&hin! yields different events,
which we denote I} and M} respectively. Let F! = I1N ML Dy (noting we do not intersect
with Ej i, Eoy here). First, we prove the following.

Claim 1. There exists k1 > 0 such that

n—oo N

1 n
lim inf — Z lpr > K1 as.
k=1
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Proof of Claim 1. As a first step, we show that

: 1 1
(22) klg}fo P(I, n M) > 0.
For a lower SW/NE zigzag highway H, let (zo(H),0) be the intersection point in A; closest
to (0,0) when one exists, and similarly for an upper SW/NE zigzag highway H let (0, yo(H))
be the intersection point in Ay closest to (0,0). We call H k-connecting if H intersects both
G} and G3. The event I} N M} contains the event

there exists exactly one lower SW/NE highway H in w of class k£ or more in-
tersecting ONF and this H is k-connecting and satsifies =< xo(H) < % — 23;
further, the analogous statement holds for upper SW/NE highways with yo(+)
in place of xq(-), and for lower and upper SE/NW highways.

Aki

The parts of Ay, for the 4 types of zigzag highways (upper vs lower, SW/NE vs SE/NW) are
independent, so to bound the probability of A; we can consider just one of these parts and
take the 4th power of the corresponding probability. In particular, considering lower SW/NE
highways H of class ¢ > k intersecting ©~F there are at most 23 possible lengths for H,
at most 273C'/ry, possible SW-most points, and the choice of H-start or V-start, so at most
2247 /r), possible highways. Also, considering lower SW/NE highways H of class m > k
which are k-connecting and satisfy > < zo(H) < % — 23, there are at least 2™(C' — ¢)/ry,
possible lower endpoints, and 2™ possible lengths, for H. Therefore considering only lower
highways, assuming ¢ < C'/2 we have

22m+2(c . C) gm 9t 220+TC /.
P(I} N M)A > P(A)A > o 1] (1 )

= ™ o T 920+4
com 16C6°
> _
m>k >k
(23) = %6_160 ,

proving (22).
A similar but simpler proof also using a count of highways yields that infy>, P(Dy) > 0,
so by independence we have

. 1 >
(24) klg}foP(Fk) > Ko >0

for some kg. But Claim 1 is a stronger statement, and we now complete its proof, using (24).

Let Hj denote the set of all SW/NE highways in w which intersect O together with
all SE/NW highways which intersect ©Y". Let Fj, denote the o-field generated by Hy, and
let Cj, denote the largest j such that Hj contains a highway of class j. For m > k, class-m
SW/NE highways intersecting O~ have at most (2C/r;)(2™ + 2¥3) possible SW-most
endpoints, and 2™*3 possible lengths, and 2 directions for the initial step (V- or H-start), so
the number of such highways is bounded by a sum of Bernoulli random variables, each with
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parameter (success probability) less than 1/2 and with total mean at most

2C om 32C0™
m—+4 m—+3 k+3 <
2 Tk (2 +2 )22m+4 — Tk '

The same is true for SE/NW highways. Hence for n > 0 the number of highways of class
at least k 4+ n is bounded by a similar sum of Bernoulli variables of total mean at most
32C T4 /1k- 1t follows that for any n > 0,

P(Cy — k > n) < P(some highway in w of class k + n or more intersects Oy)

S 320Tk+n

(25) = 320",

Tk

Let ng be the least integer with 8™ < ¢/C'. Define a random sequence of indices 1 = K; <
Ky < ... inductively as follows: having defined K, let K; 1 := max{Cg,, (K; + ng)} + 1.
Here k > K; + ng ensures C/rg, < ¢/rg, and k > Cg, ensures that Hypg 1, Hvgux do not
intersect ©}”, and likewise for NW in place of NE. For any j, ¢, and any A € F;, the event
AN{K; = j,C; = {} only conditions zigzag highways in H;, and ensures that no SW/NE (or
SE/NW) highways of class > k = max(j + ng,£) + 1 intersect O (or O respectively);
in particular it ensures that )/fl*k > C/r; for ¥ = NE, NW. Therefore since C'/r; < ¢/rj, this
event increases the probability of Il N M}: for such j, ¢, k, A,

P(I; "M, | AN{K; =j,C; = (}) > P(I; N M,}).
Similarly the bound in (25) is still valid conditionally: for such j, ¢, k,

(26) P(Ci—k>n|AN{K;=jC;=(}) <32C0" foralln>0.
It follows that for some ¢y > 0,
K.
(27) limsup — < ¢y a.s.
1—»00 [/

On the other hand, it is straightforward that for some ry > 0, for all j < k and all
Beo(Dy,...,Dj),
P(Dy | B) > k,P(Dy)  as.,
so by independence and (24),
(28) P(F; | ANBN{K; = j,C; = (}) > wP(Fy) > Kk

Since A, B are arbitrary, it follows that the variables 15, dominate an independent Bernoulli
sequence with parameter kokg, SO
1 m
hmni)lorgf p— Zl 1F11(i > Kokg a.s.
1=

This, combined with (27), proves Claim 1 with k1 = Kakg/Ca. O

Note that by (26), the variables K, — K;,i > 1 are dominated by an i.i.d. sequence of
the form “constant plus geometric random variable.”
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Let us go back to the proof of Lemma 1. Let B, denote the event that none of the 4
highways H., . (w”&™Mm1) are deleted in stage-2 deletions, then we have

(29) I'NMIN B, C I, M,
Claim 2. We have
Y PBiNL) <oco; Y P(E5,NDy)<oo and Y P(Ef,) < oco.
k k k

Proof of Claim 2. Let ZI” , denote the class of the zigzag highway H, _j(w?&™M™1) for » =
NE, NW and - = U, L, and let Z;{k denote the class of the HV highway J, ; for x = N, E,
W, S. Then, by (10), for n >0

8 8
(30) P(By | LN {Z8s, s =k+n}) < T 2~¢(htn) < — 97k
Since the upper bound is independent of n, summing over n we get that P(BS N I}) <

8(1 — 0)~127¢% and the first item of Claim 2 is proven.
Similarly,

P(Eik | 514; N {Zl{fk- = qi + n}) < Quntnt3g—(atn) < . 94k,

so we get that P(Egvk N Ek) < 2793 and the second item of Claim 2 is proven.
For the last item, recall cz/(1 + () = c; — 6. We have from the upper bound for x4 in (8)

Z em—k—c(gémnm < (91_09677)(69(05_6)_1)kuk6‘_096k(,U_l77>k
m>cgqy/(1+¢)
(31) < (072 (u )",
SO
P(Ef,) <4 Y P(RY, >@m ety
m>cgqy/(1+€)
Analogously to (25) we have that E(R},,) < cs6™/ry and by Markov’s inequality,

P(Ej,) <ci > 09" < c50%F
m>cgqr/(1+C)
This proves the last item of Claim 2. 0

Equation (20) in Lemma 1 now follows from (29), Claims 1 and 2, and the Borel-Cantelli
lemma. Equation (21) comes additionally from the remark made at the end of the proof of
Claim 1. 0

3.3. Properties of geodesics in case of a success. For x ¢ ., we let 'y, be the geodesic
from 0 to x (unique since the &, are continuous random variables.) For p, ¢ € 'y, we denote
by Toz[p, q] the segment of Ty, from p to g. We let p, be the first point of Ty, outside .
We then define ¢, in the boundary of the “near-rectangle” QY* N QYW as below.

Note that this boundary consists of 4 zigzag segments, one from each highway H, .y (x =
NE, NW; . = U, L). Some boundary points (one bond or site at each “corner”) are contained
in 2 such segments; we call these double points. Removing all double points leaves 4 connected
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components of the boundary, which we call disjoint sides of QY” NQNW  each contained in a
unique highway H, .. The set \(QYF NOQYY) has 4 connected components, which we call
arms, extending from QY N QYW in the directions NW, NE, SE, SW. Each arm includes
one disjoint side of QNF N QNW.

If p, is not a double point then it is contained in the boundary of one of the arms, and we
let t, be the first point of I'o. [0, p.| in that arm (necessarily in a disjoint side; see Case 3 of
Figure 4.) If instead p, is a double point, then we pick arbitrarily one of the two highways
H,.. containing it, and let ¢, be the first site of I'y,[0, p,] in that highway.

For u from (8), let Ly denote the horizontal line R x {u~*}; L, is defined analogously
for x = E, S, W. We define Ay, to be the “horizontal axis corridor,” meaning the closure of
the portion of QY N QN strictly between Lgy and Ly, and let Ay denote the similar
“vertical axis corridor.”

Lemma 2. For sufficiently large k, when Fy, occurs, for all x ¢ € we have either Ty,[0,t,] C
AH,k or Fox[o,tx] C AV,k-

From this lemma, we can conclude the proof of Theorem 1(ii). For a configuration w let
ni(w) < ng(w) < ... be the indices k for which w € Fj. Let Iy be an infinite geodesic
starting from the origin, with sites 0 = xg, z1,.... Then Lemma 2 says that for each j > 1,
Iy is contained in either Ay, or Ay, until it leaves QTJLV] 2N ij W accordingly, we say Iy is
horizontal at stage j or vertical at stage j.

Suppose [y is horizontal at stage j, and vertical at stage j + 1. The horizontal coordinate
of the first point of I'y outside Q,]:/] 2N Q,]:/] W then has magnitude at least ¢/ Tn, — p~ " but

(from the definition of Dj,) at most C/Tq,,,,- Since # < p by (8), this means that for large
j we have ¢/2r,; < C/ry, , and hence ?énﬁl/rnj < 2C/c. We fix € > 0 be small enough so

1+ > 9 which is possible by (8). Then for j large enough, thanks to (21), we get that
Gn; 1 < (14 €)con;. Hence we have

<§(1+€)69>nj < ;,\;q"jJrl < @

7 S — =

But this can only be true for finitely many j, so there exists a random .Jy such that for
j > Jy, either T’y is horizontal at stage j for all j > Jy, or I'y is vertical at stage j for all

Jj > Jo. (We call I'y horizontal or vertical, accordingly.) Using again that njq/n; — 1, we
get that

T, c

s c .
pott < —  as j — oo,
n;
that is, the width of A, ,,,,, is much less than the length of A, ,,,, for * = H, V. This guarantees
that for such I'y, the angle to z; from an axis approaches 0, that is, Iy is directed in an axis
direction, proving Theorem 1(ii). O

Remark 1. The above reasoning gives that geodesics reaching horizontal distance n =
c/ry = d07F deviate from the horizontal axis by at most p~*. In the other direction,
heuristically, in order to reach horizontal distance n = ¢/ry, the most efficient way should
involve a route going as soon as possible (through a succession of horizontal and zigzag
highways) to the closest horizontal highway that reaches at least distance ¢/ry, and then
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following that highway. This suggests that in order to reach distance n = ¢/ry, geodesics
have a transversal fluctuation of order at least 1/7,, = cf=* = =" or equivalently order
n, as this is the typical vertical distance to the closest horizontal highway reaching n.
Suppose c¢; > 10/11. Then choosing ¢y slightly less than 0.5, then 7 slightly less than
2/3, and then ¢ sufficiently small, we satisfy (7), (8), and the conditions preceding them,
and further, 6% is the smallest of the 3 quantities on the right side of (8). This means we
can choose p arbitrarily close to g° = §<. Thus our upper bound of ;% becomes ntol)
nearly matching the heuristic lower bound. Hence in this case we expect geodesics reaching

horizontal distance n to have transversal fluctuations of order n o) with at least all values
cg € (10/11,1) being possible.

Proof of Lemma 2. Let us start with a claim analogous to what we proved in Section 2.
Recall the definitions of I'y, and p,.

Claim 3. When Fy occurs, for all © & Q we have p, ¢ G} U G2 UG} UGY.

Proof of Claim 3. Suppose p, = (r,s) is in the horizontal part of G} (so r > s = 2%) and let
U,. be the upper endpoint of the bond which is the intersection of Hyp 15 and the vertical
line through p,. Define the alternate path m, from 0 east to U,ﬁVE, then NE along Hypg
to Uy, then north to p,. We now compare the passage times of I'o. [0, p.| versus 7.

We divide the bonds of the lattice into NW/SE diagonal rows: the jth diagonal row R;
consists of those bonds with one endpoint in {(x1,23) : 1 + 2 = j — 1} and the other in
{(z1,23) : 1 + 29 = j}. We call a bond e € I'y,[0,p,] a firs