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Beamforming with a spherical microphone array has become an attractive tool for sound source
localization in cabin environments. To provide a reliable localization solution with high perfor-
mance, the first step is to optimize the array design. In this paper, the spatial resolution and
dynamic range of an open spherical array with various microphone arrangements are evaluated,
which are used as metrics for optimal array design. Several popular approaches for evenly dis-
tributing points on a sphere are investigated such that the array response is as isotropic as possible.
In addition to the conventional beamforming, a state-of-the-art algorithm called functional beam-
forming is also implemented. The objective is twofold: first is to improve spatial resolution and
dynamic range significantly; and second is to verify that array configurations have a consistent
effect on localization performance, regardless of beamforming algorithms.

Keywords: spherical microphone array, array design, beamforming, localization performance
evaluation

1. Introduction

Spherical microphone arrays have been widely used in the automotive industry for sound source
localization in cabin environments. Generally speaking, there are two main ways of building a spher-
ical array: placing microphones on the surface of a solid sphere or an open sphere. A solid sphere is
easier in manufacturing and provides a housing for all electronic components and wiring. However,
the solid sphere disturbs the sound field around its body due to the scattered sound waves. In order to
take into account the scattering effects in the propagation model, the calculation of acoustic maps has
to be done in the frequency domain with a high computational cost. Another disadvantage of the solid
sphere configuration is the limited array size. Under certain circumstances, e.g., at low frequencies,
large arrays are preferable. A large solid sphere might be difficult to handle in practice due to its
weight. Furthermore, scattering of the incident waves from a large solid sphere might be reflected
back into the measurement region by surrounding objects, modifying the measured sound field [1].
Therefore, the open sphere configuration is selected in our study due to its acoustic transparency,
flexibility in beamforming algorithm choices, light weight and the possibility of building large arrays
for better performance.
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Different schemes for placing microphones on a sphere have been presented and analyzed [1]. In
order to have an isotropic array response, strictly speaking, each microphone has to have the same
number of neighbors at the same distance, equally spaced around itself. However, there are only a very
limited number of configurations based on the five Platonic solids offer such an uniform distribution.
The problem of distributing many points on a sphere in a nearly-uniform manner has drawn attention
in many fields, and a wide range of approaches have been proposed in the literature [2, 3, 4, 5]. Most
analysis was done in terms of how to choose the sampling points and their corresponding weights such
that the integral of an order-limited continuous function on the sphere can be well approximated by the
weighted summation of the samples of the function. However, the influence of different microphone
arrangements on the localization performance of an open array is unclear. Therefore, in this paper,
the spatial resolution and dynamic range of various spherical arrays are evaluated, which are used as
metrics to find the array design offering the optimal localization performance.

The data acquired by a spherical array are processed with a beamforming algorithm to gener-
ate acoustic maps, based on which the locations and strengths of sound sources are estimated. Two
beamforming algorithms are implemented in this paper. One is the conventional frequency domain
beamforming (FDBF), whihc is one of the simplest and most robust beamforming algorithms and
widely used in many fields. The other is a state-of-the-art algorithm called functional beamform-
ing, which was recently proposed by Dougherty [6]. It has been shown that functional beamforming
provides enhanced dynamic range and spatial resolution, which is comparable with that of other ad-
vanced beamforming algorithms, e.g., the deconvolution methods. More importantly, the required
computational time of functional beamforming is approximately the same as that of the conventional
beamforming, which is substantially shorter than the deconvolution methods. This is of great signifi-
cance to the fast and accurate identification of sound sources in 3D cabin environments.

2. Array design

In this section, we introduce the microphone arrangements in a spherical array. Five of the most
popular schemes for evenly distributing points on a sphere are investigated in this paper, and their
design criteria are briefly described as below.

• Spherical t-design
This approach was extent from the t-design based on the five Platonic solids to a larger set
of configurations with more sampling points, offering an asymptotically uniform distribution.
Precisely speaking, Hardin and Sloane [2] found the coordinates of N points via numerical op-
timization, such that the integral of any polynomial of degree up to t over the sphere is equal to
the average value of the polynomial over the N points.

• Packing
The packing problem, which is also known as the Tammes’s problem, is to find the centres of
N identical non-overlapping spherical caps such that their common radius is maximized. A
spherical cap with radius r is defined as the set of all points on the sphere whose distance from
the centre is no more than r. The packing scheme distributes the N points on a sphere by maxi-
mizing the smallest distance among them.

• Covering
The covering problem is to find the centres of N identical spherical caps which cover the sphere
completely such that their common radius is minimized. This scheme arranges the N points on
a sphere by minimizing the greatest distance of any point from its nearest neighbour.
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• Minimal energy
This approach, which is also known as the electrostatic repulsion problem, finds the positions
of N points on a sphere by minimizing the sum of the inverse of the distances between them.
If the points are considered as charged particles repelling each other, minimizing such a sum
physically represents minimizing the potential energy of the particles.

• Spiral points
Inspired by the sunflower seed pattern occurring naturally, a simple approach was proposed
which arranges points on spirals wrapping around a sphere [5, 7]. This method cuts the sphere
with N evenly apart horizontal planes, and assigns one point to each latitude. The difference
in longitudes of successive points is selected to be the golden angle so that no two points in
nearby bands come too close to each other in longitude. The cylindrical coordinates of the k-th
spherical spiral point can be written as

ψk = k · (3−
√

5)π

ρk =
√

1− z2k

zk = (1− 1

N
)− 2k

N

(1)

where k = 0, 1, ..., N − 1. Due to practical concerns, the extreme points are offset in order to
avoid using North and South poles as start and end points.

Note here that although the objective functions of the packing, covering, and minimal energy
problems are simply defined, solving them is nontrivial and there is no known general solution. The
coordinates of the sampling points are thus calculated via numerical optimization, and various so-
lutions have been reported in a number of articles. In this paper, we utilize the putatively optimal
solutions provided by Sloane, Hardin, and Smith, which are available online [8].

3. Spherical array beamforming

In order to estimate the locations and strength of sound sources of interest, beamforming al-
gorithms are widely used to process the microphone array data, generating acoustic maps. In this
section, we will briefly revise the conventional FDBF and a state-of-the-art functional beamforming.

3.1 FDBF

Assume that the spherical array has N microphones and there are Q mutually incoherent point
sources with strength sq and position vector rsq ∈ R3, respectively. Taking the array centre as the
system origin, the source position can be described by the spherical coordinates rsq = (rq, θq, ψq),
where r, θ, ψ denote the radius, inclination angle, and azimuth angle, respectively. The N ×N cross-
spectral matrix (CSM) of the measured pressures can be expressed as

C = E
[
p · pH

]
=

Q∑
q=1

sq · gqgHq (2)

where the superscript H denotes Hermitian transpose, and the vector p = p(f) ∈ CN×1 contains
the Fourier transform of the recorded sound pressure at each microphone at a frequency f . The vector
gq ∈ CN×1 denotes the steering vector corresponding to the source position rsq, whose n-th element
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is given by

gq,n =
exp(−ik ‖ rn − rsq ‖)

‖ rn − rsq ‖
(3)

Here, the position vector rn ∈ R3 represents the location of the n-th microphone, k = 2πf/c is
the wavenumber for frequency f and sound speed c, and ‖ · ‖ stands for Euclidean norm. For array
beamforming, a set of L focus points covering the scene of interest are defined, containing all the
potential sound source positions. The FDBF output at the l-th focus point located at position rfl ∈ R3

can be written as

b(rfl ) =
gHl ·C · gl

‖ gl ‖2 · ‖ gl ‖2
(4)

where gl ∈ CN×1 is the steering vector corresponding to the point position rfl , whose definition
is similar to Eq. (3). In addition, it has been demonstrated that CSM is mainly contaminated by
microphone self-noise on the diagonal, and removing the diagonal of the CSM in the conventional
beamforming tends to substantially improve the appearance of the acoustic maps [9]. The output of
FDBF with diagonal removal is given by

b(rfl ) =
gHl ·Cdiag=0 · gl
vTl · 1diag=0 · vl

(5)

where the superscript T denotes the transpose and vl ≡
[
| gl,1 |2 | gl,2 |2 ... | gl,N |2

]T . The
matrices Cdiag=0 and 1diag=0 denote the modified CSM and unity matrix whose diagonal elements are
replaced by zeros, respectively.

3.2 Functional beamforming

In spite of its simplicity and robustness, the conventional beamforming produces acoustic maps
with poor dynamic range and limited spatial resolution. Functional beamforming, developed by
Dougherty recently [6], provides significantly higher dynamic range and better spatial resolution than
FDBF. The functional beamforming is based on FDBF, and its beamformer output of order ν at the
focus point location rfl can be defined as

bν(r
f
l ) =

1

‖ gl ‖2

[
gHl C

1
ν gl

‖ gl ‖2

]ν
=

1

‖ gl ‖2

[
gHl UΣ

1
νUHgl

‖ gl ‖2

]ν
, ν ≥ 1 (6)

where U ∈ CN×N is an unitary matrix whose columns [u1,u2, ...,uN ] are the eigenvectors of C,
and Σ is a diagonal matrix whose diagonal elements [σ1, σ2, ..., σN ] are the eigenvalues of C. The
performance of functional beamforming is determined by the exponent parameter ν, which needs to
be set by users. Note here that functional beamforming becomes FDBF when ν = 1.

To explain the sidelobe attenuation brought in by functional beamforming, we consider the sce-
nario where a single point source of strength sk exists at the location rsk, then

C = skgkg
H
k = UΣUH (7)

Since C has rank 1, the only one nonzero eigenvalue is σ1 = sk ‖ gk ‖2, whose corresponding
eigenvector u1 = gk

‖gk‖
. Recalling Eq.(6), the functional beamformer output for a single point source

can be expressed as

bν(r
f
l ) =

1

‖ gl ‖2

[
gHl u1σ1

1
νuH1 gl

‖ gl ‖2

]ν
= sk

‖ gk ‖2

‖ gl ‖2

[
gHl gkg

H
k gl

‖ gk ‖2‖ gl ‖2

]ν
(8)
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According to Cauchy-Schwarz inequality, the factor which is powered to the exponent ν satisfies
the following relationship

0 ≤ gHl gkg
H
k gl

‖ gk ‖2‖ gl ‖2
≤ 1 (9)

and reaches its maximum value 1 when gl = gk. Therefore, the functional beamformer output
at the source location equals to the source strength irrespective of the value of ν, while the output at
the sidelobes reduces significantly as ν increases, improving the dynamic range dramatically. At the
focus points near the true source, the value of the factor in Eq. (9) is close to 1, and thus the effect of
the exponent is not as remarkable. However, the mainlobe is still sharpened to some extent, improving
the spatial resolution. Furthermore, functional beamforming attracts attention due to its low compu-
tational complexity, which is almost identical to the conventional beamforming. The only additional
operation is the eigendecomposition of CSM, which is faster than the other steps in beamforming [6].

4. Simulation results

In this section, the localization performance of an open spherical array with various configurations
is presented. Simulations were conducted using a 64-element spherical array with a radius of 15cm,
and both the conventional and functional beamforming were applied to synthetic data. The mutually
incoherent noise components were included and the resulting signal to noise ratio (SNR) was set as
20dB. The scene of interest was set as a sphere concentric to the array, and its radius equals to the
distance between the sound source and array center. The azimuth and inclination angles of the focus
points were 2◦ apart, respectively, and thus each acoustic map contained 180 × 91 points. Figure 1
shows examples of acoustic maps with 20dB display range generated by FDBF, FDBF with diagonal
removal, and functional beamforming, respectively. The 64 microphones were distributed on the
sphere following the spiral points scheme. It was assumed that two sound sources existed: one 50dB
source at position rs1 = (1, 120◦, 240◦) and one 40dB source at position rs2 = (1, 60◦, 60◦), and
the true source locations were marked with ∗ in the acoustic maps. The sources were assumed at
500 Hz, 1000 Hz, 3000 Hz and 7000 Hz, respectively. For functional beamforming, typical values
of the exponent ν are in the range of 20-300 [6], and ν = 100 was selected in the simulations as
larger values do not improve the results significantly. Observing Fig. 1, it is obvious that, at low
frequency, functional beamforming provides better spatial resolution than the other two methods.
At mid-high frequency, compared with FDBF, FDBF with diagonal removal considerably enhances
the appearance of the results. However, neither is able to locate the weaker source correctly due to
the strong sidelobe contamination. The higher the frequency, the worse the contamination due to
the spatial aliasing errors. In contrast, functional beamforming eliminates most artifacts, accurately
localizing and quantifying both sources. The higher the frequency, the better the spatial resolution.

In order to optimize array design, the dynamic range and spatial resolution of various spherical ar-
rays were evaluated as follows. For each realization, a single source was located at a random position,
and an acoustic map is generated by using FDBF with diagonal removal or functional beamforming.
For each acoustic map, the dynamic range was computed by finding the power difference in decibels
between the peak of the mainlobe and the maximum of the strongest sidelobe. The spatial resolution
was defined as the angular width of the mainlobe at 3 dB below its peak. The results were obtained
by averaging over 200 realizations. Figure 2 shows the localization performance of the array, whose
64 microphones are distributed on the sphere surface according to the five schemes mentioned in
Section 2. For the lowest frequencies, the dynamic range is undefined since there is no sidelobe.
Sidelobes appear and become stronger as the frequency increases. Observing the results obtained
by applying FDBF with diagonal removal, we notice that different microphone distributions lead to
very similar spatial resolution. The spiral points distribution provides the best dynamic range, fol-
lowed by t-desgin. Interestingly, such a conclusion is consistent with the one drawn in [10] for planar
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Figure 1: Acoustic maps of two sources using different beamforming algorithms at (a) 500Hz, (b)
1000 Hz, (c) 3000 Hz, and (d) 7000 Hz.
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microphone array design: The spiral arrangements are preferable to the other commonly used config-
urations. Among different kinds of spiral arrays, the one choosing golden angle as the angle interval
between successive points performs the best. The same conclusion can be drawn from the figures
corresponding to the functional beamforming, illustrating that array configurations have a consistent
effect on localization performance, regardless of beamforming algorithms. Furthermore, we notice
that, compared with conventional beamforming, functional beamforming brought in 20dB and 24dB
improvement in dynamic range at low and high frequencies, respectively. It also notably enhances the
spatial resolution, especially at low frequencies.
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Figure 2: Localization performance of spherical array with different designs.

5. Conclusion

In this paper, the dynamic range and spatial resolution of an open spherical array with various
microphone arrangements were evaluated with both conventional beamforming and functional beam-
forming. Five popular approaches evenly distributing points on a sphere were investigated. Simu-
lation results showed that the scheme which arranges points on spirals wrapping around the sphere
provides the best sound source localization performance. Functional beamforming offers significantly
enhanced dynamic range and spatial resolution, enabling quick and accurate sound source identifica-
tion in 3D environments.
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