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Abstract. In this study, we rely on a ’bond-based’ peridynamic approach to investigate the strength and failure
of 2D particles containing a collection of 1D microcracks. The mechanical tests were performed on disks

under diametral compression. In an extensive parametric study, the distribution of microcracks was varied

for different particle sizes. The evolution of yield stress with diameter and the probability of failure in terms

of Weibull distributions are investigated in detail. Finally, by means of a floodfill algorithm, we analyze the

variation of the mean fragment size as a function of the density of defects.

1 Introduction

Comminution consists in reducing the average size of par-

ticles by different processes such as crushing, grinding or

cutting. It is employed in many industrial applications and

consumes large amounts of energy in applications such as

cement manufacturing [1] and cereal milling [2]. Several

models, mostly based on empirical parameters, have been

developed to estimate the energy consumption of such pro-

cesses. Population balance models [3, 4] involve the prob-

ability of failure and distribution of fragments obtained

for a single particle of a given size. Brazilian tests (di-

ametral compression) have been used for the determina-

tion of particle strength [5, 6] and in studies of the influ-

ence of the microstructure on the fracture and fragmenta-

tion [7, 8]. Numerical simulations based on the Discrete

Element Method (DEM) have also been used for the in-

vestigation of particle crushing by modeling each grain

as a cohesive agglomerate of smaller (primary) particles

[9–12]. Such simulations can now reproduce the evolu-

tion of cracks and complex geometries of fragments in 2D

[13, 14] and 3D [15–17]. But they fundamentally replace

a continuum by a discrete medium with pre-existing po-

tential fragments.

In this paper, we use a peridynamic approach applied

to particles which can break into fragments of arbitrary

sizes and shapes (up to the discretization limit) in the pres-

ence of microcracks. We investigate the crack patterns of

2D rounded particles containing defects of given density

and distribution loaded between two horizontal plates in

compression. We are interested in their yield stress and

distribution of fragments as a function of the density of

defects for a range of particle sizes.

�e-mail: nicolas.blanc@supagro.inra.fr

2 Bond-based peridynamics

The peridynamics method was introduced by Silling [18]

as an alternative to the description of classical continuum

mechanics by differential equations. Peridynamics has

been successfully used for modeling the fracture of ma-

terials such as concrete [19], nickel nanowires [20], wood

[21]. . . . We use a simple implementation of peridynam-

ics called bond-based approach which describes the me-

chanics of deformable bodies as a mass-spring system. A

major interest of this model is its weak dependence on

the geometry of the mesh contrary to other bond-based

methods such as Fuse Models [22] and Lattice Element

Method (LEM) [23]. The reason is that the computation

of mechanical properties relies on a multinodal interac-

tions within a distance h called the horizon. As other bond-
based models, this method is allowing inclusion of discon-

tinuities such as pores, cracks or stiffness and damage gra-

dients without requiring special case-sensitive treatment of

each problem [18].

The bonds are 1D elements characterized by a bond

stiffness k = c (δx)4, where c is the elastic micromodulus
and δx the space step. The damage is introduced using
a yield elongation s0 above which the bond is broken. A
mass mi is associated to each node i. The stress tensor
is upscaled from the forces connecting i to neighboring
nodes j using the virial expansion σi =

1
2Vi

∑
j Fi j ⊗ ri j,

where Vi is a volume attributed to the node i and Fi j and

the ri j are the force and length of the bond i j, respectively.
The Young modulus E = αc of the material is proportional
to the micromodulus with α = πh3(1−ν)/6 [24], where ν is
Poisson’s ratio. For isotropic linear elastic materials with

central interactions, the value of Poisson’s ratio is 1/3 in

2D. The fracture energy G is easily deduced from the crit-
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ical elongation s0 as G = (9Ehs02)/4π [24]. The compu-
tation of the evolution of the system is similar to Molec-

ular Dynamics or Discrete Element Method simulations.

We use the velocity-Verlet algorithm [25] to integrate the

equations of motion with a time step δt.

3 Sample building

The particles are 2D disks meshed by a regular grid. We

consider defects in the form of 1D linear segments. For

all bonds crossing these zones we set the elastic modu-

lus to a value below E. The defects are randomly dis-
tributed within the particle with number density n̄. Their
lengths and Young moduli follow Gaussian distributions:

�̄ ∼ N(μ�̄, σ�̄), and Ē ∼ N(μĒ , σĒ).

The particle is then subjected to a quasistatic diame-

tral compression test. The bottom plate is kept fixed while

the upper plate moves downward. The contacts between

the particle and the plates are modeled by adding a nor-

mal repulsive force to the particle’s nodes touching the

plates. A regularized Coulomb friction law with a fric-

tion coefficient of 0.5 and a viscosity of 0.8 was used. The
compression continues until the primary cracks fully prop-

agate and before secondary fragments appear. As we rely

on an explicit resolution of the equations of dynamics, we

use a global viscous damping in order to dissipate low-

frequency elastic waves.

The fracture of particle leads to the failure of bonds.

From these failures, we determine at each node a damage

parameter di defined as the ratio of the number of broken

bonds to the initial number of bonds attached to this node.

Fig.1a shows this damage field after fracture. The color

level indicates the magnitude of the local damage, which

has its maximum value in the middle of the cracks. As

the peridynamics is a non-local approach, the crack-path

dependence on the grid orientation is limited, compared

with purely local lattice-based frameworks, like LEM.

To identify the fragments, we use a Floodfill algorithm

(see Fig.1b, c and d) [26]. This algorithm paints connected

zones made of the pixels which have damage values lower

than a given threshold T . This threshold affects the width
of the cracks and thus the number of potential fragments

produced. Fig.2 shows the evolution of the number of frag-

ments as a function of T . In the following we set T to

30%, which corresponds to a value for which the number

of fragments is roughly constant.

4 Parametric study

The main objective of this parametric study is to investi-

gate the influence of the particle size on the fracture pro-

cess. It depends on the ratio of particle diameter D to the

characteristic size μ�̄ of the defects. For a reference di-
ameter D0, we introduce n̄0 = 100 defects uniformly dis-
tributed in a square area (see Fig.3). The particle extracted

from this area has thus an average number n̄0 × 4
π
� 78

of defects. The average size of the defects was set to

μ�̄0 � D0/30 with a standard deviation of σ�̄0 � D0/200.
The particle was then meshed with a spatial resolution of

a) b)

c) d)

Figure 1. a): Damage field after particle fracture. The color
level represents the magnitude of the local damage. b), c) and

d): Results of the Floodfill algorithm with T=1%, T=33% and

T=66% respectively.

Figure 2. Average number of fragments of 100 particles as a
function of damage threshold.

256 nodes per particle diameter. To reduce computational

costs, we did not directly vary the particle size but the val-

ues of parameters related to the defects:

μ�̄ =
D0

D
μ�̄0 (1)

σ�̄ =
D0

D
σ�̄0 (2)

n̄ =

(
D
D0

)2
n̄0 (3)

In all cases, the Young moduli of the defects are chosen

to be narrowly distributed with an average μĒ/E= 0.2 and
a standard deviation σĒ= 0.005. Hence, the variability of

particle strength mainly depends on the distribution of the

lengths and the random positions of the defects. Table 1

shows the seven values of D/D0 used in our study and the
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Figure 3. Population of defects in the particle for different diam-
eters. From left to right: D/D0=2.85, D/D0=1 and D/D0=0.2.

corresponding defect parameters. In order to obtain mean-

ingful statistics on particle fracture, we broke 100 particles

for each diameter.

D/D0 n̄ μ�̄ σ�̄

0.05 0.25 0.7 0.1

0.2 4 0.175 0.025

1 100 0.035 0.005

2 400 0.0175 0.0025

2.85 816 0.01225 0.00175

4 1600 0.00875 0.00125

10 10000 0.0035 0.0005

5 Results and discussion

Figure 4 shows the average size of the fragments as a func-

tion of dimensionless particle diameter. For a diameter

above 0.2, the mean size of the fragments decreases with

particle size. The increase in the number of defects with

particle size leads to an increase of potential crack paths

and thus to a larger number of fragments. For the smallest

size (diameter of 0.005), the density of defects is too small

so that the particle breaks homogeneously into numerous

small pieces.

Assuming that the fracture occurs for the maximum

value of tensile stress in the middle of the particle [27], we

get:

σt =
2F
πD

(4)

where F is the yield force at failure. In figure 5 we plot

as a function of D/D0, the average value of σt/σth where

σth is the yield stress in tension of the material. We see

that the strength of the particle decreases as the diameter

increases, and follows a power law with an exponent of

-0.101. This behavior is in agreement with experimental

results [27].

In order to study the dispersion of the values of the

yield stress, we consider the probability for a particle to

survive under a given loading. For N particles, we assign

the probability PS (i) = 1− i
N to the ith smallest yield stress

value. This distribution is then fitted by the Weibull func-

tion [28]:

PS = exp
[
−

(
σt

σw

)m]
(5)

Figure 4. Mean fragment size normalized by particle area as a
function of dimensionless diameter.

Figure 5. Average yield stress in tension normalized by the yield
stress of the material without defects.

where σw corresponds to the stress for which 63% of par-

ticles are broken and m is the Weibull modulus charac-

terizing the width of the distribution. Figure 6 shows

ln(ln(1/PS )) as a function of ln(σt/σth). If the data col-

lapse on a straight line, the slope equals the Weibull mod-

ulus of the distribution. Note that a value of 0 on the x
axis corresponds to a yield stress equal to σth and thus to

a material without defect. Except for smallest particle di-

ameters (0.05 and 0.2), the distributions are well fitted by

the Weibull law.

The Weibull modulus globally increases with particle

size (m = 4.4 to m = 41). As the number of defects is in-
creasing with diameter, the probability of finding similar

critical defects between particles increases. As a conse-

quence, the distributions get narrower. On the contrary,

the dispersion is smaller for 0.05 compared to 0.2. As the
cracks are initiated in tension, the presence of a defect in

the vicinity of the particle center has a dramatic impact.

Because of the very low density of defects, many particles
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Table 1. Parameters of defect distribution as a function of
dimensionless particle diameter.



have no defect at their center. Thus, the probability distri-

bution becomes narrow as the particles yield stress reaches

the theoretical value of the material.

Figure 6. Surviaval probability of particles as a function of the
applied stress for different values of relative particle size D/D0.

The straight lines represent Weibull fits to the data.

6 Conclusion
In this paper, we developed a methodology to investigate

the fracture of 2D particles containing defects. More than

700 compression tests were performed with a peridynamic

bond-based approach to characterize the evolution of yield

stress and average fragment size as a function of particle

diameter. We found that the Weibull modulus evolves with

particle size and the average yield stress decreases as a

power law with diameter.

In future work, we would like to analyze in detail the

size distributions of the fragments. We would also like

to analyze crack patterns. The simulations allow us also

to evaluate the distributions of crack lengths and the in-

teractions between the growing crack and defects. As the

cracks tend to cross the defects, this leads to a lower num-

ber of defects in the fragments. We also plan to investigate

the influence of defect lengths (Gaussian or power law

distribution) on the probability distributions of the yield

stress.
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