
HAL Id: hal-01595772
https://hal.science/hal-01595772

Submitted on 13 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Dynamic configuration management of a multi-standard
and multi-mode reconfigurable multi-ASIP architecture

for turbo decoding
Vianney Lapotre, Guy Gogniat, Amer Baghdadi, Jean-Philippe Diguet

To cite this version:
Vianney Lapotre, Guy Gogniat, Amer Baghdadi, Jean-Philippe Diguet. Dynamic configuration man-
agement of a multi-standard and multi-mode reconfigurable multi-ASIP architecture for turbo decod-
ing. EURASIP Journal on Advances in Signal Processing, 2017, 2017 (1), �10.1186/s13634-017-0468-x�.
�hal-01595772�

https://hal.science/hal-01595772
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

EURASIP Journal on Advances
in Signal Processing

Lapotre et al. EURASIP Journal on Advances in Signal
Processing (2017) 2017:35
DOI 10.1186/s13634-017-0468-x

RESEARCH Open Access

Dynamic configuration management of a
multi-standard and multi-mode reconfigurable
multi-ASIP architecture for turbo decoding
Vianney Lapotre1* , Guy Gogniat1, Amer Baghdadi2 and Jean-Philippe Diguet1

Abstract

The multiplication of connected devices goes along with a large variety of applications and traffic types needing
diverse requirements. Accompanying this connectivity evolution, the last years have seen considerable evolutions of
wireless communication standards in the domain of mobile telephone networks, local/wide wireless area networks,
and Digital Video Broadcasting (DVB). In this context, intensive research has been conducted to provide flexible turbo
decoder targeting high throughput, multi-mode, multi-standard, and power consumption efficiency. However,
flexible turbo decoder implementations have not often considered dynamic reconfiguration issues in this context that
requires high speed configuration switching. Starting from this assessment, this paper proposes the first solution that
allows frame-by-frame run-time configuration management of a multi-processor turbo decoder without
compromising the decoding performances.

Keywords: Wireless communication, Turbo codes, ASIP, Dynamic configuration

1 Introduction
The last years have seen considerable evolutions of
wireless communication standards in the domain of
mobile telephone networks, local/wide wireless area net-
works, and Digital Video Broadcasting (DVB). Besides
the increasing requirements in terms of throughput and
robustness against destructive channel effects, the con-
vergence of services in single smart terminal becomes a
crucial and challenging feature. Channel coding is a key
technique of a wireless communication standard. It allows
reliable data transfer targeting high throughput over unre-
liable communication channels. A channel coding tech-
nique is typically associated to a variety of parameters and
configuration options (frame size, communication chan-
nel, signal-to-noise ratio, etc.). Among channel coding
techniques, turbo codes [1] are frequently adopted in the
recent wireless standards to reach a very low bit error rate
(BER).

*Correspondence: vianney.lapotre@univ-ubs.fr
1Laboratoire Lab-STICC - CNRS, UMR 6285, Centre de Recherche Christiaan
Huygens, Rue de Saint-Maudé - BP 92116, 56321 Lorient, France
Full list of author information is available at the end of the article

The introduction of contention-free interleavers in
recent communication standards, such as long-term
evolution (LTE) [2] and Worldwide Interoperability
for Microwave Access (WiMAX) [3], enables high-
throughput implementations such as presented in
[4–8] and [9]. These architectures propose to use multi-
ple soft-input soft-output (SISO) decoders to reach the
high throughput requirement of emerging and future
standards. They offer certain degrees of flexibility to
adapt for instance the number of SISO decoders, the
turbo code mode, i.e., single binary turbo code (SBTC)
or double binary turbo code (DBTC), or the frame size.
However, these efforts do not present any configuration
infrastructure in order to support a fast and efficient
dynamic configuration switching. In [10], the authors
propose a solution in order to support dynamic config-
uration. They present an field-programmable gate array
(FPGA) implementation of a high speed MAP decoder
architecture for turbo decoding achieving 346 Mbps. The
configuration latency cost of such an implementation is
not evaluated. The configuration latency of Xilinx FPGA
[11] depends on the targeted FPGA technology, the
bitstream size and the medium used to transfer the con-
figuration bitstream. However, the configuration latency

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13634-017-0468-x&domain=pdf
http://orcid.org/0000-0002-8091-0703
mailto: vianney.lapotre@univ-ubs.fr
http://creativecommons.org/licenses/by/4.0/

Lapotre et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:35 Page 2 of 15

overhead is still important (from around 100 μs to 100 ms
[11]). Recent work investigated general purpose pro-
cessor (GPP) implementations using high-performance
multi-core architectures taking advantage of the Intel
SSE (Streaming SIMD Extensions) instructions. In [12],
a 418 Mbps turbo decoder for LTE is implemented on
an Intel Xeon processor X5670 with a 12 threads level
of parallelism. In [13], an adaptive turbo decoder imple-
mentation on an Intel I7-960 core is investigated. The
authors propose to adapt the decoding algorithm depend-
ing on the communication channel quality. However,
for both [12] and [13] works, no discussion is provided
about the context switching cost when the turbo decoder
configuration has to be changed. Moreover, these GPP
implementations have been initially developed for base
stations. Thus, they are not suitable for mobile terminals
due to the high power consumption of such processors.
Recently, application-specific instruction-set proces-

sor (ASIP) solutions have been investigated in order to
offer architectures providing good trade-offs in terms
of flexibility, throughput and power dissipation. In [14],
a flexible and high performance ASIP model for
turbo decoding was proposed, which can be config-
ured to support all simple and double binary turbo
codes up to eight states. The architecture uses shuf-
fled decoding with frame sub-blocking. The extrinsic
information is iteratively and concurrently exchanged
between multiple component decoders via an on-chip
communication network presented in [15]. Afterwards,
an optimized implementation of the ASIP supporting
both turbo codes and LDPC codes, called DecASIP
have been presented in [16]. Similarly, the authors in
[17] introduce the FlexiTreP ASIP presented in [18] in
a multi-ASIP architecture for turbo decoding to reach
the 150 Mbps throughput requirement of LTE. Previous
works provide an efficient way to reach the high per-
formance requirement of emerging standards. However,
the dynamic reconfiguration aspect of these platforms
is superficially addressed. In [19], the authors propose
a reconfigurable multi-processor approach in order to
decode multiple data streams in parallel. However, the
timing impact of such a reconfiguration process is not
detailed. Among the few works which consider this issue,
we can cite the recent architecture presented in [20],
where the authors propose solutions for the reconfigu-
ration management of the network-on-chip (NoC) based
multi-processor turbo/LDPC decoder architecture pre-
sented in [21]. Up to 35 processing elements (PEs) and
up to 8 configuration buses have been implemented.
Each PE is configured through a configuration memory,
which is organized as a circular buffer. The reconfigura-
tion process to switch from one configuration to another
configuration can be masked by the current decod-
ing task if the configuration memory provides enough

free space and if a high speed configuration infrastruc-
ture is provided. Dynamic reconfiguration during one
frame duration is possible when the current configu-
ration is small enough to load a new configuration in
the memory. If not, the authors provide management
solutions to deal with this issue, such as erasing the
current configuration during the last decoding itera-
tion and continuing the reconfiguration process during
the first iteration of the new configuration. However,
this solution is not always sufficient. Then, stopping
the current processing to configure the new configu-
ration is unavoidable and leads to a decoding quality
loss in terms of BER. The authors of [22] propose a
dynamically reconfigurable ASIP-based architecture for
turbo decoding allowing reconfiguration of the entire
platform during the current decoding task in order
to propose a frame by frame dynamic configuration.
This architecture has been optimized based on the ini-
tial work presented in [16]. Up to 64 processors are
reconfigured using a bus-based configuration infrastruc-
ture implementing optimized transfer mechanisms. In
this context, this paper aims to bring a complete config-
uration management solution for multi-processor turbo
decoder providing novel solutions allowing for the first
time: (1) a run-time evaluation of the number of decoding
iterations and the level of sub-block parallelism regard-
ing throughput and bit error rate (BER) requirements
and (2) a run-time configuration generation. As a base
architecture, the reconfigurable UDec ASIP-based turbo
decoder presented in [22] is considered. Therefore, the
corresponding architectural parameters in terms of mem-
ory bank sizes and communication interfaces between the
ASIPs have been used. In this paper, no specific optimiza-
tions have been introduced regarding the turbo decoding
itself.
The rest of this paper is organized as follows. Section 2

gives more insights about the motivation of this work.
Section 3 provides basics about turbo decoding and
related parallelism techniques. Section 4 introduces
the Reconfigurable UDec architecture implementing the
RDecASIP processor. Section 5 presents the proposed
method to dynamically evaluate the number of decod-
ing iterations and the level of sub-block parallelism that
have to be used to reach throughput and BER objectives.
Section 6 describes the proposed configuration manage-
ment method and evaluates the obtained performances.
Finally, Section 7 concludes the paper.

2 Motivation
When a turbo decoder is designed to support several com-
munication standards, the decoder behavior has to be
dynamically adapted in order to respect the application
requirements and to take into account the communica-
tion channel quality. In this paper, the scenario example

Lapotre et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:35 Page 3 of 15

presented in Fig. 1a is considered as the worst-case config-
uration scenario that should be met by a multi-mode and
multi-standard turbo decoder in mobility.
In future systems simultaneous applications dealing

with multiple communications standards have to be
considered. In this scenario, the turbo decoder deals
with input frames that have to be decoded for multiple
applications that use different communication standards
or modes. Each application is associated with specific
throughput and BER objectives. Moreover, considering a
mobile terminal, the configuration associated to an appli-
cation has to be adapted temporally depending on the
communication channel quality evolution. Consequently,
as shown in Fig. 1a, each frame received by the turbo
decoder is associated to a specific configuration, which
takes into account the application requirements and the
channel quality. In order to avoid extra delays between
two frames associated with different configurations, the
configuration process for a frame (i.e., computing and
loading the new configuration) can be performed during
the processing of the current frame. Thus, the maximum
configuration latency (MCL) for a frame k ensuring a null
extra delay between two frames is evaluated using (1).

MCL(k) = NPrevFrame(k).
FrameSize(k − 1).Rc(k − 1)

Throughput(k − 1)
(1)

where k is the kth received frame, NPrevFrame is the num-
ber of consecutive frames decoded with the same con-
figuration that precedes the frame k, FrameSize(k − 1)

is the (k − 1)th frame size in bits, Throughput(k −
1) is the throughput requirement associated with the
(k − 1)th data frame and Rc(k − 1) is the code rate
associated with (k − 1)th data frame. MCL, FrameSize,
and Throughput are expressed in seconds, bits, and
bits/s, respectively. Assuming the worst case when
NPrevFrame(k) = 1, the maximum configuration latency
critically decreases with high throughput targeted by
emerging and future wireless communication stan-
dards as shown in Fig. 1b. This figure presents the
decoding latency, i.e., frame duration in Fig. 1b.,
of a 2048-bit data frame for different wireless communi-
cation standards. Regarding the throughput requirement
evolution, the decoding latency of a frame decreases
and will reach latencies around few microseconds in
LTE-advanced standard. Thus, considering the dynamic
configuration scenario presented in this section, emerg-
ing and future high-throughput multi-mode and multi-
standard architectures will have to deal with maximum
configuration latencies around few microseconds. That is
why, this paper presents solutions to solve this challenging
issue.

3 Turbo decoding
Turbo decoding principle is based on an exchange of prob-
abilistic information, called extrinsic information between
two (or more) component decoders dealing with the same
received set of data. As shown in Fig. 2, a typical turbo
decoder consists of two decoders operating iteratively on

Fig. 1 Decoding latency of a 2048-bit frame. aWorst-case configuration scenario. b Frame decoding duration for a 2048-bit frame

Lapotre et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:35 Page 4 of 15

Fig. 2 Typical turbo decoder structure

the received frame. The first component (SISO decoder
0 in Fig. 2) works in natural domain while the second
(SISO decoder 1 in Fig. 2) works in interleaved domain.
The soft-input soft-output (SISO) decoders operate on
soft information to improve the decoding performance.
Thus, besides its own channel input data, each SISO
decoder deals with the extrinsic information generated by
the other SISO decoder in order to improve its estimation
over the iterations. Usually, but not necessary, the compu-
tations are done in the logarithmic domain. Each decoder
calculates the log-likelihood ratio (LLR) for the ith data bit
di as

L(di) = ln
Pr(di = 1|y)
Pr(di = 0|y) (2)

Input LLRs causing trellis transition can be decomposed
into three independent terms as

L(di) = Lapr(di) + Lsys(di) + Lpar(di) (3)

where Lapr(di) is the a-priori information of di, Lsys(di)
and Lpar(di) are the channel measurement of the system-
atic and parity parts respectively. Each soft-input soft-
output (SISO) decoder generates extrinsic information
that is sent to the other decoder. Extrinsic information
becomes the a-priori information Lap(di) for the other
decoder as shown in Fig. 2.
Several algorithms for this SISO decoding have been

proposed in the literature. The soft output Viterbi algo-
rithm (SOVA) and the Maximum Aposteriori Probability
(MAP) algorithms are the most frequently used. This last
algorithm has been simplified in [23] to propose the Max-
Log-MAP algorithm that is most often adopted because
of the efficient hardware implementation possibility. For
a better understanding of the architectural and config-
uration issues highlighted in the rest of this paper, the
next sub-section provides a short introduction to the
Max-Log-MAP decoding.

3.1 Max-Log-MAP algorithm
In order to explain briefly the underlined computations,
let us consider the 8-state double binary turbo code
(DBTC) of WiMAX standard. For each received dou-
ble binary symbol (S0,S1)k , the SISO decoder computes
first the branch metrics (γk(s′, s)) which represent the
probability of a transition to occur between two trellis
states (s′, starting state; s, ending state). These branch
metrics can be decomposed, as defined by the following
expressions, in an intrinsic part (γ intrx

k (s′, s)) due to the
systematic information (γ sysx

k (s′, s)), the a-priori informa-
tion (γ n.aprx

k (s′, s)) and a redundancy part due to the parity
information (γ

pary
k (s′, s)).

γk(s′, s) = γ
intrx
k (s′, s) + γ

pary
k (s′, s)

∀(x, y = 00, 01, 10, 11) (4)

γ
intrx
k (s′, s) = γ

sysx
k (s′, s) + γ

n.aprx
k (s′, s)

∀(x = 00, 01, 10, 11) (5)

where γ
n.aprx
k (s′, s) is the normalized a priori information

of the kth symbol or the normalized extrinsic information
(Zn.ext

k), sent by the other decoder component (expression
given below). Furthermore, the systematic and the parity
information in these expressions represent the symbol log-
likelihood-ratios (LLRs) which can be obtained by direct
addition and subtraction operations between the received
channel bit LLRs (S0, S1, P0, P1, P0′, P1′).
Then the SISO decoder runs the forward and backward

recursion over the trellis. The forward state metrics αk(s)
of the kth symbol are computed recursively using those
of the (k − 1)th symbol and the branch metrics of the
corresponding trellis section. Similarly for the backward
state metrics βk(s) which correspond to the backward
recursion (traversing the trellis in the reverse direction).

αk(s) = max
s′

(αk−1(s) + γk(s
′
, s))

∀(s′, s = 0, 1, ..7) (6)

βk(s) = max
s′

(βk+1(s) + γk(s
′
, s)) (7)

∀(s′, s = 0, 1, ..7)

Finally, the extrinsic information of the kth symbol is
computed for all possible decisions (00, 01, 10, 11) using
the forward state metrics, the backward state metrics, and
the extrinsic part of the branch metrics as formulated
in the following expressions:

Zapos
k (d(s′, s)= x) = max

(s′,s)/d(s′,s)=x
(αk−1(s)+γk(s′, s)+βk(s))

∀(x = 00, 01, 10, 11) (8)

Lapotre et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:35 Page 5 of 15

Zext
k (d(s′, s) = x) = Zapos

k (d(s′, s) = x) − γ
intx
k (s′, s)

∀(x = 00, 01, 10, 11) (9)

The extrinsic information can be normalized by sub-
tracting the minimum value in order to reduce the related
storage and communication requirements; thus, only
three extrinsic information values should be exchanged
for each symbol.

Zn.ext
k (d(s′, s)=x)=Zext

k (d(s′, s)=x)−min(Zext
k (d(s′, s)=x))

∀(x = 00, 01, 10, 11) (10)

Executing one forward-backward recursion on all sym-
bols of the received frame in the natural order completes
one half iteration. A second half iteration should be exe-
cuted in the interleaved order to complete one full turbo
decoding iteration. Once all the iterations are completed
(usually 6–7 iterations), the turbo decoder produces a
hard decision for each symbol Zhard dec.

k ∈ (00, 01, 10, 11).
For SBTC, the use of the trellis compression (radix-4)

[24] represents an efficient parallelism technique and
allows or efficient resource sharing with a DBTC SISO
decoder as two single binary trellis sections (two bits) can
be merged into one double binary trellis section.
The next section introduces the different levels of paral-

lelism that can be exploited considering a Max-Log-MAP
SISO decoder. It particularly highlights the SISO decoder
level parallelism.

3.2 Parallelism in turbo decoding
Turbo decoding provides an efficient solution to reach
very low error rate performance at the cost of high
processing time for data retrieval. In order to face this
limitation, many efforts targeting the exploitation of par-
allelism have been conduced in order to achieve high
throughput. These parallelism levels can be categorized in
three groups: metric level, SISO decoder level, and turbo
decoder level.
The metric level parallelism deals with the processing

of all metrics involved in the decoding of each received
symbol inside a Max-Log-MAP SISO decoder. For that
purpose, the inherent parallelism of the trellis structure
[25, 26] and the parallelism of the MAP computation
can be exploited [25–27]. The SISO decoder level paral-
lelism consists in duplicating the SISO decoders in natural
and interleaved domains, each executing the MAP algo-
rithm on a sub-block of the frame to be decoded. Finally,
the turbo decoder level parallelism proposes to dupli-
cate whole turbo decoders to process iterations and/or
frames in parallel. However, this level of parallelism is

not relevant due to the huge area overhead of such an
approach (all memories and computation resources are
duplicated). Moreover, this solution presents no gain in
frame decoding latency.
The SISO decoder level parallelism hugely impacts the

configuration process of a multi-processor turbo decoder.
Indeed, the number of SISO decoders that have to be con-
figured and the configuration parameters associated with
each SISO decoder are both dependent of this parallelism
level. At this level, two techniques are available: frame sub-
blocking and shuffled decoding. These two techniques are
detailed in the hereafter.
Frame sub-blocking: In sub-block parallelism, each

frame is divided into M sub-blocks and then each sub-
block is processed on a Max-Log-MAP SISO decoder
(Fig. 3). Besides duplications of Max-Log-MAP SISO
decoders, this parallelism imposes two other constraints.
On the one hand, interleaving has to be parallelized in
order to proportionally scale the communication band-
width. Due to the scramble property of interleavers, this
parallelism can induce communication conflicts except
for interleavers of emerging standards that are conflict-
free for certain parallelism degrees. In case of conflicts, an
appropriate communication structure, e.g., NoC, should
be implemented for conflict management [15]. On the
other hand, Max-Log-MAP SISO decoders have to be ini-
tialized adequately either by acquisition or by message
passing (βi and αi on Fig. 3). In [28], a detailed analysis
of the parallelism efficiency of these two methods is pre-
sented. It gives favor to the use of the message passing
technique. The message passing, which initializes a sub-
block with recursion metrics (α and β) computed dur-
ing the previous iteration in the neighboring sub-blocks
(Fig. 3), presents negligible time overhead compared to the
acquisition method.
Shuffled turbo decoding: The principle of the shuffled

turbo decoding technique has been introduced in [29]. In
this mode, all component decoders of natural and inter-
leaved domains work in parallel and exchange extrinsic
information as soon as it is created. Thus, the shuffled
turbo decoding technique performs decoding (computa-
tion time) and interleaving (communication time) fully
concurrently while serial decoding implies waiting for
the update of all extrinsic information before starting
the next half iteration. Thus, by doubling the number
of Max-Log-MAP SISO decoders, shuffled turbo decod-
ing parallelism halves the iteration period in comparison
with originally proposed serial turbo decoding. Never-
theless, to preserve error-rate performance with shuf-
fled turbo decoding, an overhead of iterations between
5 and 50% is required depending on the MAP com-
putation scheme, on the degree of sub-block paral-
lelism, on the propagation time, and on the interleaving
rules [28].

Lapotre et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:35 Page 6 of 15

Fig. 3 Sub-block parallelism with message passing for recursion metric initialization

Frame sub-blocking and shuffled turbo decoding greatly
impact the number of SISO decoders that have to be
configured for a given throughput objective. Thus, the
configuration load and the configuration latency depend
on these two techniques. Moreover, these levels of par-
allelism impact the performance of the decoder. Thus,
it directly impacts the number of decoding iterations
that has to be performed for a given BER objective
[30]. This section has provided the basic background on
turbo decoding and on the different levels of parallelism
which can be exploited in order to reach high-throughput
requirement imposed by emerging communication stan-
dards. The next section introduces the reconfigurable
multi-ASIP UDec architecture for turbo decoding.

4 Reconfigurable UDec architecture
The dynamically reconfigurable UDec architecture con-
sidered in this work is shown in Fig. 4. It consists of
two columns of RDecASIP processors interconnected via
two unidirectional Butterfly networks-on-chip supporting
shuffled turbo decoding. Each column corresponds to a
component decoder, one processing the data in natural
domain and the other in interleaved domain. In the exam-
ple of Fig. 4, four ASIPs are organized in two component
decoders built with two ASIPs, respectively. Each RDe-
cASIP is associated with three input memory banks of size
24 × 256 used to store the input channel LLR values ①.

There are also three banks of size 30× 256 used for extrin-
sic information storing ②. Each ASIP is further equipped
with two 88× 32memories which hold state metric values
③ and a read-only programmemory ④ which contains the
instructions in order to perform the decoding algorithm.
Moreover, each ASIP is configured through a configura-
tion memory ⑤ which contains all parameters required
to perform the initialization of the ASIP. Finally, the con-
figurable platform controller ⑥ manages the initialization,
configuration, and decoding processes. It is worth not-
ing that in the complete receiver architecture, the input
memories of the turbo decoder are duplicated to allow
buffering of next input streaming frame from the demap-
per while executing the iterative turbo decoding on the
current received frame. However, this buffering part is not
critical as the real timing constraint will be imposed by the
iterative decoding process.
The entire platform is configured through a bus-based

configuration infrastructure that implements unicast,
multi-cast, and broadcast mechanisms. The proposed bus
architecture can be split in three functional blocks: Mas-
ter Interface (MI) ⑦, Slave Interface (SI) ⑧, and Selec-
tor ⑨. Each configuration memory is connected to the
bus through a SI. The configuration manager deals with
the configuration generation, which is based on inter-
nal decisions and external information and commands,
which are described in Sections 5 and 6. The MI provides

Lapotre et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:35 Page 7 of 15

Fig. 4 Reconfigurable UDec system architecture example with 2 × 2 ASIPs

Lapotre et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:35 Page 8 of 15

an interface allowing the connection of the configuration
manager to the bus, the SI provides an interface between
the bus and the configuration memory, and the Selec-
tor provides a simple and efficient solution to select, at
run-time, RDecASIPs that are targeted by the next con-
figuration data. For clarity reasons, connections between
the Selector and the SIs are not represented in Fig. 4.
This infrastructure allows the transfer of a data into the
RDecASIP configuration memory in 5 clock cycles. More
details on the UDec configuration infrastructure architec-
ture and implementation can be found in [22, 31].
The RDecASIP [32, 33] implements the Max-Log MAP

algorithm (Sub-section 3.1) for LTE, WiMAX, and DVB-
RCS standards. It supports both single and double binary
convolutional turbo codes and implements radix-4 trellis
compression technique for SBTC mode. Moreover, slid-
ing window technique [34, 35] is used. Large frames are
processed by dividing the frame into Nw windows each
with a maximum size of 64 symbols. Each ASIP can man-
age a maximum of 12 windows. Since the RDecASIP is
designed to work in a multi-ASIP architecture, it requires
several parameters to deal with a sub-block of the data
frame and several parameters to configure the ASIPmode.
Concerning the sub-block partitioning, each ASIP is con-
figured with the size and the number of windows it has
to decode. Furthermore, the last window size can be dif-
ferent, so it corresponds to an additional parameter. In
a SBTC decoding mode, the address of the tail bits in
memory, the size, and the number of windows for the spe-
cific decoding phase of the tail bits have to be configured.
Parameters for the ASIP mode correspond to the loca-
tion of the ASIP in the architecture, the number of ASIPs
required, the parameter which defines if the current ASIP
is in charge of tail bits or not, the target standard, and
the scaling factor for extrinsic information. Finally, some
seed values are necessary for interleaving address gen-
eration in order to exchange information over the NoC
that connects the ASIPs of each decoder component. All
these parameters are required for each new configura-
tion of an ASIP within the platform and are stored in a
configuration memory (⑤ in Fig. 4). This configuration
load represents 253 bits per ASIP. Thus, at run-time, all
these parameters need to be computed and loaded into
the configuration memories when a new configuration
is required. For optimizing the configuration latency, the
configuration memory has been organized in a way that
allows broacasting and multi-casting transfers [32, 33]. In
this context, the configuration latency of the UDec plat-
form using the proposed configuration infrastructure is
defined by (11) [31].

ConfigurationLatency = 31 + (3.NASIP)

Fclk
(11)

Where NASIP is the number of RDecASIPs and Fclk is
the frequency of the proposed bus architecture. Thirty-
one clock cycles are necessary to transfer the parameters
common to all ASIPs (broadcasting) and the parameters
common to ASIPs of the same decoder component (multi-
casting). Three additional clock cycles are necessary to
transfer parameters that are different for each ASIP.
In order to define the number of ASIPs that needs to

be reconfigured to meet the throughput requirement, (12)
can be used. It gives the throughput reached by the UDec
architecture regarding the number of RDecASIP selected
to perform the decoding task. An average of Ninstr =
4 instructions per iteration are needed to process one
symbol which is composed of two bits.

Throughput = Fclk × (NASIP/2)
Ninstr × Niter

(12)

where Fclk and Niter are the clock frequency of the sys-
tem and the number of decoding iterations respectively.
(NASIP/2) reflects the level of sub-block parallelism. This
throughput is multiplied by two when shuffled decoding is
enabled. The decoding latency is dictated by the process-
ing latency of the RDecASIPs. In the complete receiver
architecture, input memories of the turbo decoder are
duplicated to allow buffering of next input streaming
frame from the demapper while executing the iterative
turbo decoding on the current received frame. Similarly,
the Butterfly NoCs are dimensioned to accommodate the
required communication bandwidth dictated by the RDe-
cASIPs. Therefore, regarding the RDecASIPs latency, 4
clock cycles (i.e. 4 instructions) are needed to process 1
symbol which is composed of 2 bits. This latency should
be multiplied by the number of iterations and the number
of symbols in a frame (FrameSize/2). On the other side,
it should be divided by the number of ASIPs per com-
ponent decoder (NASIP/2). Finally, 10 clock cycles should
be added once due to the 10 pipeline stages of the ASIP
[32, 33].

DecodingLatency = Ninstr × Niter × (FrameSize/2)
Fclk × (NASIP/2)

+ 10

(13)

In (12), the throughput of the platform is mainly influ-
enced to the number of ASIPs and the number of decoding
iterations that have to be performed. In [30], the authors
show that determining the level of sub-block parallelism
and the number of decoding iterations for a given couple
(throughput, BER) is not a trivial task. The next section
presents a low-overhead method to estimate the level of
sub-block parallelism and the number of decoding itera-
tions, which can be efficiently used at run-time.

Lapotre et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:35 Page 9 of 15

5 Dynamic estimation of the number of decoding
iterations for turbo decoding

This section analyses the impact of sub-block parallelism
regarding the number of decoding iterations, which have
to be performed with respect to a given FER (Frame
Error Rate) or BER. Then, a low-complexity method to
dynamically estimate the number of decoding iterations
with respect to the level of sub-block parallelism, which is
suitable for run-time execution, is proposed.

5.1 Case of sub-block parallelism
In the context of this work considering the Reconfigurable
UDec architecture presented in Section 4, sub-block par-
allelism method is associated with initialization by mes-
sage passing as described in Sub-section 3.2. This method
dynamically initializes a sub-block with recursion met-
rics computed during the last decoding iteration in the
neighboring sub-blocks. The authors of [28] have studied
the impact of sub-blocking on the turbo decoding per-
formance in terms of FER considering message passing
and conclude that asymptotic error rate is not affected
by message passing approach whatever is the parallelism
degree. Thus, it ensures that initialization by message
passing can be used without performance degradation in
terms of decoding quality by increasing the number of
decoding iterations with respect to the level of sub-block
parallelism.

In order to study the dynamic evolution of the num-
ber of decoding iterations w.r.t., the level of sub-block
parallelism, intensive simulations have been performed.
Simulation results are shown in dark straight line in Figs. 5
and 6 for two configurations. The configuration in
Fig. 5 presents the case of a communication with good
SNR channel condition targeting a very low BER equals
to 6.6 × 10−6 while the configuration presented in Fig. 6
presents the case of a communication with low SNR. The
results of the different conducted simulations show that
the necessary number of iterations can be roughly esti-
mated using a simple equation taking into account a base
number of decoding iterations, the level of sub-block par-
allelism, and a threshold value that drives the evolution
of the number of decoding iterations that have to be per-
formed to reach the target BER. The number of necessary
decoding iterations is given by (14).

Niter = NiterBase + � P
T

� (14)

where NiterBase is the number of decoding iterations that
has to be performed when the level of sub-block par-
allelism is one for a fixed target BER, T is a constant
threshold that can be evaluated by studying the linear
behavior of the evolution of the number of decoding iter-
ations, and P represents the level of sub-block parallelism
that have to be used to reach a given throughput. Thus,

Fig. 5 Number of iterations with message passing method, WiMAX, Max-Log MAP, code rate=5/6, 960 bits frame, SNR = 4.5 dB, BER = 6.6 × 10−6

Lapotre et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:35 Page 10 of 15

Fig. 6 Number of iterations with message passing method, WiMAX, Max-Log MAP, code rate = 2/3, 1920 bits frame, SNR = 2.3 dB

NiterBase and T are determined by analyzing the simula-
tion results. In our experiments, NiterBase has been fixed
using one additional iteration in order to provide a BER
greater or equal to the original BER objective. In the
examples of Figs. 5 and 6, NiterBase is equal to 7 and 8,
respectively. T values have been estimated by analyzing
the slope of the curve created with the simulation results
shown in straight dark line in Figs. 5 and 6. In Figs. 5
and 6, T is equal to 4 and 11, respectively. It is worth
noting that, regarding a given configuration, the value
of T is constant whatever is the target BER for typical
NiterBase values (from 5 to 10). Indeed, the degradation of
the decoding quality due to the increasing level of sub-
block parallelism is independent of the targeted BER. It
is related to the message passing method used for Max-
Log-MAP SISO decoders initialization. This observation
is illustrated in Fig. 6 where the behavior for three dif-
ferent BER objectives is shown. Indeed, we observe that
the slope of the curves is roughly identical allowing an
estimation with a unique value T for a fixed SNR. Esti-
mation results using (14) are presented in gray dotted
line in Figs. 5 and 6. Results show that, (14) provides a
low complexity solution that can be easily implemented
on a mobile device to estimate the number of neces-
sary decoding iterations with at most one more decoding
iteration compared to the simulation results. It is worth
noting that when the number of estimated decoding iter-
ations is not equal to that obtained through simulations,
it is overestimated ensuring the decoding performance in
terms of BER.

5.2 Case of shuffled decoding
The work presented in [30] shows that when using
shuffled decoding, the number of decoding iterations is
slightly increased compared to the number of decoding
iterations required to reach the same error rate perfor-
mance when using serial decoding. For example, in [30],
the authors study the shuffled decoding parallelism effi-
ciency (i.e., decoding performance in terms of FER) using
the interleaving rules specified in WiMAX/DVB-RCS.
Tables 1 and 2 show that the number of decoding itera-
tions guaranteeing the same decoding performance has to
be increased when shuffled decoding is used. It is worth
noting that the shuffled decoding efficiency is higher than
0.5 for all configurations presented in Tables 1 and 2. This
means that despite of the increasing number of decod-
ing iterations, the shuffled decoding still provides higher
throughput than serial decoding. Moreover, it can be

Table 1 Comparison of necessary number of decoding iterations
regarding the level of sub-block parallelism for 53 bytes DVB-RCS
interleaving code rate = 6/7, SNR = 4.0 dB, Log-MAP algorithm,
FER = 1.6 × 10−3

Sub-block
parallelism

Number of iterations
without shuffled
decoding

Number of iterations
with shuffled
decoding

Shuffled
decoding
efficiency

1 8 12 0.66

4 11 15 0.73

8 16 20 0.8

53 47 51 0.92

Lapotre et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:35 Page 11 of 15

Table 2 Comparison of necessary number of decoding iterations
regarding the level of sub-block parallelism for 188 bytes
DVB-RCS interleaving code rate = 6/7, SNR = 4.0 dB, Log-MAP
algorithm, FER = 1.6 × 10−3

Sub-block
parallelism

Number of iterations
without shuffled
decoding

Number of iterations
with shuffled
decoding

Shuffled
decoding
efficiency

1 8 11 0.72

2 9 11 0.82

4 9 12 0.75

16 13 15 0.86

64 19 23 0.83

128 34 37 0.92

highlighted that the shuffled decoding efficiency increases
when the level of sub-block parallelism increases too. This
leads to a relative constant number of additional decoding
iterations when shuffled decoding is enabled, i.e., four in
Table 1 and between two and four in Table 2. Thus, when
shuffled decoding is used, (14) can be modified as follows:

Niter = NiterBase +
⌊
P
T

⌋
+ NiterShuffled (15)

whereNiterShuffled is a constant that depends of the consid-
ered standard and frame size.
In the next subsection, the proposed estimation method

is considered for the configuration process of the recon-
figurable UDec architecture. An algorithm jointly deter-
mining the number of decoding iterations and the level of
sub-block parallelism is proposed to be used at run-time
in order to dynamically generate the configuration data for
the reconfigurable UDec platform.

5.3 Configuration parameters search algorithm
Before generating the configuration data for each RDe-
cASIP configuration memory, the level of sub-block par-
allelism and the number of decoding iterations to reach
the target throughput and the target BER has to be deter-
mined. For that purpose, the algorithm presented in Fig. 7
is proposed. It requires the following inputs: (1) the frame
size and the target throughput, (2) the base number of
decoding iterations NiterBase and the threshold value T,
which are used to compute the necessary number of
decoding iterations as explained in the two previous sub-
sections, and (3) Pmax, which is the maximum level of
sub-block parallelism supported by the platform. While
the frame size and the target throughput are transfered
to the UDec platform at run-time, the base number of
decoding iterations NiterBase and the threshold value T
taking into account different SNR and BER objectives have
to be stored in a memory associated to the configuration
manager. Each couple of values (NiterBase,T) can be stored
using 2 bytes. Thus, the number of bytes necessary to store

Fig. 7 Configuration parameter search algorithm

these parameters can be determined using the following
equation:

Nbytes = NSNR × NBER × 2 (16)

Where NSNR and NBER represent the number of sup-
ported SNR and BER objectives, respectively.
The proposed algorithm is built with a search loop

based on the level of sub-block incrementation. This
incrementation increases the throughput by rising the
level of sub-block parallelism, i.e., the number of acti-
vated RDecASIPs (line 5). For each level of parallelism, the
corresponding number of decoding iterations is deduced
from NiterBase and T (line 3). Then, the UDec throughput
(ThroughputUDec) corresponding to the level of sub-block
parallelism and the computed number of decoding itera-
tions is calculated (line 4). Finally, the UDec throughput
and the target throughput are compared. If the target
throughput is greater than the current UDec through-
put, the level of sub-block parallelism has to be increased
to reach the throughput requirement. Once loop itera-
tions finished (line 7), the UDec throughput and the target
throughput values are compared. If the UDec throughput
is greater than the target throughput, then a configura-
tion solution exists with a level of sub-block parallelism
of P and Niter decoding iterations. If no solution is found,
shuffled decoding can be enabled if the condition in terms
of frame size and code rate are met and a second search
(from line 9 to 15) can be performed. Indeed, shuffled
decoding cannot be used efficiently on small frame sizes
and high-code rate configurations [28]. Moreover, the

Lapotre et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:35 Page 12 of 15

algorithm favors a serial decoding configuration since it
requires less decoding iterations as shown in Tables 1
and 2. If shuffled decoding cannot be used, the recon-
figurable UDec architecture is not able to support such
a configuration respecting the required decoding perfor-
mance. In this case, a default configuration respecting
either the target throughput or the BER objective can be
generated. However, the system should be dimensioned
at design-time to support the worst-case supported sce-
nario. It is worth noting that the proposed algorithm does
not provide an optimum solution. Indeed, the algorithm
stops when the first solution is found. Thus, it guarantees
that, for a given configuration, the minimum number of
RDecASIPs is used. However, for a given configuration,
more RDecASIPs could be used for decoding a frame in
a shorter time (i.e., by increasing the throughput of the
platform).
The next section presents the proposed configuration

management solution ensuring a frame-by-frame config-
uration process, as the worst-case configuration scenario,
as presented in Section 2.

6 Run-time configurationmanagement
In the context of this work, the maximum configuration
latency of a frame is constrained by the previous frame
decoding duration as illustrated in Section 2. The config-
uration of the reconfigurable UDec architecture is divided
in three steps as shown in Fig. 8:

1. The configuration manager (shown in Fig. 4) receives
the configuration order associated with the frame
parameters (i.e., frame size, standard, throughput,
and targeted BER) necessary to generate the
configuration for the RDecASIPs.

2. The configuration manager generates the
configuration parameters for each selected RDecASIP
configuration memory presented in Section 4.

3. The configuration parameters for each selected
RDecASIP are transfered through the configuration
infrastructure presented in Section 4.

For this study, we assume that the configuration man-
ager generates at run-time the configuration information
for the entire UDec architecture based on the configu-
ration parameters received with the configuration order
for the next frame. These parameters are the frame size,
the throughput requirement, the target standard, and the
BER objectives which are used to compute the number of
decoding iterations as explained in Section 5. From these
parameters, the number of activated RDecASIPs is first
determined depending on the number of decoding itera-
tions using the search algorithm presented in Fig. 7. Then,
the contents of the different configuration memories of
the reconfigurable UDec architecture can be generated.
In the context of the multi-mode and multi-standard

scenario, where the configuration latency for the next
frame is limited by the decoding duration of the current
frame, the minimum decoding duration respecting this
rule can be deduced from the maximum configuration
latency of the platformwhich is reached when all the RDe-
cASIPs processors have to be configured. It guarantees
that the configuration latency is lower than the decoding
duration whatever is the configuration which has to be
performed. Thus, the maximum achievable throughput is
theoretically limited for a given frame size and is given
by (17) where Frame durationmin is equal to the maxi-
mal configuration generation latency plus the maximal
configuration transfer latency.

Thmax (in bps) = Frame size (in bits)
Frame durationmin (in s)

(17)

In order to estimate the configuration generation
latency of the reconfigurable UDec architecture, a C-code
allowing a run-time configuration generation has been
implemented on an ARM cortex A15 core with a fre-
quency of 1600 MHz. It is important to note that the
considered C-code has not been fully optimized and not
parallelized. This C-code consists in two steps. The first
step is an implementation of the algorithm shown in Fig. 7
to determine the number of decoding iterations that have
to be performed and the level of sub-block parallelism

Fig. 8 Configuration steps of the reconfigurable UDec platform

Lapotre et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:35 Page 13 of 15

Table 3 Configuration transfer latency in nanosecond for
different levels of sub-block parallelism

Level of sub-block
parallelism (P)

Number of
RDecASIPs

Transfer latency (in ns)
(estimated with (11))

2 4 86

3 6 98

4 8 110

8 16 158

16 32 254

32 64 446

for a given configuration. The second step generates
the configuration data for each configuration memory of
the UDec architecture. Implementation results show that
the configuration generation latency for a maximum level
of sub-block parallelism of 32 (64 RDecASIPs) is 4.14
μs. The first step requires 1.44 μs while the second step
requires 2.7 μs in order to generate 18,590 configuration
bits that have to be loaded in the 64 RDecASIPs con-
figuration memories and in the platform configuration
memory.
The different configuration memories are filled through

a configuration infrastructure shown in Fig. 4. In order
to compute the configuration transfer latency using (11),
it is necessary to fix the frequency of the configuration
infrastructure. For that purpose, a logic synthesis of the
configuration infrastructure was successfully performed
targeting a 65 nm CMOS technology with a clock fre-
quency objective equals to 500 MHz. This frequency has
been chosen in regard to RDecASIP maximum clock fre-
quency [31]. Table 3 presents the configuration transfer
latencies for various levels of sub-block parallelism. The
maximum configuration transfer latency for a level of
sub-block parallelism equals to 32 is 446 ns.
Consequently, the maximum total configuration latency

of the reconfigurable UDec architecture implementing

Table 4 Maximum throughput of the reconfigurable UDec
platform with 64 RDecASIPs, Ninstr = 4, Fclk = 500 MHz

Number of decoding iterations Max. throughput (in Mbps)

Serial decoding Shuffled decoding

4 1000 2000

6 667 1334

7 571 1142

8 500 1000

9 444 888

10 400 800

12 333 666

16 250 500

20 200 400

Table 5 Maximum throughput supporting frame-by-frame
configuration scenario in serial decoding with 64 RDecASIPs,
Ninstr = 4, Fclk = 500 MHz

Frame size Max. throughput (in Mbps)

(bits) 6 iter. 10 iter. 20 iter.

96 21 21 21

480 105 105 105

880 192 192 192

1920 418 400 200

4800 667 400 200

6144 667 400 200

64 RDecASIPs is 4.586 μs. This maximum configuration
latency represents the latency to generate a configuration
for 64 RDecASIPs plus the latency to send the configura-
tion data into the configuration memories of the platform.
Considering this maximum configuration latency, a max-
imum theoretical throughput ensuring the configuration
constraints described in Section 2 for a given frame size
can be determined using (17). However, this maximal
throughput is limited by the number of decoding itera-
tions and the number of implemented RDecASIPs in the
platform. Table 4 shows the maximal throughput consid-
ering the number of decoding iterations and the decoding
mode. These results are obtained from (12) considering 64
RDecASIP.
Based on the results presented in Table 4 and consid-

ering (17) and the maximal configuration latency of the
platform, the maximum throughput (i.e., using a level of
sub-block parallelism equals to 32) that can be reached by
the reconfigurable UDec architecture for various numbers
of decoding iterations and frame sizes of the supported
communication standards is presented in Tables 5 and 6
considering serial and shuffled decoding modes, respec-
tively. Two cases can be observed in Tables 5 and 6. The
first one concerns throughput values limited by the maxi-
mum configuration latency of the platform (i.e., 4.586 μs),
which are shown in white cells. In this case, the maximum
throughput for a given frame size is determined using (17).

Table 6 Maximum throughput supporting frame-by-frame
configuration scenario in shuffled decoding with 64 RDecASIPs,
Ninstr = 4, Fclk = 500 MHz

Frame size Max. throughput (in Mbps)

(bits) 6 iter. 10 iter. 20 iter.

96 21 21 21

480 105 105 105

880 192 192 192

1920 418 418 400

4800 1047 800 400

6144 1334 800 400

Lapotre et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:35 Page 14 of 15

Table 7 Comparison of supported dynamic configuration features with relevant existing works

Supported
standards

Maximum
throughput (Mbps)

Frame-by-frame
configuration

Run-time configuration
generation

[16]

LDPC 312, 263

No NoDBTC 173 @6iter.

SBTC 173 @6iter.

[17]
DBTC 21 @6iter./ASIP

No No
SBTC 21 @6iter./ASIP

[20]
LDPC 455 Yes with BER

No
DBTC 292 @8iter. degradation

This DBTC 1334 @6iter.
Yes Yes

work SBTC 1334 @6iter.

The second one concerns throughput values limited by
the number of integrated ASIPs in the platform, which are
shown in gray cells. In this case, the maximum through-
put for a given frame size is determined using results
given in Table 4. These results show that the proposed
configuration management of the reconfigurable UDec
architecture offers an efficient solution respecting the
configuration scenario presented in Section 2 with high
maximum throughput values up to 667 and 1334 Mbps in
serial and shuffled decoding modes, respectively.
Table 7 proposes a comparison of this work with sev-

eral relevant works in the literature. The proposed work
is the single one that provides a complete solution in
order to support a frame-by-frame dynamic configuration
management of a multi-processor turbo decoder, which
is able to dynamically evaluate and generate the con-
figuration data depending on throughput and error rate
requirements.

7 Conclusions
This paper presents the first solution that allows a frame-
by-frame run-time configuration management of a high-
throughput multi-processor turbo decoder. It provides
an analysis of the dynamic evolution of the number of
decoding iterations regarding the level of sub-block par-
allelism in order to be integrated in the configuration
management of the UDec architecture. A configuration
management, where the configuration information is gen-
erated at run-rime has been proposed. This solution
provides an efficient method for exploiting the capacity
of the reconfigurable UDec architecture while ensuring
a frame-by-frame configuration process w.r.t., the appli-
cation requirements in terms of throughput and error
rate. Considering a maximum configuration latency of
4.586 μs, the maximum throughput supported by the
architecture implementing 64 RDecASIPs is 1334 Mbps
when shuffled turbo decoding is enabled.

Authors’ contributions
VL designed and implemented the proposed architecture and wrote the
paper. AB scientifically supervised the work, provided the simulation results
used in this work, and participated in writing the paper. GG and J-PD
scientifically supervised the work and contributed in implementing the
proposed architecture. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Laboratoire Lab-STICC - CNRS, UMR 6285, Centre de Recherche Christiaan
Huygens, Rue de Saint-Maudé - BP 92116, 56321 Lorient, France. 2Institut
Mines-Telecom, Telecom Bretagne, Laboratoire Lab-STICC - CNRS, UMR 6285,
Technopôle Brest-Iroise - CS 83818, 29200 Brest, France.

Received: 3 March 2016 Accepted: 22 April 2017

References
1. C Berrou, A Glavieux, P Thitimajshima, in Proc. of the IEEE International

Conference on Communications (ICC). Near Shannon limit error-correcting
coding and decoding: turbo-codes. 1, vol. 2, (1993), pp. 1064–1070.
doi:10.1109/ICC.1993.397441

2. 3GPP TS 36.212. Evolved Universal Terrestrial radio access (E-UTRA);
multiplexing and channel coding, version 8.4.0 (2008). http://www.etsi.
org/deliver/etsi_ts/136200_136299/136212/08.04.00_60/ts_
136212v080400p.pdf

3. IEEE Standard for Local and Metropolitan Area Networks Part 16: Air
Interface for Fixed and Mobile Broadband Wireless Access Systems.
(Std., 2006). doi:10.1109/IEEESTD.2006.99107

4. C-C Wong, H-C Chang, Reconfigurable turbo decoder with parallel
architecture for 3GPP LTE system. IEEE Trans. Circuits Syst. II: Express Briefs.
57(7), 566–570 (2010). doi:10.1109/TCSII.2010.2048481

5. J-H Kim, I-C Park, in Proc. of the IEEE Custom Integrated Circuits Conference
(CICC). A unified parallel radix-4 turbo decoder for mobile wimax and
3GPP-LTE, (2009), pp. 487–490. doi:10.1109/CICC.2009.5280790

6. D-S Cho, H-J Park, H-C Park, in Proc. of the International Conference on
Telecommunications (ICT). Implementation of an efficient UE decoder for
3G LTE system, (2008), pp. 1–5. doi:10.1109/ICTEL.2008.4652642

7. D Wu, R Asghar, Y Huang, D Liu, in Proc. of the IEEE 8th International
Conference on ASIC (ASICON). Implementation of a high-speed parallel
turbo decoder for 3GPP LTE terminals, (2009), pp. 481–484.
doi:10.1109/ASICON.2009.5351623

http://dx.doi.org/10.1109/ICC.1993.397441
http://www.etsi.org/deliver/etsi_ts/136200_136299/136212/08.04.00_60/ts_136212v080400p.pdf
http://www.etsi.org/deliver/etsi_ts/136200_136299/136212/08.04.00_60/ts_136212v080400p.pdf
http://www.etsi.org/deliver/etsi_ts/136200_136299/136212/08.04.00_60/ts_136212v080400p.pdf
http://dx.doi.org/10.1109/IEEESTD.2006.99107
http://dx.doi.org/10.1109/TCSII.2010.2048481
http://dx.doi.org/10.1109/CICC.2009.5280790
http://dx.doi.org/10.1109/ICTEL.2008.4652642
http://dx.doi.org/10.1109/ASICON.2009.5351623

Lapotre et al. EURASIP Journal on Advances in Signal Processing (2017) 2017:35 Page 15 of 15

8. C-H Lin, C-Y Chen, E-J Chang, A-Y Wu, in Proc. of the 13th International
Symposium on Integrated Circuits (ISIC). A 0.16nj/bit/iteration 3.38mm2
turbo decoder chip for WiMAX/LTE standards, (2011), pp. 168–171.
doi:10.1109/ISICir.2011.6131904

9. M May, T Ilnseher, N Wehn, W Raab, in Proc. of the Design, Automation and
Test in Europe Conference & Exhibition (DATE). A 150Mbit/s 3GPP LTE turbo
code decoder, (2010), pp. 1420–1425. doi:10.1109/DATE.2010.5457035

10. R Shrestha, R Paily, in Proc. of the 26th International Conference on VLSI
Design and 12th International Conference on Embedded Systems (VLSID).
Design and implementation of a high speed MAP decoder architecture
for turbo decoding, (2013), pp. 86–91. doi:10.1109/VLSID.2013.168

11. Xilinx, Partial Reconfiguration User Guide UG702 (v14.5)
12. S Zhang, R Qian, T Peng, R Duan, K Chen, in Proc. of the 7th International

ICST Conference on Communications and Networking in China (CHINACOM).
High throughput turbo decoder design for GPP platform, (2012),
pp. 817–821. doi:10.1109/ChinaCom.2012.6417597

13. L Huang, Y Luo, H Wang, F Yang, Z Shi, D Gu, in Proc. of the IET
International Conference on Communication Technology and Application
(ICCTA). A high speed turbo decoder implementation for CPU-based SDR
system, (2011), pp. 19–23. doi:10.1049/cp.2011.0622

14. O Muller, A Baghdadi, M Jezequel, in Proc. of the Design, Automation and
Test in Europe Conference& Exhibition (DATE). ASIP-based multiprocessor
SoC design for simple and double binary turbo decoding, vol. 1, (2006),
pp. 1–6. doi:10.1109/DATE.2006.244126

15. H Moussa, O Muller, A Baghdadi, M Jezequel, in Proc. of the Design,
Automation Test in Europe Conference & Exhibition (DATE). Butterfly and
Benes-based on-chip communication networks for multiprocessor turbo
decoding, (2007), pp. 1–6. doi:10.1109/DATE.2007.364668

16. P Murugappa, A-K R., A Baghdadi, M Jézéquel, in Proc. of Design,
Automation and Test in Europe Conference & Exhibition (DATE). A flexible
high throughput multi-ASIP architecture for LDPC and turbo decoding,
(2011), pp. 1–6. doi:10.1109/DATE.2011.5763047

17. C Brehm, T Ilnseher, N Wehn, in Proc. of the International SoC Design
Conference (ISOCC). A scalable multi-ASIP architecture for standard
compliant trellis decoding, (2011), pp. 349–352. doi:10.1109/ISOCC.
2011.6138782

18. T Vogt, N Wehn, A reconfigurable ASIP for convolutional and turbo
decoding in an SDR environment. IEEE Trans. Very Large Scale Integration
(VLSI) Syst. 16(10), 1309–1320 (2008). doi:10.1109/TVLSI.2008.2002428

19. S Kunze, E Matus, G Fettweis, T Kobori, in Proc. of the IEEEWorkshop on
Signal Processing Systems (SIPS). A “multi-user” approach towards a
channel decoder for convolutional, turbo and ldpc codes, (2010),
pp. 386–391. http://ieeexplore.ieee.org/document/5624878/

20. C Condo, M Martina, G Masera, VLSI implementation of a multi-mode
turbo/LDPC decoder architecture. IEEE Trans. Circuits Syst. I: Reg. Papers.
60(6), 1441–1454 (2012). doi:10.1109/TCSI.2012.2221216

21. C Condo, M Martina, G Masera, in Proc. of the Design, Automation and Test
in Europe Conference & Exhibition (DATE). A network-on-chip-based
turbo/LDPC decoder architecture, (2012), pp. 1525–1530.
doi:10.1109/DATE.2012.6176715

22. V Lapotre, P Murugappa, G Gogniat, A Baghdadi, M Hubner, J-P Diguet,
A dynamically reconfigurable multi-ASIP architecture for multistandard
and multimode turbo decoding. IEEE Trans. Very Large Scale Integration
(VLSI) Syst. PP(99), 1–1 (2015). doi:10.1109/TVLSI.2015.2396941

23. P Robertson, E Villebrun, P Hoeher, in Proc. of the IEEE International
Conference on Communications (ICC). A comparison of optimal and
sub-optimal MAP decoding algorithms operating in the log domain,
vol. 2, (1995), pp. 1009–10132. doi:10.1109/ICC.1995.524253

24. M Bickerstaff, L Davis, C Thomas, D Garrett, C Nicol, in Proc. of the 2003 IEEE
International Solid-State Circuits Conference (ISSCC). A 24mb/s radix-4
logmap turbo decoder for 3GPP-HSDPA mobile wireless, (2003),
pp. 150–4841. doi:10.1109/ISSCC.2003.1234244

25. G Masera, G Piccinini, MR Roch, M Zamboni, VLSI architectures for turbo
codes. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 7(3), 369–379
(1999). doi:10.1109/92.784098

26. E Boutillon, WJ Gross, PG Gulak, VLSI architectures for the MAP algorithm.
IEEE Trans. Commun. 51(2), 175–185 (2003).
doi:10.1109/TCOMM.2003.809247

27. Y Zhang, KK Parhi, in Proceedings of the 2004 International Symposium on
Circuits and Systems (ISCAS). Parallel turbo decoding, vol. 2, (2004),
pp. 509–512. doi:10.1109/ISCAS.2004.1329320

28. O Muller, A Baghdadi, M Jezequel, Parallelism efficiency in convolutional
turbo decoding. EURASIP J. Adv. Signal Process. 2010(1), 927–920 (2010)

29. J Zhang, MPC Fossorier, Shuffled iterative decoding. IEEE Trans. Commun.
53(2), 209–213 (2005). doi:10.1109/TCOMM.2004.841982

30. O Muller, A Baghdadi, M Jezequel, in Information and Communication
Technologies, 2006. ICTTA ’06. 2nd. Exploring parallel processing levels for
convolutional turbo decoding, vol. 2, (2006), pp. 2353–2358.
doi:10.1109/ICTTA.2006.1684774

31. V Lapotre, P Murugappa, G Gogniat, A Baghdadi, M Huebner, J-P Diguet,
in Proc. of the 2013 16th Euromicro Conference on Digital SystemDesign
(DSD). Stopping-free dynamic configuration of a multi-asip turbo
decoder, (2013). http://ieeexplore.ieee.org/document/6628272/

32. V Lapotre, P Murugappa, G Gogniat, A Baghdadi, J-P Diguet, J-N Bazin,
M Huebner, in Proc. of the 2013 IEEE International Symposium on Circuits
and Systems (ISCAS). Optimizations for an efficient reconfiguration of an
ASIP-based turbo decoder, (2013). http://ieeexplore.ieee.org/document/
6571888/

33. V Lapotre, P Murugappa, G Gogniat, A Baghdadi, M Huebner, J-P Diguet,
in Proc. of the 2013 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI). A reconfigurable multi-standard ASIP-based turbo decoder for an
efficient dynamic reconfiguration in a multi-ASIP context, (2013). http://
ieeexplore.ieee.org/document/6654620/

34. C Schurgers, F Catthoor, M Engels, Memory optimization of MAP turbo
decoder algorithms. IEEE Trans. Very Large Scale Integration (VLSI) Syst.
9(2), 305–312 (2001). doi:10.1109/92.924051

35. S Benedetto, D Divsalar, G Montorsi, F Pollara, Soft-output decoding
algorithms in iterative decoding of turbo codes (1996). The
Telecommunications and Data Acquisition Progress Report 42-124. NASA
Code 315-91-20-20-53. https://ipnpr.jpl.nasa.gov/progress_report/42-
124/title.htm

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1109/ISICir.2011.6131904
http://dx.doi.org/10.1109/DATE.2010.5457035
http://dx.doi.org/10.1109/VLSID.2013.168
http://dx.doi.org/10.1109/ChinaCom.2012.6417597
http://dx.doi.org/10.1049/cp.2011.0622
http://dx.doi.org/10.1109/DATE.2006.244126
http://dx.doi.org/10.1109/DATE.2007.364668
http://dx.doi.org/10.1109/DATE.2011.5763047
http://dx.doi.org/10.1109/ISOCC.2011.6138782
http://dx.doi.org/10.1109/ISOCC.2011.6138782
http://dx.doi.org/10.1109/TVLSI.2008.2002428
http://ieeexplore.ieee.org/document/5624878/
http://dx.doi.org/10.1109/TCSI.2012.2221216
http://dx.doi.org/10.1109/DATE.2012.6176715
http://dx.doi.org/10.1109/TVLSI.2015.2396941
http://dx.doi.org/10.1109/ICC.1995.524253
http://dx.doi.org/10.1109/ISSCC.2003.1234244
http://dx.doi.org/10.1109/92.784098
http://dx.doi.org/10.1109/TCOMM.2003.809247
http://dx.doi.org/10.1109/ISCAS.2004.1329320
http://dx.doi.org/10.1109/TCOMM.2004.841982
http://dx.doi.org/10.1109/ICTTA.2006.1684774
http://ieeexplore.ieee.org/document/6628272/
http://ieeexplore.ieee.org/document/6571888/
http://ieeexplore.ieee.org/document/6571888/
http://ieeexplore.ieee.org/document/6654620/
http://ieeexplore.ieee.org/document/6654620/
http://dx.doi.org/10.1109/92.924051
https://ipnpr.jpl.nasa.gov/progress_report/42-124/title.htm
https://ipnpr.jpl.nasa.gov/progress_report/42-124/title.htm

	Abstract
	Keywords

	Introduction
	Motivation
	Turbo decoding
	Max-Log-MAP algorithm
	Parallelism in turbo decoding

	Reconfigurable UDec architecture
	Dynamic estimation of the number of decoding iterations for turbo decoding
	Case of sub-block parallelism
	Case of shuffled decoding
	Configuration parameters search algorithm

	Run-time configuration management
	Conclusions
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

