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Abstract. In this study, we use a bond-based peridynamic approach to investigate the mechanical strength

and cracking of composite materials with spherical inclusions. The total volume fraction of particles and the

particle-matrix toughness ratio were varied to cover a range of soft to hard inclusions. The mean particle

damage was characterized together with crack patterns at a sub-particle scale. Three types of crack patterns are

identified depending on the toughness ratio.

1 Introduction

Damage and failure of materials including a granular

phase is crucial in numerous natural processes and indus-

trial applications. The case of tough inclusions was stud-

ied in detail by several authors for various applications

such as the failure of concrete [1], the milling of wheat [2]

(whose internal micro-structure can be seen as a cemented

granular material composed of starch granules glued by

a protein matrix), the strength of particle-enriched com-

posites [3]. . . However, in many examples the particles can

have a lower toughness than the matrix. This is the case

of some biocomposites used in packaging [4] and in food

products such as granola bars or rice chocolate in which

the taste largely depends on the textural properties [5].

In this paper, we use a bond-based peridynamic ap-

proach to investigate this transition from fragile to tough

inclusions in particle-laden composites. A major advan-

tage of this approach is its versatile nature in application

to discontinuities such as pores, cracks and jumps in me-

chanical properties. . . allowing one to simulate crack pat-

terns [6, 7]. The bond-based peridynamic approach has

been successfully applied for modeling elastic brittle ma-

terials [7] including the dynamic effects and fracture (for

example, crack patterns in concrete [8], dynamic cracks

branching [9], fracture of polycrystals [10], nanoscale me-

chanics [11, 12]. . . ). In this paper, we investigate the crack

patterns in 2D composites including a suspension of disk

particles. We performed an extensive parametric study by

varying the density of particles in the matrix and the yield

stress of particles in order to simulate a range of very soft

to very hard inclusions.

�e-mail: xavier.frank@inra.fr

2 Bond-based peridynamics

In recent years, various numerical approaches have been

designed for the computation of crack patterns such as co-

hesive zone models [13], the cohesive discrete elements

method [14, 15], the contact dynamics-based bonded-cell

models [16] and the lattice element method [17, 18]. The

discrete peridynamic approach was introduced by Silling

[6]. In this approach the mechanical behavior is based on

integro-differential equations rather than partial differen-

tial equations. The main advantage is to simplify the treat-

ment of the discontinuities in the material. We use this

method for its versatile and simple implementation to in-

vestigate the cracking of composites with soft and hard

inclusions. In the following, we describe the basics of the

method in two dimensions.

Lets consider a deformable body Bt defined at the time

t as a subset of R2. For each point in this domain, the

strain, stress, damage. . . can be directly upscaled from the

behaviour of bonds defined at the microscale. Figure 1

shows, for the reference configuration B0 (at time t = 0)

a bond �ξ = �x ′ − �x where �x and �x ′ ∈ B0. At each point

�x a set of bonds H
(
�x
)
=

{
�ξ ∈ R2|�x + �ξ ∈ B0 ∧

∥∥∥∥�ξ
∥∥∥∥ < h

}

is defined, where h is the cutoff distance usually called

horizon in peridynamics.

Under a deformation B0 → Bt the material points �x
undergo a displacement �u

(
�x, t

)
. Thus, a bond �ξ = �x ′ − �x

becomes after deformation �ξ+�ηwhere �η = �u
(
�x ′, t

)
−�u (

�x, t
)

is the relative displacement (Figure 1).

The force exerted on a material point �x results from

the contribution of all bonds in H(�x). Here, we use the

so-called bond-based approach in which we only consider

radial pairwise forces �f that depend on both �ξ and �η [19].

The value of the Poisson ratio of a homogeneous sample
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Figure 1. Initial configuration B0: schematic representation of a

bond �ξ and the bond family H
(
�x
)

of a point �x in a peridynamic

body, definition of the horizon h. Schematic representation of the

deformation of a peridynamic body from initial configuration B0

to Bt and definition of both displacement �u and relative displace-

ment �η.

is fixed to ν = 1/3 [8]. The forces can be expressed as

�f
(
�ξ , �η

)
= f

(
�ξ , �η

) �ξ + �η∥∥∥∥�ξ + �η
∥∥∥∥

(1)

where f
(
�ξ , �η

)
is the bond force magnitude.

In this work, we use harmonic pairwise forces defined

as:

s
(
�ξ , �η

)
=

∥∥∥∥�ξ + �η
∥∥∥∥ −

∥∥∥∥�ξ
∥∥∥∥∥∥∥∥�ξ

∥∥∥∥
(2)

f
(
�ξ , �η

)
= cs

(
�ξ , �η

)
(3)

where s is the bond elongation and c is the elastic micro-

modulus. The value of the effective Young modulus of the

material is given by [9]:

E = c(πh3(1 − ν)/6) (4)

which linearly depends on the micromodulus c. The dam-

age of the material is introduced using a history-dependent

scalar function μ as a prefactor modifying c to μ
(
�ξ, t

)
c,

and defined as

μ
(
�ξ, t

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 s
(
�ξ , �η (t′)

)
< s0 ∀t′ < t

0 ∃t′ < t
∣∣∣∣s

(
�ξ , �η (t′)

)
≥ s0

(5)

where s0 is the critical elongation of the bond. In other

words, when at a time t′ the elongation s exceeds s0, the

bond is definitely broken and f
(
�ξ , �η

)
= 0. The fracture

energy G is given by [9]

G = (9Ehs0
2)/4π (6)

For a heterogeneous material, each phase α is charac-

terized by its elastic modulus Eα and its toughness Kα =√
EαGα, where Gα is the fracture energy of the phase α.

If a bond connects two nodes i and j in the same phase α
the mechanical properties of the bond are directly deduced

from Equations 4 and 6. If the bond connects two different

phases α and β, we choose Eαβ = min (Eα, Eβ) and we set

Gαβ so that Kαβ =
1
2
(Kα + Kβ). More generally, the inter-

phase properties can be independent of bulk properties.

3 Implementation

The discretization of the material is performed in 2D ac-

cording to a regular grid of nodes �xi with a spatial reso-

lution δx. A mass mi = (δx)2ρ
(
�xi

)
is attributed to each

node. The mechanical system is similar to a mass-spring

lattice in which each bond in H
(
�xi

)
represents a spring.

The evolution of the system is computed by the discretized

equations of motion:

mi�̈ui (t) =
∑

�x j∈H(�xi)

ks
(
�ηi j, �ξi j

) �ξi j + �ηi j∥∥∥∥�ξi j + �ηi j

∥∥∥∥
+ �bi (t) (7)

where �ui (t) = �u
(
�xi, t

)
, �ξi j = �x j − �xi, �ηi j = �u j − �ui, �bi (t) =

(δx)2�b
(
�xi, t

)
and k = c(δx)4.

External forces or displacements are applied at the

boundaries of the samples. The stress-strain evolution of

the system can be computed either in dynamics or quasi-

static conditions. For the dynamic part we use the classical

velocity-Verlet algorithm [20] with a time step δt. In order

to efficiently damp low frequency modes, we use a global

viscous term at all nodes. To ensure the quasi-static evo-

lution of the system, we use a snap-back algorithm which

consists in relaxing the loading strain periodically when

the cumulative energy due to crack growth reaches a given

value κ. For a sufficiently small value, the process is quasi-

static but the computation time increases dramatically. We

fixed the value of κ as the energy required to propagate a

crack of distance equal to 1% of the sample width.

4 Sample building & mechanical tests

We prepared a series of cemented granular samples. These

samples are composed of a collection of disks introduced

into a matrix. For the granular phase, six samples were

first prepared using a DEM code [21] and packed under a

weak confining pressure. The particle radii are slightly

dispersed in order to avoid local crystallization. These

samples are then meshed using a rectilinear grid with a

spatial resolution of approximately 50 nodes in the grain’s

mean diameter and the left boundary of each sample was

notched to initiate crack propagation. To study the influ-

ence of particle density, we apply a geometrical shrink-

age factor to each grain. Three particle solid fractions

ϕ were used (0.3, 0.5 and 0.7) with six values of grain-

matrix toughness ratio ψ = Kg/Km (0.25, 0.375, 0.5, 2.0,

3.0 and 4.0). Finally, 108 samples were meshed. As

the computation effort is relatively high (with approxi-

mately 500 000 nodes and 7 000 000 bonds for each sam-

ple), we parallezied the code using Message Passing Inter-

face (MPI).
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All the samples were subjected to quasi-static tensile

tests until full failure occurs. Figure 2 shows an example

of the snap-back procedure and the stress-strain envelope.

For each sample we consider the damage after full failure.

We consider a scalar field n(�x) associated with the nodes.

When a bond connecting two nodes �xi and �x j breaks, the

values of n(�xi) and n(�x j) are incremented. The damage at

a node can then evolve between 0 and the maximum num-

ber of bonds connected to a node which depends on the

horizon. In the following, we consider only the total dam-

age at the end of the simulation when the failure is fully

developped and we compute the grain damage parameter

d = Ng/Ntot (8)

where Ng =
∑

xi∈G n(�xi), G is the subset of B0 correspond-

ing to the grain phase and Ntot =
∑

xi∈B0
n(�xi).
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Figure 2. (color online) Evolution of the stress normalized by

the yield stress of the matrix σm as a function of the strain ε for a

sample with grain volume fraction ϕ = 0.7 and a toughness ratio

ψ = 3.00.

Figure 3 shows two typical examples of crack patterns

for ϕ = 0.5 and a toughness ratio ψ of 0.25 and 4.00, corre-

sponding respectively to soft and hard inclusions. In these

figures, we clearly observe different failure behaviors. For

ψ = 0.25 the failure crosses the particles whereas for ψ = 4

the crack remains inside the matrix and bypasses the par-

ticles. This typical behavior was already observed for an

single inclusion in a cement matrix [22].

5 Parametric study

In this section we discuss the results of the parametric

study. For a quantitative description, we computed the to-

tal number of broken bonds in each phase cumulated on

all samples for each parameter set ϕ,ψ . Figure 4 shows

for three values of the grain volume fraction ϕ, the aver-

age grain damage parameter d (Equation 8) as a function

of toughness ratio ψ. The amount of broken bonds in the

grain phase increases with ϕ. It is interesting to note that

�

�

Figure 3. (color online) Crack path for grain volume fraction

ϕ = 0.5. A: ψ = 0.25, B: ψ = 4.0.
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Figure 4. (color online) Grain damage parameter d correspond-

ing to the average fraction of broken bonds inside grains (cumu-

lated on all samples) as a function of toughness ratio ψ for three

values of the grain volume fraction ϕ.

the value of ψ below which no failure occurs in grains is

the same (ψ 
 3) whatever the value of ϕ.

For the same samples, Figure 5a and Figure 5b show

the superposition of all crack paths in the vicinity and in-

side the damaged grains for a toughness ratio ψ = 0.5, and

ψ = 2.0, respectively. As the grains do not have the same
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size, each crack trajectory was normalized by the corre-

sponding grain radii. Note also that in the simulations, as

the failure is initiated by a notch on the left hand side of

the sample, the propagation occurs from left to right.

A B

Figure 5. (color online) Superposition of all crack patterns

(crack propagation from the left to the right) in the neighborhood

of broken grains for grain volume fraction 0.4. Toughness ratio

is A: 0.5, and B:2.0.

We see that, for a low value of the grain-matrix tough-

ness ratio ψ, the grains tend to focus the cracks like a con-

vergent optical lens. On the contrary, for ψ > 1, the grains

deflect the cracks. This convergent-divergent transition oc-

curs for a value of ψ = 1 which corresponds to a regime of

straight failure.

6 Conclusion
In this paper we introduced a bond-based quasi-static peri-

dynamic approach for the simulation of granular compos-

ites. This method is quite well suited to the computation

of damage and crack patterns in highly heterogeneous me-

dia. An extensive parametric study was performed to in-

vestigate the effects of toughness ratio and grain volume

fraction on the damage and fracture behavior across the

grain-matrix interfaces.
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