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Abstract 

 

Carbohydrate polymers drive microbial diversity in the human gut microbiota. It is 

unclear, however, whether bacterial consortia or single organisms are required to 

depolymerize highly complex glycans. Here we show that the gut bacterium 

Bacteroides thetaiotaomicron utilizes the most structurally complex glycan known; the 

plant pectic polysaccharide rhamnogalacturonan-II, cleaving all but one of its 21 

distinct glycosidic linkages. We show that rhamnogalacturonan-II side-chain and 

backbone deconstruction are coordinated, to overcome steric constraints, and that 

degradation reveals previously undiscovered enzyme families and novel catalytic 

activities. The degradome informs revision of the current structural model of RG-II and 

highlights how individual gut bacteria orchestrate manifold enzymes to metabolize the 

most challenging glycans in the human diet.  

 

Plants containing rhamnogalacturonan-II (RG-II) have been consumed since the archaic 

humans1. This branched pectic-polysaccharide is the most complex glycan known containing 

13 different sugars and 21 distinct glycosidic linkages (Fig. 1)2. The abundance of RG-II in red 

wine and other processed pectins3 reflects its recalcitrance to degradation. The 

polysaccharide, however, is degradation as it does not accumulate in the environment, but the 

organisms that utilize RG-II and the mechanism of depolymerisation remain opaque. Dietary 

glycans are the predominant nutrients available to the human gut microbiota (HGM)4-6 and are 

major drivers in defining its community structure7. As RG-II has been a component of the 

human diet over hundreds of thousands of years we hypothesise that the glycan exerts a 

selection pressure on the HGM leading to the evolution of organisms that degrade the pectic 

carbohydrate, consistent with initial studies suggesting that Bacteroides thetaiotaomicron 

(HGM bacterium) can utilize at least components of the glycan8. To test this hypothesis the 

mechanism by which B. thetaiotaomicron degrades RG-II was elucidated.  

 

Growth of HGM Bacteroides on RG-II  

To explore whether single organisms grow on RG-II, the glycan was incubated with 

Bacteroides species of the HGM. Approximately 30% of these organisms grew on the glycan 

(Fig. 2a). Only monosaccharides and 2-O-Me-D-Xyl-1,3-L-Fuc remained in stationary phase 

cultures (Fig. 2b and Supplementary Table 1) indicating the bacteria cleaved 20 of the 21 

distinct glycosidic linkages in the polysaccharide. Transcriptomic analysis of one of these 

species, B. thetaiotaomicron, showed that RG-II upregulates three polysaccharide utilization 

loci (PULs), RG-II PUL1-PUL3, (Extended data Fig. 1a)8. Activities of recombinant enzymes 

encoded by these loci were determined using RG-II or RGII-derived oligosaccharides 
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(Extended Data Fig. 2 and Methods 1.1.2). The data revealed the degradative pathway for 

each oligosaccharide, leading to a model for RG-II depolymerisation (Fig. 1).  

 

Specificity of enzymes that cleave RG-II 

Each glycosidic linkage in RG-II, except for 2-O-Me-D-Xyl-1,3-L-Fuc, is hydrolysed by a 

bespoke enzyme (Fig. 1 and 2b). Thus, although the loci encode multiple -L-rhamnosidases 

and L-arabinosidases, there is no redundancy in the linkage hydrolysed by these enzymes 

(Supplementary Tables 2 and 3). This stringent enzymatic specificity likely reflects an 

apparatus that is tuned to maximise the rate of the degradative process, offsetting the energy 

required to synthesise such an elaborate catabolic system. 

 

The RG-II degrading system (RG-II-degradome) contains three enzymes each comprising two 

distinct catalytic modules. BT0996 contains a -D-glucuronidase and a -L-

arabinofuranosidase that target Chain A and B, respectively (Supplementary Table 3) 

implying that degradation of the oligosaccharide decorations is coordinated. BT1013 and 

BT1020 hydrolyse the two linkages in Chain C and D, respectively (Extended Data Fig. 3 and 

Supplementary Discussion 2). The crystal structure of BT1020 (Extended Data Fig. 4a) 

reveals an N-terminal 5-bladed -propeller 2-keto-3-deoxy-d-lyxo-heptulosaric acid (Dha)-

hydrolase and C-terminal (/)6 barrel -L-arabinofuranosidase. The -L-arabinofuranosidase 

domain (in complex with arabinose) contains a canonical glycoside hydrolase (GH) catalytic 

apparatus comprising two carboxylate residues. In the Dha-hydrolase active site a tyrosine 

and glutamate function as the catalytic nucleophile and acid-base residues; resembling the 

catalytic centre of sialidases that also act on ulosonic acids9. The highly basic nature of the 

active sites of BT1020 are consistent with the negatively charged species that occupy the two 

catalytic centres (Supplementary Discussion 3.1).  

 

The CAZy database groups GHs into sequence-based families (designated GHXX)10.  

Predicting specificity based on family classification, however, is challenging since GH families 

are often poly-specific with only ~2% of the enzymes characterized10. Analyses of enzymes 

that deconstruct RG-II advance the functional annotation of existing GH families. The GH2 -

D-galacturonidase, BT0992; GH2 -arabinopyranosidase, BT0983; and GH127 aceric acid 

hydrolase, BT1003 (Fig. 3 and Extended Data Fig. 5), represent new activities for their 

respective families (Supplementary Table 3), while the crystal structure of the -L-

rhamnosidase BT0986 provides unique insights into the mechanism of substrate recognition 

and catalysis for a GH106 enzyme11 (Extended Data Fig. 6). This 1100 residue protein 

contains an N-terminal (/)8-barrel catalytic domain. The heptaoligosaccharide generated by 
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bt0986 bound in the centre of the (/8-barrel in a funnel-like structure extending from the 

active site pocket. Mutagenesis studies revealed the catalytic residues  BT0986 

(Supplementary Table 4). Glu593, which is 5 Å from the anomeric carbon likely activates a 

water molecule that mounts a nucleophilic attack at C1, thus the glutamate is predicted to be 

the catalytic base.  Glu461 is within hydrogen bonding distance of the glycosidic oxygen and 

is the candidate catalytic acid. In the active site glutamates coordinate calcium, which makes 

polar interactions with O2 and O3 of the L-rhamnose. The importance of calcium is illustrated 

by the loss of activity by EDTA or when the glutamates that coordinate the metal were mutated 

(Supplementary Table 4 and Supplementary Discussion 3.2). The essentiality of calcium 

has resonance with other inverting enzymes that target -manno-configured linkages, which 

often exploit divalent metal ions in substrate binding12.  

 

The aceric acid hydrolase activity of BT1003 is intriguing as GH127 was, prior to this work, 

populated only by -L-arabinofuranosidases13; L-AceA is 3-C-carboxy-5-deoxy-L-xylose14. The 

crystal structure and mutagenesis of BT1003 (Extended Data Fig. 7a and Supplementary 

Table 4) showed that the proposed catalytic acid-base of GH127 arabinofuranosidases is not 

conserved in BT1003, suggesting substrate participation in glycosidic bond cleavage 

(Supplementary Discussion 3.5 and Supplementary Fig. 1).   

 

Founding members of new GH families  

The RG-II-degradome contains seven enzymes that reveal new GH families (Fig. 1 and 

Supplementary Table 3), comprising an endo-apiosidase (BT1012, GH140), Dha-hydrolase 

(N-terminus of BT1020, GH143), two -L-arabinofuranosidases (C-terminus of BT1020, 

GH142; N-terminus of BT0996, GH137), -2-O-Me-L-fucosidase (BT0984, GH139), -L-

fucosidase (BT1002, GH141) and -galacturonidase (BT0997, GH138). BT1017 represents a 

new family of pectin methyl-esterases (Extended Data Fig. 8b). Additional novel features of 

RG-II depolymerisation are the -2-O-Me-fucosidase (2MeFuc), Dha-hydrolase and AceAase 

activities, which have not previously been described even though 2MeFuc and Dha exist in 

other glycans15,16. The widespread presence of these newly discovered enzyme families in 

Bacteroidetes and other bacterial phyla, and the occurrence of GH139, GH140, GH141 and 

GH142 in fungi, suggest that these enzymes contribute to glycan degradation in diverse 

environments.  

 

The generic relevance of RG-II PUL1 in RG-II utilization was supported by bioinformatic 

analysis. Xenologs of RG-II PUL1 proteins were identified by reciprocal best-BLAST hits in 

the HGM Bacteroides species (Extended data Fig. 1b). Only species that grew on RG-II 
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contain proteins that display 65-95% identity with the B. thetaiotaomicron enzymes. Of 372 

non-HGM Bacteroidetes species searched for candidate RG-II-degradomes, 40 contained 

PULs that encoded xenologs of all the necessary enzyme activities for RG-II breakdown 

(Supplementary Table 5). Example organisms include Prevotella bryantii (bovine rumen), 

Flavobacterium johnsoniae and Niabella soli (soil). This suggests that these species may also 

depolymerize the glycan (Extended data Fig. 1b and Supplementary Fig. 3).  

 

A model for RG-II degradation 

A hierarchical model for the RG-II degradome is proposed (Fig. 4). Chain C and E, the L-Araf 

of Chain D and the terminal region of Chain A and B are cleaved without hydrolysis of the 

glycan backbone (Supplementary Table 6). The steric constraints imposed by RG-II are 

consistent with this incomplete degradation. We propose that cleavage of the backbone 

increases enzyme access, enabling further degradation of the side-chains. The complete 

deconstruction of these side-chains is tightly linked to disassembly of the backbone. BT1023, 

a polysaccharide lyase, initiates backbone cleavage, which is critical for RG-II utilization as 

the bt1023 mutant grew poorly on the glycan (Fig. 2c). The enzyme cleaved only the 

homogalacturonan within RG-II (Extended Data Fig. 8a) indicating that side-chains are 

specificity determinants for BT1023. The completion of backbone degradation was mediated 

by removal of methyl esters (BT1017) and Dha (BT1020) (Extended Data Fig. 8b and 3cd), 

in harness with exo-acting glycosidases (Supplementary Table 3). Enzyme cell localization 

studies indicate that depolymerisation is exclusively periplasmic (Fig. 4b and Supplementary 

Discussion 4).  

 

After backbone depolymerization, D-Apif of Chains A and B, linked to the remaining D-GalAs, 

are released by BT1012 prior to cleavage of L-Rhap-D-Apif by BT1001 (Supplementary Table 

6). Thus, features of the -L-rhamnosidase distal to the +1 subsite prevent binding of 

substrates with a degree of polymerization >2. The crystal structure of the apiosidase 

(BT1012; Extended Data Fig. 7bi) reveals a (/)8-barrel catalytic domain and a C-terminal 

-sandwich domain. The predicted catalytic residues, Asp187 and Glu284, which are essential 

for activity (Supplementary Table 4), are separated by ~5.5 Å, consistent with a double 

displacement mechanism and retention of anomeric configuration (confirmed experimentally, 

Extended Data Fig. 7bii). Two arginines in the +1 subsite likely contribute to D-GalA binding 

through formation of ion pairs, consistent with mutagenesis data (Supplementary Table 4). 

The -1 (active site) and +1 subsites are narrow preventing binding of D-Apif linked to borate 

and D-GalA appended to the backbone at O-1 or O-4 (Extended Data Fig. 7biii), explaining 

why the apiosidase functions late in the degradative process (Fig. 4a).   
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The enzymes that depolymerize Chains A and B cleave their target sugars only when they are 

at the non-reducing termini (Supplementary Table 6). Thus, both chains are depolymerized 

through sequential-acting exo-glycosidases. Of particular note is BT1002, a -L-fucosidase 

that targets Fuc substituted at O-3 with 2-O-Me--D-Xyl (Fig. 3). The active site pocket of the 

hydrolase is likely to be significantly more open than in GH95 and GH29 fucosidases that are 

unable to tolerate O-3 substitutions17,18. This is consistent with the topology of the catalytic 

centre of BT1002, which comprises an extended pocket (Extended Data Fig. 7c), which may 

bind the disaccharide 2-O-Me-D-Xyl-1,3-L-Fuc (Supplementary Discussion 3.3).  

 

Removal of the borate steric barrier 

RG-II in planta is a dimer mediated by a borate diester linkage between D-Apif in Chain A of 

each monomer15. How the RG-II-degradome overcomes the steric constraints imposed by this 

dimer is a critical question. Previous studies19 proposed that removal of L-Gal-D-GlcA, 

destabilises borate-mediated dimerization. We show that Chain A-derived oligosaccharides, 

lacking the terminal L-Gal and D-GlcA, contained D-Apif at their reducing end (Extended Data 

Fig. 2). In contrast bt1010 generated intact Chain A with D-GalA attached to D-Apif. These 

data indicate that the apiosidase was only active against Chain A after L-Gal and D-GlcA had 

been removed, and thus the loss of this disaccharide destabilized the interaction of D-Apif  with 

borate. Thus the apiosidase was not active against Chain A in this mutant, indicating that 

borate remained bound to D-Apif preventing access to the apiosidase. In vitro the activity of 

the apiosidase against intact Chain A was sensitive to borate (Extended Data Fig. 9bd) but 

the oxyanion did not inhibit the enzyme against L-Rha-D-Api-D-GalA (Extended Data Fig. 9c). 

These data indicate that borate only bound to D-Apif in full length Chain A, explaining how 

initial degradation of this side chain relieved steric constraints imposed by the oxyanion.  

 

The species-dependent variation of the terminal region of Chain B in RG-II19,20, 

(Supplementary Discussion 1.0) may explain why RG-II PUL3 encodes several putative 

GHs that may contribute to degradation of all RG-II structures. Thus, BT3662 removed Chain 

E (Fig. 1 and Supplementary Table 2), present in grape RG-II but absent in the glycan from 

other plants. The crystal structure of BT3662, which hydrolyses -Araf linkages, (Extended 

Data Fig. 4b), comprises an N-terminal five-bladed -propeller catalytic domain. The active 

site pocket, which contains all the features of a typical GH43 -L-arabinofuranosidase21, abuts 

onto a channel containing Tyr199 in the +1 subsite and two arginines in the distal regions. 

Mutagenesis data (Supplementary Table 4) suggest the basic residues sequester the acidic 

backbone of RGII into the substrate binding cleft, facilitating optimal interactions of the leaving 
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group GalA with Tyr199. RG-II PUL2 only encodes a SusCh/SusDh pair (outer membrane 

glycan transporter)22, BT1683 and BT1682. The bt1683/bt1682 mutant grew on apple but 

not wine RG-II, while the bt1024/bt1029 variant (deletion of susch/susdh in RG-II PUL1) 

metabolized the glycan from wine but slowly from apple (Fig. 2d). These data suggest that 

the multiple SusCh/SusDh pairs encoded by the RG-II PULs are required to import plant-

specific variants of RG-II. 

  

New features of RG-II structure 

The specificity of the RG-II-degradome shows that the current model of the glycan requires 

revision. BT1001, which  cleaves the Rha-Api linkage in Chains A and B, was shown to be a 

-L-rhamnosidase (Extended data Fig. 10a; Supplementary Tables 3 and 7). Thus, the Rha-

Api linkage in Chain A and B is  and not  as previously reported19. The change in the 

stereochemistry of this L-Rha linkage is likely to have a substantial impact on our knowledge 

of the conformations adopted by RG-II.  

 

Analysis of the RG-II-degradome revealed a new side chain (Chain F) consisting of a -Araf 

linked O-3 to the backbone GalA substituted at O-2 with Chain A. This arabinose was evident 

in the oligosaccharides generated by B. thetaiotaomicron mutants bt1017 (Extended data 

Fig. 8bc), bt1021, bt1010/bt1021 and bt0986/bt1021 (Extended Data Fig. 10b; 

Supplementary Discussion 5). Chain E, also comprising a single arabinose linked to the 

backbone, is distinct from Chain F as they are removed by BT3662 and BT1021, respectively 

(Supplementary Tables 3 and 6). Although methyl-esterification of backbone GalA(s) is 

known, the location and extent of these decorations were unclear23. The bt1017 mutant, 

(lacks the pectin methyl-esterase), generated an oligosaccharide with a methyl-esterified GalA 

linked to O-4 of the GalA decorated with Chain A and F (Extended Data Fig. 8bc). This 

suggests that methyl-esterification occurs on a specific backbone GalA proximal to Chain A 

and F. 

 

The crystal structure of the -L-arabinofuranosidase of BT0996 revealed electron density for 

Chain B (Fig. 5 and Supplementary Discussion 3.4). The conformation of the 

oligosaccharide was stabilized through polar interactions within the nonasaccharide and 

confirmed the -linkage between L-Rhap and D-Apif (Fig. 5d). Significantly, the L-Arap, 

substituted at O-2 and O-3 by L-Rhap, was in the unusual 1C4 conformation, consistent with 

NMR data24. This unfavourable conformation is stabilised by polar interactions between the 3-

linked L-Rhap and the rest of the chain. Removing this -L-1,3-Rhap by BT1019 likely allows 

the Arap to adopt the normal 4C1 conformer and is thus a substrate for the GH2 -
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arabinopyranosidase BT0983, which hydrolyses equatorial glycosidic bonds. The relaxed 4C1 

conformation of Arap was captured in the structure of the Chain B-derived unbranched 

heptasaccharide (lacks the 3- linked L-Rhap) bound to BT0986 (Extended data Fig. 6df). 

 

This study reveals the elaborate and highly specific enzyme system by which B. 

thetaiotaomicron utilizes RG-II, a highly complex glycan. Our data show that RG-II PUL1 

encoded several proteins annotated as hypothetical  are enzymes that are the founding 

members of new GH and esterase families. The discovery of seven new enzyme families, 

catalytic functions not previously reported, and new specificities for existing GH families 

illustrates the novelty of the RG-II degradome, and how the unique structural features of this 

glycan have driven the evolution of new catalysts. This contrasts with recent studies of the 

glycan-degrading apparatus of other HGM organisms, which exclusively utilize enzymes from 

existing CAZy families21-25. The model of RG-II degradation proposed, coupled with the 

unveiling of novel enzymes and activities, now provides a framework to discover and dissect 

pectic polysaccharide degradation in environments extending beyond the human gut 

microbiota. The true extent of RGII degradation in nature can now be accessed.  
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FIGURE LEGENDS FOR MAIN PAPER 

 

Fig. 1. Schematic of enzymes and PULs involved in RG-II degradation.  Sugars shown 

using the Consortium for Functional Glycomics notation25. Enzymes are appropriately colour-

coded. * signifies a new activity for a GH family. ** are enzymes with novel activities.  

 

Fig. 2. Growth of Bacteroidetes species on RG-II. a, Growth of Type strains of HGM 

Bacteroidetes on RG-II and phylogeny of the organisms (biological replicates, n = 6).  b, 

HPAEC-PAD analysis of stationary-phase culture of B. thetaiotaomicron (* in a). c, wild type 

B. thetaiotaomicron (WT) and mutants lacking RG-II-PUL1 (rg11-pul1) or the polysaccharide 

lyase BT1023 (bt1023) were inoculated into RG-II-media and CFUs determined. d, WT and 

mutants in which susch-susdh pairs had been deleted were cultured on red wine or apple juice 

RG-II and growth monitored every 20 min (biological replicates n =6, error bars s.e.m.).  

     

Fig. 3. B. thetaiotaomicron-mediated depolymerisation of RG-II Chain A. The substrates 

comprised Chain A released from RG-II by trifluoroacetic acid and the oligosaccharides 

generated by mutants of B. thetaiotaomicron in which bt0997, bt0992 or bt1002 had been 

deleted. Individual proteins (1 M) were incubated with the glycans (5 mM) for 16 h at 37 0C 

in 20 mM sodium phosphate buffer, pH 7.0. Monosaccharides and oligosaccharides generated 

were identified by HPAEC-PAD and ESI-MS, respectively. Verification of the model was 

achieved by reconstituting the pathway using the six enzymes in concert, which showed that 

the GHs only functioned in the order shown in the figure. The example is from technical 

replicates n = 3.    

 

Fig. 4. Model of RG-II disassembly by B. thetaiotaomicron. a, displays the degradative 

model. Enzyme cohorts that degrade a specific region of RG-II are coloured the same and the 

values in parenthesis indicate the predicted order in which they act, based on data (technical 

replicates n = 3) in Supplementary Table 6, b, cellular localization of key RG-II degrading 

enzymes based on their resistance to proteinase K when expressed by B. thetaiotaomicron. 

BT4661 and BT1030 are known surface glycan binding proteins. The example is from 

biological replicates n = 3.    
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Fig. 5. Crystal structure of N-terminal catalytic domain of BT0996 (BT0996-N) in complex 

with RG-II-Chain B. a, schematic of BT0996-N rainbow colour ramped from the N- (blue) to 

C- (red) termini. Black box; L-Araf-containing active site. b, residues interacting with L-Araf, 

which include the putative catalytic amino acids [Glu240 (shown as Gln240) and Glu159]. c, 

surface representation of the active site-pocket containing L-Araf. d, crystal structure of Chain 

B in complex with  BT0996-N. The  linkage between L-Rhap and D-Apif  is shown in red. e, 

shows Chain B (sugars coloured as in d) in the funnel-like substrate binding site of BT0996-

N. In c,d polar interactions are broken black lines and the blue mesh is the electron density 

map (2Fo − Fc) of the ligands at 1.5 σ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Ndeh, D., Rogowski, A., Cartmell, A., Luis, A. S., Basle, A., Gray, J., Venditto, I., Briggs,

J., Zhang, X., Labourel, A., Terrapon, N., Buffetto, F., Nepogodiev, S., Xiao, Y., Field, R. A.,
Zhu, Y., O'Neill, M. A., Urbanowicz, B. R., York, W. S., Davies, G. J., Abbott, D. W., Ralet,

13 
 

METHODS 

1.1 Preparing substrates:  

RG-II from wine and apple were selected for this work as they contain all the features of this 

glycan that are absent in the pectic polysacchahride from some other plant sources, 

Supplementary Discussion 1.0. Thus, the enzyme system that depolymerizes wine and 

apple RG-II is capable of degrading the glycan from all other plant sources.   

 

1.1.1 Purifying RG-II: RG-II from wine was purified as described previously26. To prepare 

RG-II from apple a concentrate of the juice (25 kg box -equivalent of ~300 L of apple juice) 

was concentrated 1000 x using a Millipore peristaltic pump (3 L capacity) and Millipore Pellicon 

2 (10000 molecular weight cut off, MWCO) filter cassette module. Concentrated material was 

mixed with 5 volumes of pure ethanol to precipitate carbohydrates, which was then centrifuged 

at 20000 x g at room temperature. The pellet was dissolved in 1 L of ultrapure water and re-

precipitated with 5 volumes of ethanol. The precipitate was collected by centrifugation and this 

process was repeated another four times. The final pellet was redissolved in 0.5 L of ultrapure 

water and freeze-dried to obtain crude RG-II apple material. 

 

HPAEC analysis showed that the crude apple RG-II was contaminated with arabinan and 

galactan. Thus a mixture of enzymes targeting specifically arabinan and galactan polymers 

was added to the RG-II material. These recombinant enzymes were expressed and purified 

by IMAC as described in Section 1.2.1. The enzyme mixture comprised GH43 endo-

arabinanases BT0360 and BT0367 that target branched and linear arabinan, respectively; 

GH51 L-arabinofuranosidases BT0368 and BT0348 that hydrolyse  α1,5-backbone and α1,3-

side chains, respectively; the GH2 β1,4 galactosidase BT4667; and GH53 endo-β1,4-

galactanase BT4668. Around 300 nM of each enzyme was incubated for 24 h at 37 °C with 

crude RG-II (4% w/v) in 20 mM sodium phosphate buffer, pH 7.0. The enzyme-treated RG-II 

was fractionated on a XK50column containing Fast flow DEAE Sepharose (column capacity 

300 ml, GE healthcare) at  a flow rate of ~10 ml/min. The column was washed with 300 ml of 

50 mM sodium acetate buffer, pH 4.5, and then eluted batch-wise with 3 x column volumes of 

50 mM sodium acetate containing 0.17 M, 0.3 M and 0.6 M NaCl. The RG-II eluted in the 0.3 

M NaCl fraction based on glycosyl residue composition analyses, the types of sugars released 

by wild type B. thetaiotaomicron cultured on this material, and the inability of the rgII-pul1 

mutant to grow on this fraction. The fraction containing RG-II was dialysed against ultrapure 

water using 3.5 kDa cut off dialysis tubing. Progress of dialysis was monitored by use of the 

conductivity meter HI 99300 (Hanna instruments). The desalted RG-II was freeze-dried and 

kept at room temperature.   
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1.1.2: RGII derived oligosaccharides: B. thetaiotaomicron strains containing specific gene 

deletions were inoculated into minimal medium5 containing 1% RGII and grown in glass tubes 

for 48 h at 37 oC, in an anaerobic cabinet (Whitley A35 Workstation; Don Whitley, UK) to an 

OD600nm of 2.0. Cells were harvested by centrifugation initially at 2400 x g for 10 min and 

later at 17000 x g for another 10 min.  The resulting supernatant was filtered through a 1.2 m 

syringe filter (VWR) and separated on a Bio-Gel P2 (Biorad) size-exclusion column (SIZE OF 

COLUMN?) eluted with 50 mM acetic acid at 0.2ml/min.  Fractions (200 l) were collected and 

analysed by TLC using orcinol/sulfuric acid to reveal the resolved sugars. Fractions containing 

oligosaccharides of interest were pooled and concentrated by freeze-drying using a CHRIST 

Gefriertrocknung ALPHA 1-2 freeze-dryer (Helmholtz-Zentrum Berlin) at -50oC. 

 

The chemical synthesis of selected oligosaccharides used protocols described previously: L-

Rhap-1,3’-D-Apif-O-Me and L-Rhap-1,3’-D-Apif-O-Me27; D-GalA-1,2-[D-GalA-1,3]-[L-Fuc-

1,4]-L-Rha-O-Me and D-GalA-1,2-[D-GalA-1,3]-L-Rha-O-Me28; L-Rhap-1,3’-D-Apif-1,2-D-

GalA-O-Me29  

 

1.2 Biochemical studies 

1.2.1 Producing recombinant proteins for biochemical assays: DNAs encoding enzymes 

lacking their signal peptides were amplified by PCR using appropriate primers. The amplified 

DNAs were cloned into NcoI/XhoI, Nco/BamHI, NdeI/XhoI or NdeI/BamHI restricted pET21a 

or pET28a, as appropriate. The encoded recombinant proteins generally contained a C-

terminal His6-tag although, where appropriate, the His-tag was located at the N-terminus of 

the protein. To express the recombinant genes, Escherichia coli strains BL21(DE3) or TUNER, 

harbouring appropriate recombinant plasmids, were cultured to mid-exponential phase in Luria 

Bertani broth at 37 °C. Recombinant gene expression was induced by the addition of 1 mM 

(strain BL21(DE3)) or 0.2 mM (TUNER) isopropyl β-D-galactopyranoside (IPTG) , and the 

culture was grown for a further 5 h at 37 °C or 16 h at 16 °C, respectively. The recombinant 

proteins were purified to >90% electrophoretic purity by immobilized metal ion affinity 

chromatography (IMAC) using TalonTM, a cobalt-based matrix, and eluted with 100 mM 

imidazole, as described previously4. To generate seleno-methionine (Se-Met) proteins for 

structure resolution, E. coli cells were cultured as described previously30, and the proteins 

were purified using IMAC as described above. For crystallization, the Se-Met proteins were 

further purified by size exclusion chromatography. After IMAC, fractions containing the purified 

proteins were buffer-exchanged, using PD-10 Sephadex G-25M gel-filtration columns (GE 

Healthcare), into 10 mM Na-Hepes buffer, pH 7.5, containing 150 mM NaCl and were then 

subjected to gel filtration using a HiLoad 16/60 Superdex 75 column (GE Healthcare) at a flow 
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rate of 1 ml/min. For crystallization trials, purified proteins were concentrated using an Amicon 

10-kDa molecular mass centrifugal concentrator and washed three times with 5 mM DTT (for 

the Se-Met proteins) or water (for native proteins). 

 

1.2.2 Site-Directed Mutagenesis: Site-directed mutagenesis was carried out employing a 

PCR-based NZY-Mutagenesis kit (NZYTech Ltd) using the plasmids encoding the 

appropriate enzymes as the template. The mutated DNA clones were sequenced to ensure 

that only the appropriate DNA change was introduced after the PCR. 

 

1.2.3 Glycoside hydrolase assays: Spectrophotometric quantitative assays for L-

rhamnosidases (BT0986; BT1001 and BT1019), L-arabinofuranosidases (BT0983; BT0996; 

BT1021 and BT3662), D-galacturonidases (BT0992; BT0997 and BT1018), the D-

glucuronidase (BT0996) and D-galactosidase (BT0993) were monitored by the formation of 

NADH, at A340nm using an extinction coefficient of 6230 M−1 cm−1, with an appropriately linked 

enzyme assay system. The assays were adapted from purchased Megazyme International 

assay kits. These kits were as follows: the L-Rhamnose assay kit (K-RHAMNOSE); L-

arabinose/D-Galactose assay kit (K-ARGA); D-Glucuronic acid/D-Galacturonic acid assay kit 

(K-URONIC)). The activity of BT0984 was monitored by using an excess of BT0993 and 

quantifying D-galactose release as mentioned above. BT1003 and BT1012 activity was 

measured by using an excess of BT1001 and linking it to rhamnose release as described 

above. Substrate depletion assays were used to determine the activity of enzymes BT1002 

and BT1012, whilst the formation of L-galactose from RG-II was used to determine the activity 

of BT1010. Briefly, aliquots of the enzyme reaction were removed at regular intervals and, 

after boiling for 10 min to inactivate the enzyme and centrifugation at 13000 x g, the amount 

of the substrate remaining or product produced was quantified by HPAEC using standard 

methodology. The reaction substrates and products were bound to a Dionex CarboPac PA1 

column and were eluted with an initial isocrartic flow of 100 mM NaOH then a 0-200 mM 

sodium acetate gradient in 100 mM NaOH at a flow rate of 1.0 ml min-1, using pulsed 

amperometric detection. Linked assays were checked to make sure that the relevant enzyme 

being analysed was rate limiting by increasing its concentration and ensuring a corresponding 

increase in rate was observed. A single substrate concentration was used to calculate catalytic 

efficiency (kcat/KM) and was checked to be <<KM by halving and doubling the substrate 

concentration and observing an appropriate increase or decrease in rate. The equation V0 = 

(kcat/KM)[S][E] was used to calculate kcat/KM unless substrate depletion was used then the 

calculation was as follows ln(kcat/KM) = (S0/St)/[E] where [E] is enzyme concentration and S 

substrate31. All reactions were carried out in 20 mM sodium phosphate buffer, pH 7.0, with 



V
er

si
on

 p
os

tp
rin

t

Comment citer ce document :
Ndeh, D., Rogowski, A., Cartmell, A., Luis, A. S., Basle, A., Gray, J., Venditto, I., Briggs,

J., Zhang, X., Labourel, A., Terrapon, N., Buffetto, F., Nepogodiev, S., Xiao, Y., Field, R. A.,
Zhu, Y., O'Neill, M. A., Urbanowicz, B. R., York, W. S., Davies, G. J., Abbott, D. W., Ralet,

16 
 

150 mM NaCl and performed in at least technical triplicates. The activity of selected enzymes 

against complex oligosaccharides was also evaluated using mass spectrometry as described 

below. The substrates used were RGII from wine or apple, RGII-derived oligosaccharides 

generated using B. thetaiotaomicron mutants, by partial acid treatment of RG-II, or by chemical 

synthesis (prepared as described above). TLC was used to provide a qualitative profile of the 

activity of selected enzymes. Around 4 l of the reaction was spotted on silica gel TLC plates 

and the plates were developed in ascending butanol:acetic acid:water 2:1:1. Carbohydrate 

products were detected by spraying with 0.5% orcinol in 10% sulphuric acid and heating to 

100 oC for 10 min.  

 

1.3 Mass spectrometry (MS) of oligosaccharides 

 

1.3.1 Infusion electrospray MS Analysis: The structures of the desalted oligosaccharides 

(in 10 mM ammonium acetate, pH 7.0) were analysed via negative ion mode infusion/offline 

electrospray ionization mass spectrometry (ESI-MS) following dilution (typically 1:1 [v:v]) with 

5% trimethylamine in acetonitrile.  

 

Electrospray data was acquired using an LTQ-FT mass spectrometer (Thermo) with a FT-MS 

resolution setting of 100,000 at m/z = 400 and an injection target value of 1,000,000.  Infusion 

spray analyses were performed on 5-10 µl of samples using medium ‘nanoES‘ spray 

capillaries (Thermo) for offline nanospray mass spectrometry in negative ion mode at 1 kV. 

1.3.2 Nano electrospray LC- MS Analysis: Oligosaccharide samples were diluted (typically 

1:50 [v:v]) with 0.1% formic acid (aq) and injected (0.5 µl) onto a capillary 3 μ particle, 200 Å 

pore ProntoSIL C18AQ trapping column (nanoLCMS Solutions LLC, USA) in-line with a 75 

µm X 100 mm BEH130 C18 capillary column (Waters, UK) running on a NanoAcquity UPLC 

system (Waters, UK). The gradient conditions were 0.1-15% Buffer B in Buffer A in 15 min, 15 

- 50% Buffer B in Buffer A over 24 min and 50 - 90% Buffer B in Buffer A over 5 min, with 15 

min re-equilibration (0.1% Buffer B in Buffer A) at a flow rate of 0.4 µl/min. Buffer A: 0.1% 

formic acid in water; Buffer B: 0.1% formic acid in acetonitrile. 

 

Nanoelectrospray data was acquired using an LTQ-FT mass spectrometer (Thermo). Survey 

MS scans were performed over the mass range m/z = 150 – 2000 in data-dependent mode. 

Data was acquired with a FT-MS resolution setting of 100,000 at m/z = 400 and a Penning 

trap injection target value of 1,000,000. The top five ions in the survey scan were automatically 

subject to collision-induced dissociation MS/MS in the linear ion trap region of the instrument 

at an injection target value of 100,000, using a normalized collision energy of 30% and an 

activation time of 30 ms (activation Q = 0.25). 
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1.4 Growth of B. thetaiotaomicron and generation of mutants 

The selection of B. thetaiotaomicron to analyse the mechanism by which RG-II is degraded in 

the HGM was based on the following criteria: 1) B. thetaiotaomicron is a component of the 

HGM in a wide range of individuals; 2) the bacterium was previously shown to be capable of 

growing on RG-II and the genetic loci activated by the pectic polysaccharide identified; 3) a 

genetic system for the bacterium has been developed enabling routine targeted gene deletion, 

which was critical in identifying the enzymes that   depolymerised RG-II. 

1.4.1 Growth of B. thetaiotaomicron: B. thetaiotaomicron was routinely cultured under 

anaerobic conditions at 37 oC using an anaerobic cabinet (Whitley A35 Workstation; Don 

Whitley, UK) in culture volumes of 0.2, 2 or 5 ml) of TYG (tryptone-yeast extract-glucose 

medium) or minimal medium containing 1% of an appropriate carbon source plus 1.2 mg/ml 

porcine hematin (Sigma-Aldrich) as previously described5. The growth of the cultures were 

routinely monitored at OD600nm using a Biochrom WPA cell density meter (Cambridge, UK) for 

the 5 ml cultures or a Gen5 v2.0 Microplate Reader (Biotek) for the 0.2 and 2 ml cultures.   

1.4.2 Constructing mutants of RGII-PUL1 in B. thetaiotaomicron: The mutants of the 

complete RGII-PUL1 knock out and single gene clean deletions were introduced by counter 

selectable allelic exchange using the pExchange vector as described32.  

 

1.5 Crystallization, Data Collection, Structure Solution and Refinement:  

Crystallization: All protein concentrations were around 10 mg/ml except BT1012 which was 

at 4 mg/ml. BT3662 was crystallised in 20% polyethylene glycol (PEG) 6000 and 0.1 M 

NaHepes pH 6.5. BT1012 was crystallised in 40 % (v/v) MPD, 0.2 M ammonium phosphate 

and Tris pH 8.5. Selenomethionine (Se-Met)-containing BT0996 was crystallised in 20 % (w/v) 

PEG 8000, 0.1 M Tris pH 8.5. Additionally Se-Met-containing BT0996 were crystallised in 20% 

(w/v) PEG 3350 and 0.2 M Lithium Acetate for ligand soaking in mother liquor containing 25 

mg/ml of Chain B for up to 16 h. The same process was repeated for inactive mutant BT0996-

E240Q. BT1002 protein was crystallised in 15% (v/v) ethylene glycol, 15% (w/v) PEG 8000, 

30 mM MgCl2, 30 mM CaCl2, 50mM NaHepes and 50 mm MOPS pH 7.5. Se-Met-containing 

BT1002 was crystallised in 10% (w/v) PEG 3350, 0.1 M Hepes pH 7.5 and 0.2 M L-Proline. 

BT1003 was crystallised in 20% (w/v) PEG 3350 and 0.2 M potassium acetate. BT0986 was 

crystalized 15% (w/v) PEG 550 MME, 15% (w/v) PEG 20000, 0.25 M rhamnose, 50mM hepes 

and 50 mm MOPS pH 7.5 in absence or presence of 6 mM D-rhamnopyranose tetrazole. The 

inactive mutant BT0986-D461Q was crystalized in 15% (w/v) PEG 550 MME, 15% (w/v) 
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20000, 50 mM Imidazol, 50 mM MES pH 6.5, 30 mM NaF, 30 mM NaBr, 30 mM NaI in 

presence of 5 mM of RGII Chain B.  Se-Met-containing BT0986 was crystallised in 20% (w/v) 

PEG 3350, 0.2 M sodium sulphate, 0.25 M rhamnose and 0.1 M bis-tris propane pH 6.5. Se-

Met containing BT1020 was crystallised in 14% (v/v) ethylene glycol, 14% (w/v) PEG 8000, 

30 mM of each di-, tri, tetra- and penta-ethylene glycol, 50 mM hepes and 50 mM MOPS pH 

7.5. BT1020 was crystallised in 15% (v/v) ethylene glycol, 15% (w/v) PEG 8000, 20 mM D-

glucose, 20 mM D-mannose, 20 mM D-galactose, L-fucose, D-xylose, N-acetyl-D-glucosamine, 

300 mM L-arabinose, 44.5 mM imidazole, 55.5 mM MES pH 6.5. All proteins were initially 

screened by the sitting drop method with a protein volume of 0.1 or 0.2 µl and a reservoir ratio 

of 1:1 or 2:1 using a robotic nanodrop dispensing system (mosquitoTM LCP; TTPLabTech). 

Cryo-protection: BT1002, BT1003, Se-Met-BT0986, BT0986 in presence of 

rhamnotetrazole, Se-Met-containing BT1020 were cryo-protected by supplementing the 

mother liquor with 20% (v/v) PEG 400. 20% ethylene glycol (v/v) were used for BT3362 and 

20% (v/v) glycerol for BT0996. All other samples did not require supplemental cryo-protection. 

Data collection and processing: All data were integrated using XDS33 apart from BT1003 

which was integrated with DIALS34 and BT0986 with the rhamnotertazole which was integrated 

with xia2 3dii35. The data were scaled with either XDS33 or Aimless36. 

Structure solution and refinement: The phase problem for BT1002, BT1020, BT0986 and 

BT0996 was solved by Se-Met-SAD using hkl2map37 and the shelx pipeline38. Buccaneer39 

and/or arp-warp40 were used for automated model building. BT0986 in the presence of 

rhamnotetrazole and BT0986-D461Q in the presence of a Chain B-deribed heptasaccharide 

were solved with molrep41 using BT0986 native as search model. All the other data were 

solved by molecular replacement using phaser42 and the PDB model 3QZ4 for BT3662, 3KZS 

for BT1012 and an ensemble of PDB models 3WKX and 4QJY for BT1003.  Buccaneer39 

and/or arp-warp40 were as well used when needed to improve the initial molecular replacement 

solution. Recursive cycles of model building in coot43 and refinement in refmac544 were 

performed to produce the final model. For all models solvent molecules were added using 

coot43 and checked manually; five percent of the observations were randomly selected for the 

Rfree set. All models were validated using coot43 and molprobity45. The data statistics and 

refinement details are reported in Supplementary Table 8. 

 

1.7 Comparative genomics analysis:  

Polysaccharide utilization loci (PULs) similar to the RG-II PULs were searched for in 372 

Bacteroidetes genomes (complete list provided in Supplementary Table 5). The identification 

of similar PULs was based on PUL alignments. Gene composition and order of Bacteroidetes 

http://www.nature.com/ncomms/2015/150626/ncomms8481/full/ncomms8481.html#supplementary-information
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PULs were computed using the PUL predictor described in PULDB46. Then, in a manner 

similar to amino-acid sequence alignments, the predicted PULs were aligned to the RG-II 

PULs according to their modularity as proposed in the RADS/RAMPAGE method47. Modules 

taken into account include CAZy families, sensor-regulators and susCD-like genes. Finally, 

PUL boundaries and limit cases were refined by BLASTP-based analysis. The novel glycoside 

hydrolase families discovered in this study are listed in the main paper.   

 

1.8 Protein cellular localization 

Cellular localisation of proteins was carried out as described previosuly4. Briefly, B. 

thetaiotaomicron cultures where grown overnight (OD600nm 2.0) in 5 ml minimal media 

containing 1% apple RGII. The next day, cells were harvested by centrifugation at 5000 g for 

10 min and resuspended in 2 ml phosphate buffered saline (PBS). Proteinase K (0.5 mg/ml 

final concentration) was added to 1 ml of the suspension and the other half left untreated 

(control). Both samples were incubated at 37 oC overnight followed by centrifugation (5000 x 

g for 10 min) to collect cells. To eliminate residual proteinase K activity, cell pellets were 

resuspended in 1 ml of 1.5 M trichloroacetic acid in PBS and incubated on ice for 30 min. 

Precipitated mixtures were then centrifuged (5000 g, 10 min) and washed twice in 1 ml ice 

cold acetone (99.8%). The resulting pellets were allowed to dry in a 40 oC heat block for 5 min 

and dissolved in 250 μ l Laemmli buffer. Samples were heated for 5 min at 98 oC and mixed 

by pipetting several times before resolving by SDS/PAGE using 7.5% gels. Electrophoresed 

proteins were transferred to nitrocellulose membranes by Western blotting followed by 

immunochemical detection using primary rabbit polyclonal antibodies (Eurogentec) generated 

against various proteins and secondary goat anti-rabbit antibodies (Santa Cruz 

Biotechnology). For BT1010 and BT1013 whose anti-sera failed to produce the desired 

reactivity, a C-terminal FLAG peptide (DYKDDDDK) was incorporated at the C-terminals of 

both native proteins expressed by B. thetaiotaomicron through counter-selectable allelic 

exchange32. This allowed for their detection using rabbit anti-flag antibodies (Sigma) as 

primary antibodies. 
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EXTENDED DATA FIGURE LEGENDS 

 

Extended data Fig. 1: Sequence conservation and genomic organization of components 

of RG-II PUL1 across Bacteroidetes species. a, PULs activated by RG-II. Genes encoding 

proteins of known or predicted functionalities are colour coded. The arrows indicate the 

orientation of each gene. b for Bacteroidetes species (in rows), xenologs of B. 

thetaiotaomicron (Bt) RG-II PUL1 proteins (in columns) were identified by reciprocal best-

blastp hits. These organisms were coloured to reflect growth on RG-II; blue, growth in 24 h; 

orange, growth in 48 h; red, no growth; black, growth on RG-II was not evaluated. Bt proteins 

that contribute to RG-II degradation are grey and the family or predicted function are defined 

as GHXX, GH family; PL1, polysaccharide lyase family 1; CE, carbohydrate esterase; PME, 

pectin methylesterase. bi, xenologs are in the same column as the corresponding Bt protein 

and % identity is in a red colour-scale to 24% identity. bii, genomic organization of xenologs 

into gene clusters/loci. The top row shows 55 Bt proteins numbered according to relative 

position of the gene on the genome. The xenologs of the Bt genes are numbered as they 

appear in their respective cluster/locus. For each species Bt RG-II PUL1 was split into 

separate clusters when the contiguous xenologs were separated by ≤30 unrelated genes. 

Each cluster has a distinct background color (green, blue, pink and yellow). Proteins in B. 

xylanisolvens XB1A, not annotated previously as ORFs identified here by tblastn are marked 

with a dagger. Split proteins in B. cellulosilyticus DSM 14838 due to incomplete genome 

assembly were numbered based on the B. cellulosilyticus WH2 genome (marked with an 

asterisk). Bt enzymes that were split into two distinct single module enzymes in other species 

are denoted with a ‘plus’ sign in the PUL. Supplementary Fig.  3 shows a complete depiction 

of the PUL organization in the selected species.  

 

Extended data Fig. 2. The generation of RG-II derived oligosaccharides by mutants of 

B. thetaiotaomicron. a, shows the site of action of the enzyme that was eliminated or not 

functional in the corresponding mutant. b, displays the structures of the oligosaccharides 

generated by each mutant. These molecules were isolated by size-exclusion chromatography 

and used as substrates to elucidate the mechanism of RG-II degradation. c, shows the 

structure of bespoke chemically synthesised oligosaccharides that were used as substrates 

to dissect the mechanism of RG-II depolymerization.  

 

Extended data Fig. 3. Analysis of the disassembly of Chain C and Chain D. All the 

reactions were carried out standard conditions described, and samples labelled “Control” 
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signifies that the glycan was not enzyme treated. a, wild type (WT) BT1013 and BT1020 were 

incubated with RG-II and the oligosaccharides generated by the B. thetaiotaomicron bt1020 

mutant (bt1020 oligo) grown for 50 h, respectively, and the reactions were analysed by TLC. 

b, WT and mutants of BT1013 were incubated with RG-II and the products were subjected to 

HPAEC-PAD analysis. In the mutants GH78E496A and GH33 Y1257A are mutants of the 

predicted catalytic residues of the GH78 rhamnosidase and GH33 sialidase catalytic modules, 

respectively. c, bt1020 oligo was incubated with WT BT1020 and the products analysed by 

HPAEC-PAD and mass spectrometry. d, the activity of the N- (residues Asp26 to Asp613) and 

C-terminal (residues Lys614 to Leu1107) regions of BT1020 were compared with the WT 

enzyme using HPAEC-PAD analysis. Arabinose and rhamnose were identified through 

HPAEC-PAD by co-migration with the appropriate standard, while the identity of Dha was 

consistent with the mass spectrometry data. The data displayed are examples from biological 

replicates n = 3.  

 

Extended data Fig. 4. Crystal structures of BT1020 and BT3662. a, and b, show the 

structure of BT1020 and BT3662, respectively. ai, schematic of BT1020 in which the domains 

from N- to C-termini are coloured cyan (Dhase catalytic domain), blue (structural -sandwich 

domain 1), yellow (-L-Arafase catalytic domain), salmon (structural -sandwich domain  2). 

aii and aiii depict the key active site residues in stick format of the Dhase and -L-Arafase 

catalytic domains, respectively. In aii the BT1020 residues (carbon and lettering coloured 

cyan) are overlayed with the GH33 Clostridium perfringens sialidase NanI (PDB code 2VK7) 

in which the carbons and lettering are light grey and black, respectively. The ligand, N-acetyl-

neuramic acid, is derived from the NanI structure and is shown in yellow. In aiii the active site 

amino acids (carbons coloured yellow) that interact with the bound L-Araf (carbons in green) 

are shown with polar contacts depicted by broken black lines. aiv and av show a charged 

surface representation of the active site pockets of the Dhase and -L-Arafase catalytic 

domains (with L-Araf bound to the -L-Arafase), respectively. Note the highly basic feature at 

the active sites consistent with the negatively charged Dha located in the active site or +1 

subsite of the two catalytic domains. bi, schematic of BT3662 in which the five-bladed -

propeller catalytic domain and the -sandwich domain are shown in green and red, 

respectively. In bii, key residues are shown in stick format. The carbons of the amino acids 

coloured salmon pink are catalytic residues; the yellow tyrosine is positioned in the +1 subsite 

and the blue arginines are in the distal regions that interact with the D-GalA-containing 

backbone. Biii, solvent exposed surface representation of Bii using the same colour format 

for the amino acids highlighted. The active site housing the catalytic residues is located in a 

pocket that abuts onto a shallow channel containing the arginines and tyrosine.   
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Extended data Fig. 5. Mechanism by which B. thetaiotaomicron depolymerizes Chain B 

of RGII. The oligosaccharides generated by bt1003 and bt0986, RG-II and chemically 

synthesised molecules were used to determine which enzymes acted on Chain B. a, enzymes 

identified were added sequentially to Chain B (isolated by mild acid treatment of RGII). The 

reactions were carried out under standard conditions. The sugars released were identified and 

quantified by HPAEC-PAD. b, shows examples of the use of mass spectrometry to monitor 

the enzymatic disassembly of Chain B. The example shown are from biological replicates n = 

3.    

 

 

Extended data Fig. 6. Crystal structure of BT0986. a, a schematic of the enzyme is 

displayed, revealing the (/)8-barrel catalytic domain (yellow) that is interrupted with three -

sandwich domain (blue), while the C-terminal domain (salmon) also folds into a -sandwich.  

b, active site of BT0986 bound to rhamnose. Catalytic amino acids are coloured magenta 

while the other amino acids are blue and the rhamnose yellow. c, transition state mimic 

rhamnopyranose tetrazole bound in the active site of BT0986. The same colouring was used 

as in c. The blue mesh surrounding the ligand represents the 2Fo-Fc electron density map 

(1.3 Å resolution) at 1.5 . In b and c the calcium ion in the active site is shown as a cyan 

sphere and its polar contacts with amino acids and ligands are indicated by black dashed 

lines. d, Chain B-derived heptasaccharide generated by the mutant bacterium bt0986 bound 

in the substrate binding site of BT0986 shown as a surface representation. e, shows the 

interactions of  the bt0986 heptasaccharide with BT0986. Amino acids that interact with the 

oligosaccharide are coloured blue and the sugars in both d and e are as depicted in Fig. 5. 

The blue mesh is the electron density of the oligosaccharide. f, conformation of the 

arabinopyranose in Chain B (green) and in the bt0986 heptasaccharide (cyan). The carbons 

are numbered.    

 

Extended data Fig. 7. Crystal structure of BT1003, BT1012 and BT1002. All amino acids 

are in stick format and the position of the active site in the schematics of the respect enzymes 

is indicated by a black box. a, structure of the GH127 AceAase. ai, schematic of the enzyme 

revealing the catalytic domain (/)6 barrel (red) and -sandwich domain (blue). aii, overlay 

of the key active site residues of the AceAase, coloured red, and the GH127 -L-

arabinofuranosidase HypBA1 from Bifidobacterium longum (PDB 3WKX), coloured white grey. 

The proposed catalytic nucleophile, Cys457 in BT1003, is conserved in the two enzymes; the 

catalytic acid/base in HpyBA1 (Glu322), however, is a glutamine in the AceAase. The ligand, 
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coloured yellow is -L-Araf derived from the crystal structure of the -L-arabinofuranosidase. 

ciii, structure of aceric acid. b, structure of the apiosidase BT1012. bi schematic of the enzyme 

in which the (/)8-barrel catalytic domain is coloured beige and the C-terminal -sandwich 

domain blue. bii, the yellow amino acids are the key residues in the active site (-1 subsite) 

that are proposed to play a direct catalytic role (D187 and E284) or substrate binding function 

(Q239). The pair of arginine residues coloured blue in the +1 subsite are likely to contribute to 

D-GalA binding through interactions with the carboxylate of the uronic acid. The aromatic 

residues coloured green are in the -2 subsite. biii, solved exposed surface representation of 

the substrate binding region of BT1012. The residues highlighted in cii are displayed in the 

appropriate colour. c, structure of BT1002. ci, schematic of the enzyme in which the C-terminal 

-parallel helical catalytic domain and the N-terminal -sandwich domain are coloured green 

and yellow, respectively. cii overlay of BT1002 and its closest structural homolog, a GH120 

-xylosidase (PDB code 3VSU), highlighting the position of the catalytic amino acids coloured 

green (BT1002) or light grey (-xylosidase). The xylose in the active site of the -xylosidase 

is shown to orientate the close but not identical position of the catalytic centre of the two 

enzymes. ciii, solvent exposed surface of the active site pocket of BT1002 in which the 

catalytic residues are shown in stick format and their location on the surface depicted in red. 

The pocket is elongated hinting that the 2-O-Me-xylose appended to the L-fucose may be 

housed in the catalytic centre of the -L-fucosidase.  

 

Extended data Fig. 8. Identification of the enzymes that disassemble the backbone of 

RGII. a, BT1023 was incubated with RG-II or homogalacturonan (1% w/v) in 50 mM CAPSO 

buffer, pH 9.0, containing 2 mM CaCl2. RG-II substrate was either untreated or had been 

previously incubated with BT1013 and/or BT1020. The reactions were analysed by TLC. 

Lanes labelled “control” were the appropriate glycan incubated with the appropriate buffer but 

without the inclusion of enzyme. b, the oligosaccharide generated by the bt1017 mutant 

(bt1017 oligo) was incubated with BT1017 and the reaction product was analysed by mass 

spectrometry. c, sequential degradation of the product generated in b by the enzymes 

indicated under standard conditions. The sugars released by these other enzymes (reactions 

1 to 4) were identified and quantified by HPAEC-PAD. The structure of the oligosaccharide 

sugars followed the notation described in Fig. 1 and Extended data Fig. 2. The example 

shown are from technical replicates n = 3.   

 

 

Extended data Fig. 9. The influence of borate on the retaining apiosidase BT1012. a, 

oligosaccharide generated by the B. thetaiotaomicron mutant bt1010 (bt1010 oligo) was 
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incubated with BT1012 under standard conditions in the presence and absence of 50 mM 

borate and the products analysed by TLC. b, the same experiment was carried out except that 

the substrate was Rha-1,3’-Api-1,2-GalA-Me. c, mass spectrometric analyse of the 

products generated in a. d, BT1012 was incubated under standard conditions with Rha-1,3’-

Api-1,2-GalA-Me in the presence and absence of 2.5 M methanol. The reactions were 

analysed by HPAEC-PAD and mass spectrometry. The example shown are from technical 

replicates n = 3.    

 

Extended data Fig. 10. Modification of the structure of RG-II. a, recombinant BT1001 and 

BT1012 were incubated with bespoke chemically synthesised oligosaccharides using 

standard conditions. b, The enzymatic disassembly of RG-II was used to investigate the 

structure of RG-II. Mass spectrometry combined with HPAEC-PAD were used to analyse the 

structure of the oligosaccharides (defined as oligo) generated by the mutants 

bt1010/bt1021 and bt1010/bt0986 before and after treatment with recombinant BT1021 

using standard conditions. The enzyme reactions were analysed by HPAEC-PAD. 
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