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ABSTRACT 

Polymer self-assemblies joining oppositely charged chains, known as polyion complexes (PICs), have 
been formed using poly(ethyleneoxide - b - acrylic acid)/poly(t-lysine), poly(ethyleneoxide-b-acrylic 
acid)/dendrigraft poly(L-lysine) and poly[(3-acrylamidopropyl) trimethylammonium chloride - b - N -
isopropyl acrylamide]/poly(acrylic acid). The self-assemblies have been first characterized in batch by 
Dynamic Light Scattering. In a second step, their analysis by Flow Field-Flow Fractionation techniques 
(FIFFF) was examined. They were shown to be very sensitive to she.aring, especially during the foc.us 
step of the fractionation, and this led to an incompatibility with asymmetrical FIFFF. On the other hand, 
Frit Inlet FIFFF proved to be very efficient to observe them, either in its symmetrical (FI-FIFFF) or asym­
metric.al version (FI-AsFlFFF). Conditions of elution were found to optimize the sample recovery in pure 
water. Spherical self-assemblies were detected, with a size range between 70-400 nm depending on 

the polymers. Compared to batch DLS, FI-AsFIFFF clearly showed the presence of several populations in 
some cases. The influence of sait on poly( ethyleneoxide-b-acrylic acid) (PEO-PAA) 6000-3000/dendrigraft 
poly(t-lysine)(DGL3) was also assessed in parallel in batch DLS and FI-AsFIFFF. Batch DLS revealed a first 
process of swelling of the self-assembly for low concentrations up to 0.8 M followed by the dissociation. 
FI-AsFlFFF furthermore indicated a possible ejection of DGL3 from the PIC assembly for concentrations 
as low as 0.2 M, which could not be observed in batch DLS. 
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g to formation of self-assemblies. If the assembly only 
mopolyelectrolytes, it is named interpolyelectrolyte 
EC) [ 1 ]. This leads to macroscopic precipitation from 
 for the stoichiometric ratio 1/1 between the cationic 
 groups. If at least one of the involved polymers is a 
exhibiting a neutral block, the assembly is then called 
mplex micelle" (PICs) or "block ionomer complex" and 
can be found to maintain its solubility (2-5). A recent 
marized ail the different morphologies described in 

re (1 ]. Neutral hydrophilic blocks used for PICs include 
neglycol), hydrophilic polyacrylates, polyacrylamides. 
nes or poly(vinylpyrrolidone). Polyelectrolyte blocks 

been charged polypeptides, charged polyacrylates or 
pared to nano-objects formed from amphiphilic block 
. PICs exhibit similarities in terms of possible size range 
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or their characterization (classically Dynamic or Static Light Scat-
ering (DLS or SLS) and Transmission Electron Microscopy (TEM)).

arked differences however exist, the strongest one being the sen-
itivity to salt. Unlike amphiphilic block copolymers assemblies,
ICs have been shown to present a very low stability with increasing
alt concentration, owing to the displacement of the electrostatic
nteractions [6,7]. They have been observed, by light scattering, to
issociate for salt concentrations typically higher than 0.5 M. In the
ase of weak polyelectrolytes, they are also sensitive to pH and the
ssembly is only observed for a given range of pH [8]. This sen-
itivity of PICs to both ionic strength and pH has led people to
evelop stabilization strategies by crosslinking [5,9–12]. PICs are
articularly assessed as drug vectors, for instance for photodynamic
herapy. The asset of this strategy is that it enables a high encapsu-
ating ratio of the drug, since it is one of the essential blocks of the
ssembly, acting as a drug vector [10,13–16].

All the nano-objects used for nanomedicine, either formed from
mphiphilic or double hydrophilic block copolymers necessitate a
haracterization that should be as thorough as possible. For this,
wo techniques are routinely used, namely DLS and TEM. DLS,
lthough routinely used, should be taken with great care [17,18],
specially for nano-objects exhibiting a size polydispersity, which is
n most cases for polymeric self-assemblies. Furthermore, working
irectly on a whole solution of nano-objects, DLS can only provide
n average value of their size.

On the other hand, TEM enables an individual visualization of
he nano-objects, in their dried state. The advantage is then to
irectly see the objects and their shape, which is not possible
ith DLS. The drawback however is the limited objects number
hich is analyzed, since only a part of the solution is imaged. Fur-

hermore, this implies drying of the solution, possibly leading to
e-arrangement of the self-assemblies.

In order to improve the characterization of nano-objects, other
echniques are also used, such as static light scattering (SLS), neu-
ron (SANS) or X-ray (SAXS) scattering, or cryo-TEM. SANS and SAXS
mply correct mathematical fitting of the experimental curves and
difficult accessibility to the instruments [18]. Furthermore, for all
atch techniques SLS, SANS or SAXS, the solution being analyzed in

ts whole, the results are highly dependent on the possible presence
f different families of nano-objects. Finally, cryo-TEM enables a
irect visualization of the objects without the need for drying them.
his powerful method however is sometimes difficult to perform
n order to obtain clear glassy ice, and a large dispersity in size of
he nano-objects may be complex to analyze owing to different
ositioning of the nano-objects on the grid during the fast freezing
rocess (linked to the thickness of the ice layer, that might be close
o the size of the nano-objects themselves).

This quick overview of the analysis techniques for nano-objects
oints out the great difficulty to have a thorough characterization,
specially because of the polydispersity of the samples. In order
o use these techniques while limiting the influence of polydisper-
ity, their combination with fractionation techniques is a choice
pproach. Indeed, regular chromatography such as Size Exclusion
hromatography should be avoided for self-assemblies, since the
resence of the stationary phase together with high shearing dur-

ng elution might lead to modification of the assemblies. For this
eason, Field-Flow Fractionation (FFF) techniques and mainly Flow
FF have been increasingly assessed as separation methods for
anoparticles and are associated to subsequent characterization
y RI, multi-angle light scattering (MALS), UV–vis or DLS detection
19]. In a recent review, Roda et al. explained that the application
f current nanotechnologies suffered from the present difficulty

f developing well defined nanoparticles, or efficient techniques
o characterize the existing ones. FFF was developed more than
0 years ago and the technical progresses have enabled its use in
arious domains such as environmental, food, polymer and phar-
maceutical industry analyses [20–29]. Samples injected into FlFFF
systems require a separate relaxation process prior to the sepa-
ration. This process is essential to FFF as sample components are
‘relaxed’ into different equilibrium positions and thus different
velocity streamlines of the parabolic flow profile. For a conventional
symmetrical Flow FFF channel, the axial flow is stopped for a certain
period to allow this relaxation process to take place. For an Asym-
metrical Flow FFF, sample relaxation is normally achieved by using
a focusing process. While the stop-flow and focusing processes are
essential in each flow FFF sub-technique, they may lead to base-
line fluctuations and to undesirable particle interactions with the
channel wall [30,31].

The unwanted effects of stop-flow and focusing processes can
be avoided by using hydrodynamic relaxation methods that were
introduced by implementing a split inlet or a frit inlet [31,32]
in a symmetrical flow FFF channel. In the same way, Moon and
colleagues. described extensively [33–39] a frit inlet injection tech-
nique applied to an asymmetrical flow FFF channel to allow a
stop-less sample injection. With the application of a hydrodynamic
relaxation technique using a frit inlet in asymmetrical flow FFF, the
focusing process can be completely avoided. This technique has
shown its efficiency for fractionation of different macromolecules
and particles like lipoprotein particles [40], carbon nanotubes
[41], sodium hyaluronate [42–44] and ultrahigh-molecular weight
cationic polyacrylamide [45] reducing risk of adsorption on the FFF
membrane and/or sample aggregation.

In this work, we demonstrate that Asymmetrical Flow Field-
Flow Fractionation (AsFlFFF) is a powerful method to characterize
polymeric micelles and vesicles [46–49], explicitly showing the
relative ratio of different populations of self-assemblies in a sam-
ple, where batch DLS only showed the largest populations. In
order to further diversify the application domain of FFF, we
assessed the characterization of different PICs, based either on
commercial or home-made polymers. Indeed, to the best of our
knowledge, only a few studies have described the use of FFF tech-
niques for the characterization of charged polymers assemblies.
Two of them studied polyelectrolyte complexes using As-FlFFF
[50,51] involving two oppositely charged homopolymers. Another
described As-FlFFF analysis of poly(ethylene oxide-b-sodium
methacrylate)/poly(methacryloxyethyl trimethylammonium chlo-
ride) self-assemblies which are the most similar to the PICs of our
work [52]. This unique literature example on PICs characterization
by FFF showed that further studies are needed in order to assess
the usefulness of FFF techniques for such self-assemblies.

2. Materials and methods

2.1. Chemicals

Poly(acrylic acid) (PAA) and Poly(lysine) PLys
(15000–3000 g mol−1) were purchased from Aldrich,
poly(ethyleneoxide-b-acrylic acid) (PEO-PAA) from Polymer
Source Inc. (Dorval Montréal, Canada), dendrigraft polylysine (DGL)
from Colcom (Montpellier, France). Poly[(3-acrylamidopropyl)
trimethylammonium chloride – b – N – isopropyl acrylamide]
(PAPTAC-PNIPAM) was kindly provided by M. Destarac (IMRCP
laboratory) and was synthesized by RAFT polymerization [53].

2.2. Formation of PICs
PEO-PAA/DGL3 PICs were prepared by mixing DGL3 (5 mg mL−1)
stock solution at pH 7 with adequate amounts of PEO-PAA
(1 mg mL−1) stock solution at pH 7 in order to have the same con-
centration of carboxylic acids and amino groups. These solutions
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Fig. 1. Experimental set-up for Symmetrical FFF.
ere further diluted with water in order to achieve a final DGL3
oncentration of 0.1 wt%.

In a similar way, PEO-PAA/PLys solutions were obtained by
ddition of 85 �L of PEO-PAA 5–38 in phosphate buffer pH
.4 (2 mg mL−1) to 3 mL LysHBr in phosphate buffer pH7.4
0.16 mg mL−1).

PAPTAC-PNIPAM and PAA (adjusted pH at 5.5 by adding NaOH
olution) were separately dissolved in water, giving clear color-
ess solutions. PAPTAC-PNiPAM/PAA PICs were prepared by mixing
ppropriate amounts of each polymer, at a desired stoichiometric
atio, and water to obtain the right concentration. First a volume
f PAPTAC-PNIPAM solution and water were mixed, and then the
ppropriate amount of PAANa solution was added.

PEO-PAA/DGL3 PICs at different NaCl concentrations were
btained by mixing, in the following order, DGL3 mother solution
0.5 wt%) at pH 6.7, water, PEO-PAA stock solution (0.5 wt%) at pH 7
nd NaCl stock solution (6 M). PEO-PAA stock solution was added in
rder to have a ratio of 1 between carboxylic acid and amino groups.
dequate amounts of NaCl stock solution were added in order to
ave a final salt concentration of 0.2, 0.8, 1 and 2 M. Pure water was
dded in order to get a final DGL3 concentration of 0.1 wt%.

.3. Dialysis follow-up

Solutions of PEO-PAA 6-3/DGL3 PIC in 0.2 and 2.0 M NaCl solu-
ions were formed by mixing varying volumes of polymer solutions
n water to concentrated 4 M NaCl solution. 3 mL of these solu-
ions were introduced in dialysis flasks (GE Healthcare Bio-Sciences

embranes with a MWCO of 1000 g mol−1) and dialyzed against
00 mL of milli-Q water. The dialysis process was interrupted at
pecific times in order to perform DLS analysis.

.4. DLS

DLS was carried out at 25 ◦C on a Malvern Zetasizer NanoZS
quipped with a He-Ne laser (�=633 nm). Solutions were analyzed
s synthesized without filtration to ensure that large populations
ere not discarded from analysis. Polydispersity indices (PDI)
ere obtained from the correlation function by using a cumulant

nalysis. The correlation function was analyzed via the general-
urpose non-negative least squares (NNLS) method to obtain the

ntensity-weighted distribution of diffusion coefficients (D) of the
olutes. This distribution can be converted, using Mie theory, to
number-weighted distribution describing the relative proportion
f multiple components in the sample based on their number rather
han based on their scattering. The average apparent hydrodynamic
iameters, noted as ‘DLS SizeInt’ or ‘DLS SizeNumber’, were deter-
ined using the Stokes-Einstein equation from intensity-weighted

nd number-weighted distributions, respectively. Unless stated,
he term size refers to diameters. Each solution was analyzed 3–5
imes depending on the observed correlogram. The typical accu-
acy for these measurements was 10–20% for systems exhibiting a
olydispersity index (PDI) lower than 0.4. This PDI is defined as the
atio between the second moment of the distribution divided by the
quare of the mean value of the decay rate. The values presented in
he tables are not mean values, because this is not relevant for DLS
nalysis of multi-population samples. Indeed, in such case, the DLS
oftware will exhibit a larger inaccuracy for the least present pop-
lation. Thus, the results presented in the tables are those obtained
or a typical result for each analysis.

The Malvern DLS data were further analyzed by a custom-made
rogram named STORMS in order to obtain a more precise char-

cterization of the solutions. This program has been designed with
atlab

®
and enables the fitting of DLS correlograms using different

ets of parameters, corresponding to all hypotheses that have to be
ade for fitting the correlograms. Indeed, going from correlograms
to size results implies three levels of hypotheses: the first consists of
the transformation of autocorrelation data to diffusion coefficient,
the second extracts the size of the scattering object from diffusion
coefficient depending on its geometry, and finally uses a model
enabling the transformation of the intensity-relative population
to a number-relative equivalent. For each step, STORMS provided
the choice of different parameters. For the nano-objects presented
here, the protocol used a non negative least squares (NNLS) fitting,
assumed a spherical shape for all objects, and the chosen scatter-
ing model was that corresponding to spheres (Rayleigh or Mie’s
model depending on the size). The range of decay rates and the
regularization parameter were systematically modified to check
the consistency of the results (supplementary information). Unless
stated, this treatment provided residuals lower than 5 × 10−3 for all
analyses. The estimated PDI in STORMS is often larger than that cal-
culated by the MALVERN software since all the experimental points
are selected and the second order equation is used in STORMS
instead of the third one for Malvern.

2.5. Frit inlet symmetrical FlFFF (FI-FlFFF)

A Frit-inlet Frit-outlet Symmetrical Flow Field-Flow Fraction-
ation channel (FFFractionation, Salt Lake City, UT) was used and
eluent was supplied by three pumps (Waters 510 HPLC and two
Waters 590 HPLC) as depicted in Fig. 1. The accumulation wall
was a 1 kDa cut-off regenerated cellulose ultrafiltration membrane
(Postnova Analytics, Landsberg am Lech, Germany). The sample
injection was triggered manually with a 6-way valve into the Frit-
inlet SyFlFFF channel. A pressure controller (custom made) was
installed after the detectors. The eluting sample components were
detected with a Water 410 Refractometer (Waters US) and a UV
detector (Waters 486 Tunable Absorbance Detector (401 nm)). An
aqueous 0.02 wt% sodium azide solution was filtered (vacuum fil-
tration system with 0.1 mm pore size Gelman filters) before use as
eluent. The spacer type was 250S which corresponded to ∼250 �m
thickness. Samples were injected at a 0.5 wt% concentration. The
elution program used for the cross flow rate Vcross was 0.6 mL min−1
during all the tests while Vi and Vf were subjected to variation from
0.4 to 1.2 and from 0 to 8 mL min−1, respectively.
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Fig. 3. Polymers used for PICs formation.

Table 1
Molar masses of the polymer used as controlled by SEC and 1H NMR (Table S1 in
Supplementary material).

Name Mn block 1 (g mol−1) Mn block 2 (g mol−1)

PEO-PAA 5-38 5000 38000
PEO-PAA 6-3 6000 3000
PEO-PAA 6-6.5 6000 6500
PEO-PAA 6-12 6000 12000
PEO-PAA 11-4 11000 4000
PEO-PAA 28.6-21.1 28600 21100
PLys 70000
DGL3 18700
PAA 10 10000
PAA 1 1000
PAPTAC-PNIPAM 1-9 1000 9000
PAPTAC-PNIPAM 16.9-3.1 16900 3100
Fig. 2. Experimental set-up for Asymmetrical FFF.

.6. Frit Inlet Asymmetrical Flow Field-Flow Fractionation
FI-AsFlFFF)

A Frit-inlet Asymmetrical Flow Field-Flow Fractionation chan-
el was linked to an Eclipse 3 system (Wyatt Technology Europe,
ernbach, Germany, Fig. 2). The accumulation wall was a 1 kDa cut-
ff regenerated cellulose ultrafiltration membrane (ConSenxuS,
ber-Hilbersheim, Germany). An Agilent 1100 Series Isocratic
ump (Agilent Technologies, Waldbronn, Germany) with an in-
ine vacuum degasser and an Agilent 1100 Autosampler delivered
he carrier flow and handled sample injection into the Frit inlet
sFlFFF channel. A 0.1 mm in-line filter (VVLP, Millipore, Germany)
as installed between the pump and the FFF channel. An aqueous

.02% sodium azide solution was filtered (vacuum filtration sys-
em using 0.1 mm Gelman filters) before use as eluent. The spacer
ype was 250S or 350S (250 �m or 350 �m, respectively). Samples
ere injected either at a 0.5 or 0.1 wt% concentration. The elution
rogram used for injection flow Vi of 0.2 mL min−1 and for detec-
or flow Vout of 1 mL min−1 for cross flow Vx was 0.5 mL min−1

or 2 min, 2 mL min−1 for 38 min, decreased to 0.5 mL min−1 in
0 min followed by 0.5 mL min−1 for 40 min. The eluted sam-
le components were detected with Multi-Angle Light Scattering
MALS) DAWN Heleos II (Wyatt Technology, Santa Barbara, CA, US)
quipped with a DLS (DLS) at 99◦ and an OptilabRex Refractome-
er (Wyatt Technology, Santa Barbara, CA, US) detectors. The MALS
etector was normalized with bovine serum albumin (BSA). Cal-

bration of scattering intensity was performed with HPLC-grade
ltered toluene.

. Results and discussion

.1. Formation of PICs

Different polymers were used to form the self-assemblies (Fig. 3
nd Table 1), having acidic (PEO-PAA and PAA) or amino or ammo-
ium groups (PLys, DGL, PAPTAC-PNIPAM). DGL is a dendrigraft

orm of polylysine. These polymers were chosen in order to have
variety of molar masses and architectures. PICs were formed by
irect mixing of two solutions of the constituents at appropriate pH.

he studied pairs were PEO-PAA/DGL, PEO-PAA/PLys and PAPTAC-
NIPAM/PAA.
3.2. DLS characterization

The formation of assemblies was first confirmed by classi-
cal batch DLS (Fig. 4 and Table 2), using data obtained from
Malvern instrument followed by fittings by a custom-made soft-
ware, STORMS, enabling extensive parameter fitting. This software
is further described in supplementary information, together with
a discussion comparing Malvern to STORMS results. Nano-objects
exhibited a size range between ∼10 and 250 nm, ensuring a diver-
sity of objects.

Some of the self-assemblies presented a bimodal population
in the intensity relative results as shown in Fig. 4, but results in
number relative average were all monomodal (Figs. S2–S6 in Sup-
plementary material). All polydispersities were in the range 0.1-0.4,
indicative of reasonably well defined systems. It is noteworthy that,
generally speaking, the estimated PDI in STORMS is larger than the
one calculated by the MALVERN software since all the experimen-
tal points are selected and the second order equation is used in
STORMS instead of the third order for Malvern (see supplementary
information). The observed sizes are not linked to the molar masses
of the copolymers, but a trend shows that low fractions of the poly-
electrolyte block (defined as Mpolyelectrolyteblock/M copolymer) tend to
lead to small PICs, whereas high fractions may yield large objects
(Fig. S7 in Supplementary material).



Table 2
DLS diameters of PICs.

PIC DLS size int (nm) PDIa
int DLS size number (nm) PDIa

number

PAPTAC-PNIPAM 1-9/PAA 10 75 0.2 58 0.2
PAPTAC-PNIPAM 16.9-3.1/PAA10 222 0.1 210 0.07
PAPTAC-PNIPAM 16.9-3.1/PAA 1 252 0.21 204 0.05
PEO-PAA 6-3/DGL3 42b 0.39 32 0.19
PEO-PAA 6-6.5/DGL3 58 0.28 42 0.21
PEO-PAA 6-12/DGL3 92 0.15 86 0.1
PEO-PAA 11-4/DGL3 67 0.29 45 0.23
PEO-PAA 28.6-21.1/DGL3 50b 0.33 36 0.21
PEO-PAA 5-38/DGL3 166 0.2 132 0.18
PEO-PAA 5-38/PLys 90b 0.3 44 0.3

a polydispersity indices.
b bimodal distribution.
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.3. Frit-Inlet FlFFF

Based on our experience with polymeric self-assemblies [47,49],
ome of the formed PICs were first evaluated by AsFlFFF. The
btained fractograms were observed to be erratic (data not shown),
n some cases even leading to the absence of peaks after elution.
ecovery tests (see supplementary information pS12) showed PICs
ensitivity during the essential focus step. The amount of detectable
roduct rapidly decreased during the focus step, even for low flow
ates. This phenomenon led us to test the performance of Frit
nlet techniques, to eliminate the stop-flow (FlFFF) and focusing
tep (AsFlFFF), suspected to be the cause of the PICS degradation
bserved in conventional AsFlFFF channel.

Recovery tests were first performed using Frit-Inlet Symmetrical
low FFF for a typical PIC, namely stoichiometric PAPTAC-PNIPAM
-9/PAA10. The RI peak area was recorded for different elution con-
itions (Fig. 5). The maximum theoretical area was obtained in the
bsence of channel and was used as a reference. Adding the chan-
el alone led to a 20% decrease of the PIC peak area. The addition

f crossflow Vcross did not lead to a further decrease, and a cross-
ow at 0.6 mL min−1 was therefore chosen for all experiments. The

njection flow rate was also observed to have no influence on the
Fig. 6. Recovery of PAPTAC-PNIPAM 1–9/PAA10 by FI-FlFFF, Vi = 0.4 mL min−1,
Vcross = 0.3 mL min−1.

sample recovery. An injection flow rate at 0.4 mL min−1 was there-
fore chosen. Finally, the flow rate Vf used in the Frit inlet device
was observed to have a strong influence on the recovery of the
objects (Fig. 6). The recovery decreased to ∼30% for Vf = 4 mL min−1.
A higher Vf did not affect the recovery;. Vf was thus fixed at
4 mL min−1.

In conventional symmetrical FlFFF (SyFlFFF) analyses, a stop
flow step is present prior to fractionation where the channel flow

is turned off and only the cross flow field is applied to the sample
for several minutes [54]. This step allows for analyte relaxation to
a steady state equilibrium height near the accumulation wall with
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lytes positioned higher in the channel on average than 
tes (in the normal mode of FFF). However, it is impor­

e that the highest sample concentration exists at the 
able membrane accumulation wall (55). High sample 

ons have been shown to cause sample loss due to irre­
ple adsorption to the membrane (56,57). Additionally, 

nts of the PICs are smaller than the molecular weight 
e semi-permeable membrane they can pass through 

ane resulting in lower sample recovery (58). The use of 
flow near the beginning of the channel in addition to 
annel and cross flows eliminates the need for the stop­
tion procedure (31 ]. This frit-inlet flow rapidly forces 

ards the accumulation wall allowing for sample relax­
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SyFIFFF) can reduce sample loss due to membrane inter­
ltration by avoiding the stop-flow step (59,60). The 

stop-flow during Frit-inlet FIFFF resulted in improved 
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TAC-PNIPAM 1 -9/PMlO was also analyzed by FI­
 presented in Table 3, optimization of Vr showed that 
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red to FJ-SyFIFFF ( <60%). Moreover, this system gives 
nity to development methods using a V cross gradient. 

overies obtained for the different PICs assemblies are 
 Table 3, showing that for most systems, very good 
were obtained, ensuring trustful analyses of the self­
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Table3 
FI -AsFIFFF analysis of different PICs (V out 1 mLmin-1, Vx 2-0.SmLmin -1, V; 0.2 mLmin -1 ).

Polymer 1 Polymer 2 Recovery (%) Peak 1 Peak2 

elution R• (n) Rg(n) Rg/R•• elution R,, (n) Rg(n) Rg/R•• 
rime (nm)• (nm)>•• time (nm)• (nm)•·• 
(min) (min) 

A PAPTAC -PNlPAM PM 10 77 14 so• <10' 54/66 100/200 30/40 0.3/0.2 
1-9

B DGL3 PEO-PM6-3 99 30 27 17 0.62 
C DGL3 PEO-PM 6- 6.5 100 10 148 64 0.43 35 69 36 0.52 
D DGL3 PEO-PM6-12 97 25 35 25 0.71 
E DGL3 PEO-PM 11-4 40 9 107 32 0.30 35 35 21 0.6 
F DGL3 PEO-PM 28.6-21.1 80 12 193 65 0.34 28 98 25 0.26 
G DGL3 PEO-PM 5-38 71 25 38 26 0.68 38 53 46 0.87 

• number averaged values . For compatison, Table SS presents the other average types .
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as evidenced by the presence of a major peak elut­
 20-35 min. For ail other systems (Fig. 7A, C, E-G), 
re observed as bimodal populations. The correspond­
ined from OLS and Rg are also reported in Table 3. If 
y of ail systems was high, the results of the obtained 
mewhat surprising. For this size range of nano-objects, 
de elution is expected and small objects should elute 
larger ones. Here, it is very surprising that nano-objects 
-200 nm were observed for elution times as small as 
hereas 30-100 nm PICs eluted after 25 min. It is pos­

he large analytes eluting at 9-10 min have stronger
teractions with the membrane than the PICs eluting
es. This earlier than expected elution is possible if

al compositions of the two populations are different.
 adsorption of PEO-PM copolymers with FFF channel

in a salt-free eluent did not permit the analysis of the
( data not shown). It is noteworthy that in the only other
s-FIFFF characterization of a PIC, elution involving both
 steric processes was observed [ 52 ]. In our case, such a
s could also be considered.
F hyphenated with online MALS and OLS also gave 
e Rg/Rh ratio, indicating the morphology of the nano­
 in the literature have been observed to exhibit Rg/Rh 
a very wide range, from 0.3 to 1.3, depending on the 
s defined core-shell morphology and the density of the 
2-67). The values found in this work suggest abjects 

e core for those close to 0.3-0.4 or homogeneous spher­
 Rg/Rh close to 0.7-0.8 [ 18,68 ]. Further characterization 

e and internai structure of the abjects, in particular by 
er way. 
 molecular weights are provided by the program, we 

t to give them, since their determination is based on 
fractive index increments. In the cases presented here, 
mms exhibited either a residual OGL peak or several 
indicative of mixtures. In such conditions, the actual 
 of each peak cannot be determined. 

ng the results obtained by FFF and bat ch OLS shows dif­
. For PICs based on PEOPM 6-3 and 11-4 and those of 
IPAM 1-9/PMlO, the results are in good agreement for 
ds. PICs based on PEO-PM 6-6.5 and 28.6-21.1 exhib­
 larger size in FFF compared to batch OLS. Finally, those 
O-PM 6-12 and 5-38 presented smaller sizes by FFF 
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nal studies of Pl Cs stability in the presence of sait 

/OGL3 PICs were further characterized in the pres­
easing Na Cl concentration. The solutions were analyzed 
tch OLS and FI-AsFIFFF. The results of batch OLS are 
n Table 4 and Fig. 8. Upon addition of NaCI, the scat­
intensity increased for concentrations up to 0.6 M and 
ly severely decreased to near-zero values for concen­
her than 1.5 M. The intensity and number relative sizes 
r low concentrations of sait, a sign of swelling of the 
ly, followed by their complete dissociation. Above 1 M, 
 correlograms indicated the presenceof several popula­
o-objects, rendering the interpretation difficult (Fig. S9 
entary mate rial). The comparison between intensity and 
ative diameters showed that very large uncontrolled 
were formed in small quantities. This behavior shows 
n of sait severely destabilized the self-assembly, which 
ready described in the literature [6,7). 
F was used to obtain more information. In order to li mit 

ck of FFF analysis in high sait concentration conditions 
dient ( drift of R I  signal), we decided that ail FFF elu­
ried out in pure water. The PICs were prepared in pure 

 exposed to increasingly high concentrations of sait and 
 by FFF in pure water. Therefore, a difference existed 
e analyses by FI-AsFIFFF (samples in NaCI solutions, but 
re water) and those by batch OLS(samples in NaCI solu­
zed directly). This also implied that during elution, a 



Table 4
Batch DLS characterization of PEO-PAA 6-3/DGL3 with increasing concentrations of NaCl.

[NaCl] DLS size int (nm) % int PDI int DLS size number (nm) PDI number Scattered light intensity (a.u.)

0 42 0.39 32 0.19 13 500
0.2 72 99 0.60 38 0.20 25 800
0.6 166 0.23 124 0.20 140 000
0.8 216 0.20 168 0.18 114 800
1.0 1320a 74 2.5 228 0.48 7 000

300 12
1.5 1040 85 7.20 14 0.17 1 300

18 13
2.0 410 58 1.2 9 0.15 1 000

22 17
10 13

a presence of very large aggregates (>1 �m).
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Table 5
FI-AsFlFFF analysis of PEO-PAA 6-3/DGL3 PIC in the presence of NaCl.

[NaCl] Peak 1 Peak 2

elution time (min) Rh (n) (nm)a elution time (min) Rh (n) (nm)a

0 28 27
0.2 28 27 56 100
0.8 23 40 58 80
1.0 24 “200” >50 “200”
ig. 9. Frit Inlet FFF elution of PEO-PAA 6-3/DGL3 solutions, in the case of high NaCl
oncentration.

esalting process took place. This has to be taken into account for
he discussion, especially for the highly concentrated solutions for
hich the sample mainly consisted in soluble polymers whereas
esalting might lead to re-assembly during elution (Fig. 9). In order
o assess the rate of re-assembly by desalting, a control experi-

ent was performed, where NaCl solutions of PEOPAA 6-3/DGL3
ICs were submitted to dialysis and batch DLS was performed at
ifferent times. The results (Figs. S10 and S11 in Supplementary
aterial) showed that for low concentrations of salt (0.2 M), the

IC self-assembly remained stable. For the high 2 M concentra-
ion, desalting led to the formation of uncontrolled self-assembly
etween 15 and 60 min. This means that samples analyzed by FI-
sFlFFF were subjected to the influence of salt in the initial solution
nd possibly to the desalting process.

The different fractograms are reported in Fig. 10. Increasing the
oncentration of salt led to three concomitant processes: increase of
he DGL peak at 6.8 min, displacement of the PIC peak for high con-
entrations of NaCl and increase of the light scattering signals after
0 min of elution. The increase of DGL peak at 6.8 min is attributed
o an ejection of DGL from PIC in the presence of salt. This pro-
ess was observed for NaCl concentration of 0.2 M, where desalting
ffect had no influence on the PIC stability. This process can there-
ore be assumed to occur for all NaCl concentrations, even in the
resence of desalting during elution. Also, from the high intensity
f the peak compared to pure DGL, it can be assumed that chloride
ons were also associated with DGL. If DGL is ejected from PIC self-
ssembly, the resulting nano-objects that were analyzed presented
herefore a drift in composition from the ideal 1/1 acid/amine ratio.
herefore, the radius of gyration of molecular weight of the self-
ssemblies cannot be determined accurately.
The aggregates that were observed after 50 min were released
wing to a decrease in the crossflow. Interestingly, although instan-
aneous DLS correlograms were difficult to interpret, a mean
ydrodynamic diameter of 400 nm was obtained (Table 5), which
2.0 24 “200” >50 “200”

a number averaged values.

is close to the size observed by batch DLS in the intensity relative
analysis.

The remaining peaks between 20 and 35 min were observed
to exhibit a size between 50 and 80 nm for salt concentrations
lower than 0.8 M, whereas their size was found close to 400 nm for
higher concentrations. It should be noted that analytes with sizes
of ∼400 nm could be near the steric transition point where elution
switches from normal to steric mode. However, one has to take also
into account that, for 2.0 M salt solutions, the desalting process has
been shown to lead to re-assembly between 15 and 60 min, which
corresponds to the elution time in FI-AsFlFFF. One can therefore
not reject the possibility that the peaks observed at 25 min in this
case were in fact self-assemblies produced in the channel during
elution.

In the study carried out by Wiedmer [52] on poly(ethylene
oxide-b-sodium methacrylate)/poly(methacryloxyethyl trimethy-
lammonium chloride), the resistance of the PIC assembly towards
NaCl was also considered, however at low concentrations between
0.02 and 0.16 M. Swelling was observed, in concordance with our
work. Cases of bimodal distributions were also observed. In their
case, As-FlFFF thus led to good characterization. However, it is note-
worthy that the molar mass of their cationic polymer was close
to 300,000 g mol−1, which is much higher than the polymers used
here. It is therefore possible that this higher molar mass gives a
better resistance to focus by the presence of longer chains that can
act as anchor in the case of shearing.

4. Conclusion

Polyion complex self-assemblies based on different polymers or
copolymers have been formed and analyzed in this work. Batch DLS
and FFF characterizations have been cross-examined and have con-
firmed the strength of FFF when several populations are present.
However, it is noteworthy that Frit-Inlet FlFFF was necessary in
our case for correct analysis of the PICs, owing to dissociation of

the self-assemblies upon focusing with regular AsFlFFF. FI-AsFlFFF
also enabled us to characterize the evolution of the self-assemblies
in the presence of NaCl and showed a possible ejection of one of
the component from the PIC, leading to a drift in the composition
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