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Abstract 

Characterization of the soil water reservoir is critical for understanding the interactions 

between crops and their environment and the impacts of land use and environmental changes 

on the hydrology of agricultural catchments especially in tropical context. Recent studies have 

shown that inversion of crop models is a powerful tool for retrieving information on root zone 

properties. Increasing availability of remotely sensed soil and vegetation observations makes 

it well suited for large scale applications. The potential of this methodology has however 

never been properly evaluated on extensive experimental datasets and previous studies 
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suggested that the quality of estimation of soil hydraulic properties may vary depending on 

agro-environmental situations. The objective of this study was to evaluate this approach on an 

extensive field experiment. The dataset covered four crops (sunflower, sorghum, turmeric, 

maize) grown on different soils and several years in South India. The components of AWC 

(available water capacity) namely soil water content at field capacity and wilting point, and 

soil depth of two-layered soils were estimated by inversion of the crop model STICS with the 

GLUE (generalized likelihood uncertainty estimation) approach using observations of surface 

soil moisture (SSM; typically from 0 to 10 cm deep) and leaf area index (LAI), which are 

attainable from radar remote sensing in tropical regions with frequent cloudy conditions. The 

results showed that the quality of parameter estimation largely depends on the hydric regime 

and its interaction with crop type. A mean relative absolute error of 5% for field capacity of 

surface layer, 10% for field capacity of root zone, 15% for wilting point of surface layer and 

root zone, and 20% for soil depth can be obtained in favorable conditions. A few observations 

of SSM (during wet and dry soil moisture periods) and LAI (within water stress periods) were 

sufficient to significantly improve the estimation of AWC components. These results show 

the potential of crop model inversion for estimating the AWC components of two-layered 

soils and may guide the sampling of representative years and fields to use this technique for 

mapping soil properties that are relevant for distributed hydrological modelling. 

Keywords: Soil Hydraulic Properties ; Available Water Capacity ; STICS ; soil water content 

;  GLUE ; Inverse modelling 

1.0 Introduction 

The capacity of the soil to store water available for plants, generally referred as available 

water capacity (AWC) is a key parameter for modelling the catchment-scale water balance. In 

particular, in tropical semi-arid contexts, where potential evapotranspiration equals or exceeds 
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rainfall, recharge to groundwater is difficult to estimate from vadose-zone water balance (De 

Vries et Simmers, 2002) and it is particularly sensitive to the size of the soil water storage 

(Anuraga et al., 2006 ; Sreelash et al. 2013). Therefore, accurate estimates of AWC and its 

spatial variability at the catchment scale are needed to improve the sustainable management of 

groundwater resources. The increasing availability of high frequency and high resolution 

remote-sensing data now allows retrieving precise soil hydraulic properties maps of the top 

few centimeters of the soil (Montzka et al., 2011) but estimating AWC of the entire root zone 

at the catchment scale remains a challenge.  

AWC depends on soil hydraulic properties (SHPs), soil depth and plant rooting 

characteristics. It may be defined from different point of view - pedologists, soil scientists, 

ecophysiologists - with different approaches and different levels of complexity, considering 

one or several layers corresponding to pedological horizons. A common definition of the 

AWC is the difference between the soil water content at field capacity and wilting point 

(Bruand et al., 2003). Those parameters can be determined in the field, which minimize soil 

disturbance or in the laboratory which requires soil sampling and sample preparation that 

could distort the soil sample and increase the margins of errors. All methods are highly time-

consuming and expensive (Steele-Dunne et al., 2010; Botula et al., 2012). Therefore, it is 

impractical to use them to obtain soil properties for catchments larger than a few hectares. For 

larger areas SHPs are generally estimated from soil characteristics that are easily available 

from soil maps (mainly textural properties) using pedotransfer functions (PTFs). However, 

PTFs are often site-specific and may lead to crude estimates of SHPs with large uncertainties 

when extrapolated over large areas (Vereecken et al., 1989, 1990, Wösten, 2001, Stump et al., 

2009) or beyond the specific context (geomorphic regions or soil type) under which they are 

developed (McBartney et al., 2002). A more recent technique is Digital Soil Mapping (DSM) 

that couple field and laboratory observational methods with spatial and non-spatial soil 
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inference systems (Lagacherie and McBratney, 2007). DSM makes an extensive use of 

technological and computational advances such as remote sensing and geostatistics for 

producing digital maps of soil types and soil properties (Lagacherie et al., 2008; Vaysse and 

Lagacherie, 2015). However, approaches based on DSM estimates basic soil properties such 

as soil texture, bulk density, pH etc. and still rely on PTFs to translate them into more 

functional properties (McBratney et al., 2003). They are thus also limited by the quality of the 

PTFs and their adequacy to the studied situation.  

As AWC components are important parameters for hydrological models, model inversion is 

another alternative for retrieving them. The principle is to use in situ or remotely sensed 

observations corresponding to model outputs strongly linked with AWC components to 

estimate them using parameter estimation or data assimilation methods. Such approach has 

been carried out in several studies for estimating SHPs and soils depth using various types of 

models: hydrological models (Ritter et al., 2003; Ines and Mohanty, 2008; 

Charoenhirunyingyos et al., 2011), crop models (Guérif at al., 2006, Varella et al., 2010a, 

2010b; Sreelash et al., 2012), Land Surface Models (Bandara et al., 2013, 2014 and 2015) or 

SVAT (soil vegetation atmosphere transfer) models (Jhorar et al, 2002, 2004). Several studies 

have shown that SHPs of vertically homogeneous soils can be estimated through model 

inversion using surface soil moisture (see for example Montzka et al., 2011; Nagarajan et al., 

2011). For multi-layered soils, profile soil moisture observations allow assessing SHPs (Ritter 

et al., 2003; Braga and Jones, 2004; Wohling et al., 2010; Li et al., 2011) but this requires 

large experimental settings which limits its spatial application. On the other hand, using only 

surface soil moisture measurements that can be spatially available from remote sensing, is not 

sufficient to provide unique and physically reasonable estimates of hydraulic properties for 

multi-layered soils through model inversion (Vereecken et al., 2008; Ines and Mohanty 2008; 

Charoenhirunyingyos et al., 2011) because of the poor connection in the hydraulic processes 
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between layers (Montzka et al., 2011), except in some particular situations (Shin et al., 2012; 

Bandara et al., 2013). Shin et al. (2012) also reported that the weakness of hydrological 

models in simulating plant root activities in the root zone results in relatively larger errors in 

the estimation of SHPs in crop land as compared to bare soil. As crop lands represent a large 

contribution to hydrologic processes within agricultural catchments, precise knowledge of 

AWC components is critical for managing water resources to maintain agricultural 

production. The known projections of climate change make this objective even more 

essential.  

Recently, crop model inversion has been proposed by several authors to retrieve AWC 

components (Guérif et al., 2006; Varella et al., 2010a, 2010b; Sreelash et al., 2012).  The 

main interest of using of crop models for retrieving AWC components in crop lands is that 

they are more efficient than hydrological models, Land Surface Models or SVAT models in 

describing the specificity of crop behavior with regards to water processes (effect of crop type 

on rooting system characteristics and water needs, effect of crop management practices on the 

water balance). This is partly because they account AWC components impacts not only on the 

soil water balance, but also on the coupled carbon and nitrogen cycling (Ruget et al., 2002; 

Satti et al., 2004; Breda et al., 2006). The increasing availability of high frequency and high 

resolution vegetation and soil moisture data from remote sensing makes crop model inversion 

approach a potentially powerful tool for spatial applications, especially for parameterizing 

catchment-scale hydrological models.  

However, accuracy of the parameter estimates strongly depends on environmental conditions 

such as climate and crop type (Varella et al., 2010b).  Charoenhirunyingyos et al. (2011) and 

Sreelash et al. (2012) show that combining surface soil moisture and vegetation measurements 

in model inversion, by bringing information on both surface and root zone SHPs, improves 
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substantially parameter estimation. However, these conclusions are based on synthetic 

experiments or very limited field datasets. In fact, few studies based on field data have been 

carried out to evaluate the potential of model inversion methods for estimating AWC 

components on multi-layered soils with observations potentially accessible from remote 

sensing and this problem is still considered as challenging (Mohanty 2013).  

In this paper, we used an extensive field dataset from a tropical agricultural catchment in 

South India involving four types of crops across 3 years. The objectives are: 

 (i) to analyze the potential of model inversion methods for estimating AWC components 

(water content at field capacity and wilting point, soil depth) on two-layered soils with 

observations potentially accessible from remote sensing on a large set of field situations; and  

(ii) to investigate the influence of the crop type and water regimes experienced by the crops 

on the accuracy of these estimations.  

 

2.0 Materials and Methods 

2.1 Site information 

The experimental catchment of Berambadi (84 km
2
) is located in the Kabini river basin in 

South India (AMBHAS Site, www.ambhas.com, long term environmental observatory BVET 

http://bvet.obs-mip.fr; Braun et al., 2009; Ruiz et al., 2010; Violette et al., 2010). It is 

intensively used for agro-hydrological, remote sensing and hydrological investigations 

(Kumar et al., 2009). The land is used for agriculture and the crops are mostly rainfed or 

irrigated with groundwater. We used a total of 60 crop/soil/climate situations covering 4 crops 

across 3 years from May 2011 to Dec 2013 and 42 agricultural plots each approximately 1 ha 

in size, monitored for soil moisture and crop growth. Among them, 15 crop/soil/climate 

situations from 12 plots were used for the calibration of STICS plant parameters (see section 

http://www.ambhas.com/
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2.4). The inversions were performed on 45 crop/soil/climate situations from 33 plots. The 

results presented in the following will only concern the situations/plots used for the 

inversions. 

The 4 crops studied have distinct characteristics (Table 1).  Turmeric is an irrigated 8 months 

crop (May to December) while the 3 others are rainfed crops grown over 4 months (May to 

August for sunflower and sorghum and September to December for maize).  

< Table 1 here please > 

The climate is tropical semi-arid, dominated by south-west monsoon with a mean annual 

rainfall of 800 mm (coefficient of variation 0.28), and an annual Potential Evapotranspiration 

(PET Penman Method, Penman, 1948) of 1100 mm (coefficient of variation 0.05), computed 

over 2005-2015. Daily records of air humidity, wind velocity, maximum and minimum air 

temperatures, precipitation and global radiation were obtained from an automatic weather 

station (CIMEL, type ENERCO 407 AVKP) and a meteorological flux tower (Astra 

Microwave, India) located in the study area. Measurements from the closest station were 

considered for each plot.  

< Table 2 here please > 

For the study period, the amount and distribution of rainfall and (Rain+ Irrigation)/PET ratio 

varied across years and cropping seasons (Table 2). This led to a varying degree of crop water 

stress experienced by the crops. 2012 was relatively dry as compared to 2011 and 2013 which 

can be classified as “normal years”.  

2.2 Crops: management and LAI measurements  
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Information on management activities such as date and dose of sowing, fertilizing, irrigation 

and date of harvest were obtained during field visits. Sowing dates (expressed as day of the 

year) vary between 130 to 150 for Sunflower and Sorghum, between 110 and 124 for turmeric 

and between 250 and 262 for maize. Fertilizer is applied once at the beginning of the season, 

the quantity varying between 20 to 30 kg.N/ha for sunflower, 30 to 50 kg.N/ha for sorghum, 

100 to 200 kg.N/ha for turmeric and 25 to 50 kg.N/ha for maize.  

LAI was measured using a Portable Leaf Area meter CI – 202 (CID Bioscience) and a LAI-

2000 Plant Canopy Analyzer (LI-COR) every 10 days in 2011 and 2012, and every 20 days in 

2013 concurrently with soil moisture measurements (see next section). Three measurements 

of LAI were taken in one representative sample area of 2 m
2
 and the mean value was used as 

representative of the plot. 

< Figure 1 here please > 

Time series of LAI (Fig. 1) obtained by interpolation of the measurements using a parametric 

growth curve approach (Baret, 1986) revealed a large variability resulting mainly from 

interactions between crop, climate and soil type. It provides the basis for the determination of 

root zone soil water content properties from crop model inversion.   

2.3 Soils: pedology, soil moisture measurements, reference AWC parameters values 

Soils in the studied area are roughly classified as red soils (Alfisols, FAO) or black soils 

(Vertisols, FAO). According to the 1:50,000 scale soil map of the area prepared by Karnataka 

State Remote Sensing Application Center (KSRSAC), six categories are considered based on 

the particle size distribution of the top layer: Clay and Clay Loam for vertisols, Gravelly 

Loam Sand, Loamy Sand, Sandy Clay Loam and Sandy Loam for Alfisols. Sandy Clay Loam 
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is the major soil class, covering 50 % of the area. The soil is gravelly sandy loam at the hill 

slopes, sandy loam and sandy clay loam in the plains and clay loam and clay soil in the valley.  

Surface soil moisture (SSM; typically from 0 to 10 cm deep) used for model inversion was 

measured using Theta Probe Soil moisture sensor – ML2x (Delta-T devices, sampling 

volume: 2.5 cm diameter, 6 cm long) and the mean of 3 measurements used as representative 

of each field plot. Additionally three soil samples per plot were collected for gravimetric soil 

moisture measurements. Theta Probe devices were calibrated twice a year using the 

gravimetric measurements: once during period of low soil moisture (before the start of the 

cropping season) and other during period of high soil moisture (during or at the end of the 

first cropping season). Profiles of soil moisture - used to determine in situ soil hydraulic 

properties – were also measured using soil moisture sensors (Trime-FM TDR, IMKO 

Micromodultechnik GmbH, sampling volume: 15 cm diameter, 18 cm long). The 

measurements were made at an increment of 10 cm from surface up to 1 m depth for shallow 

soils and up to a depth of 2 m for deeper soils. Both surface and profile soil moisture were 

measured throughout the year at a frequency of 10 days in 2011 to 2012 and 20 days in 2013. 

To capture the extreme values of soil moisture in both dry and wet conditions, surface and 

profile soil moisture were measured daily for a 30 day period once in October 2011 and once 

in August 2013.   

< Table 3 here please > 

To compare the estimated values of soil properties retrieved from model inversion to 

‘observed values’, water content at field capacity (θFC), wilting point (θWP) and soil depth (DL) 

were determined from in situ measurements on the monitored plots (Table 3).  As proposed 

by Hunt et al. (2009) and Martinez-Fernandez et al. (2015), θFC and θWP were inferred from 

long term soil moisture data:  θFC as the ‘minimum of maximum value’ of the layer soil 
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moisture in the growing season, while discarding soil moisture data immediately after a 

rainfall event (or irrigation event), and  θWP as the ‘5
th

 percentile of the minimum values’ of 

soil moisture in the growing season. Our time series of soil moisture exhibited alternate 

wetting and drying cycles, thus capturing both maximum and minimum soil water content. 

Bulk density was determined as the ratio of volumetric soil moisture (from TDR 

measurements) to gravimetric soil moisture (measured on soil samples). The depth of soil 

layers was determined by soil augering. The depth of soil from surface to weathering zone 

varied from 70 cm to 150 cm and was independent of the soil type.  

2.4 Model and Parameters  

The STICS crop model (Brisson et al., 1998; Coucheney et al., 2015) is a daily time-step 

model which simulates the functioning of a soil-crop system over a single or several 

successive crop cycles. It has been successfully used for spatial applications and coupled with 

hydrological models at the catchment scale (Beaujouan et al., 2001). The upper boundary 

conditions are governed by standard climatic variables (radiation, maximum and minimum air 

temperatures, rainfall, potential evapotranspiration) and the lower boundary condition is the 

soil/sub-soil interface. We used the Penman method to calculate potential evapotranspiration 

(PET; Penman, 1948). Crops are described by their LAI, above-ground biomass and nitrogen 

content and the number and biomass of harvested organs. The main processes described are 

carbon assimilation and allocation to different organs and water and nitrogen balances (for 

detailed description, see Brisson et al, 1998, 2008).  

The different components of actual evapotranspiration (ET) are calculated from the potential 

evapotranspiration: soil evaporation (Es), plant transpiration (Tp) and evaporation from the 

water intercepted by the foliage that contributes to reducing the evaporative demand at the 

plant level. For Es, two stages are considered following rainfall: a first stage where the soil 
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evaporates at the potential rate, and a second stage where evaporation is lower and decreases 

according to climate and type of soil. Crop water requirements (or maximum transpirat ion) 

are determined according to a crop coefficient approach which is well adapted to the crops 

considered herein (Brisson, 1998, 2008). The actual plant transpiration Tp is based on the 

water physically available in the soil and the capacity of the plant to extract it, due to its root 

characteristics, corresponding to the concept of AWC (amount of water between field 

capacity FC and wilting point WP). The ratio of actual transpiration to maximal transpiration, 

is a bilinear function of the amount of water available in the rooting zone (with a minimum 

value of 0 when the soi1 water content is equal to WP and a maximum value equal to (FC -

WP)). The soil water content regarded as being the threshold between the maximal 

transpiration stage and the reduced transpiration stage depends on root density, stomatal 

functioning of the plant and climatic demand. Water stress indices are derived from those 

calculations and affect different components of plant growth. 

The soil is considered as a reservoir and is defined as a succession of up to five homogeneous 

layers characterized each by its retention capacity characteristics (FC and WP, bulk density 

and thickness). Water transfer downwards in the soil microporosity is simulated on a one-

dimensional regular mesh discretized per 1cm step with a functional reservoir type model 

according to the tipping bucket concept. Incoming water fills the layers by downward flow, 

assuming that the upper limit of each single reservoir corresponds to the layer’s field capacity.  

The STICS model contains about 200 input parameters which are related to the characteristics 

of the plant, soil and crop management activities. The plant parameters for sunflower, 

sorghum,  turmeric and maize related to leaf growth, biomass, yield, and root growth were 

calibrated with the OptimiSTICS software (Buis et al., 2011), using all the available data on a 

restricted number of plots that were therefore not used for inversions. With the calibrated 



  

 
12 

 

model, the crop specific parameters can be assumed constant for the given crop for the study 

area. The parameters related to the agricultural practices (sowing dates, fertilization dates and 

doses, irrigation dates and doses and harvest dates) were set in accordance with the 

information collected from farmers.  

< Table 4 here please > 

In order to reduce the number of soil parameters to be potentially estimated, we adopted the 

simplified representation of the soil proposed by Varella et al. (2010a): a surface layer and a 

second layer mainly representing the root zone. The first layer depth was set at 10 cm which 

is compatible both with our field measurements of SSM and the order of magnitude of SSM 

retrievals from radar remote sensing (Jackson et al., 1995, Baghdadi et al, 2006) for further 

applications at larger scale. Here we considered only the permanent soil properties related to 

water storage and transfers in the soil and restricted the estimation to five parameters: soil 

moisture at field capacity (θFC) and wilting point (θWP) of both layers and thickness of the 

second layer (DL2) (Table 4). These parameters describe the maximum AWC (expressed in 

mm) of each layer which determines maximum water storage and available water for plant 

uptake as follow: 

                                                                                                                 (1) 

where BD is the bulk density (g/cm
3
) and    is the thickness (cm) of the layer.  

These parameters influence also other processes such as soil evaporation, carbon and nitrogen 

cycle in the soil (Brisson et al, 2008). They are involved separately in some of these processes 

which bring independent constraints for their estimation. The soil input parameters non-

estimated in the inversion process were obtained from local soil maps, soil experiments and 

standard values for soil classes (details are provided in Appendix-A).  
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2.5 Inversion method  

Generalized Likelihood Uncertainty Estimation (GLUE) approach is an informal Bayesian 

method using prior information of parameter values for estimating model parameters (Beven 

and Binley, 1992; Makowski et al., 2002). Based on Monte Carlo simulation, GLUE 

transforms the problem of searching an optimal parameter set into searching sets of parameter 

values which would produce reliable simulations of the variables of interest (Aronica et al., 

2002). GLUE based approaches have been successfully applied to hydrological models (e.g. 

Li et al., 2010) and dynamic crop models (Makowski, 2004 ; Guérif et al., 2006 ; Varella et 

al., 2010a, 2010b ; Sreelash et al., 2012).  

Sets of parameters values are randomly chosen in a prior distribution representing the 

potential parameter space. These sets are then used in model simulations, which produce 

multiple sets of values of output variables of interest. These outputs are compared with 

measured values with an appropriate likelihood measure. The parameters values 

corresponding to the highest likelihoods are called acceptable or “behavioural” values. The 

size of this ensemble is defined as a proportion of the total number of parameters values: the 

acceptable sample rate (ASR). The behavioural values are then used to determine the 

estimates of the parameters and their uncertainty bounds.  

Prior information was defined here as independent uniform distributions with bounds as the 

minimum and maximum of the observed values measured on a wide set of 60 plots (larger 

than the 33 considered in this study) in different soil types of the Berambadi catchment (Table 

4). These lower and upper bounds of the parameters were decreased/increased by 10 % to 

account for any errors in the measured soil moisture. The parameters sets were sampled in the 

prior distributions using Latin Hypercube Sampling (LHS; McKay et al., 1979). An initial 

sample of size 20000 was produced and then filtered to remove parameter combinations 
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which were considered as not reasonable. The sampled combinations in which (θFC1 – θWP1) ≤ 

7.0 g/g and (θFC2 – θWP2) ≤ 7.0 g/g were removed since these situations were never observed 

in the field experimental data. The simulations were carried out for the 9500 remaining 

samples. 

 

We used the sum of absolute errors (SAE), proposed by Brazier et al. (2000) as the likelihood 

metric. SAE was calculated for each variable considered in the inversion for each model run 

as, 

 

    
     ŷ

   

 
       

  
                                                                                                                                                                  

where,     
  is the sum of absolute errors for parameter set k, with k = 1,…N (N being the 

number of sets), variable i, with i = 1 to n (n being the total number of variables considered), 

and measurement date j, with j = 1,…,Mi (Mi being the total measurements dates for the 

variable i),      
  is the simulated value of variable i at date j  for the parameter set k  and 

      is the measured value of variable i at date j.  

Observations used to estimate soil parameters were made of a combination of two STICS 

output variables: SSM and LAI. On average, 10 observations of LAI and SSM were used in 

case of turmeric plots and 7 observations in the case of sunflower, sorghum and maize plots 

(Table 1). The SAE values of SSM and LAI were normalized (RSAE) to take into account 

their varying units and magnitudes (Eq. 3). We used a combined likelihood function by 

assigning weights to RSAE of LAI and SSM so as to take into account in an appropriate way 

the relative influence of these variables (Eq. 4). Based on the results of the preliminary 

experiments carried out to study the influence of each variable on the parameter estimation 

(not reported here), we set w1 to 0.4 and w2 to 0.6. 
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where         . 

 

ASR was set to 4 % based on these preliminary experiments. The medians of the behavioural 

values were taken as the estimates of the parameters.   

 

2.6 Statistical criteria for assessing inversion performance  

Several criteria are used for assessing the performance of the inversion process: 

 For each parameter and each inversion situation, a relative absolute error (RAE)  was 

computed, based on  the difference between estimated and observed values: 

            
     

          
    

 

    
   

                                                                                              

where     
    is the observed value of the soil parameter    for a given plot p and      

    
 

is the corresponding value of the estimate obtained from the GLUE method. 

A mean absolute error (MRAE) was computed as the mean of RAE of a given 

parameter    for the different plots. 

      
 

 
       

 

   
                                                                                                          

 A relative error (   ) was used to quantify the improvement brought by the inversion 

process with respect to prior information.     was computed here as the ratio of the 
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MRAE calculated  for the estimated parameter     
    

  to that calculated for the prior 

information     
     

 .  

     
        

    
 

        
     

 
                                                                                                                

    quantifies the improvement (    < 1)  or degradation (    ≥ 1) in the estimate of 

parameter    with respect to prior information (Varella et al. 2010a). 

 As an alternative to RE, the information brought by the inversion process in the 

parameter estimate was also assessed, for each parameter and each inversion situation,  

by comparing the standard deviation of the prior and posterior parameter distributions, 

using a normalized standard deviation given in Eq. (8): 

        
  

 
     

    

 
  

   
     

                                                                                                                        

        
 quantifies the reduction (        

    or increase (        
    in the 

uncertainty associated to parameter estimation. 

2.7 Sensitivity analysis 

We performed a sensitivity analysis was performed to assess the information content of LAI 

and SSM observations for estimating SHPs (Varella et al, 2010a). Sobol’ main sensitivity 

indices (Saltelli et al., 2008), which measure the part of variance of simulated outputs 

explained by the parameters independently from each other, were estimated using the EASI 

(effective algorithm for computing global sensitivity indices) method (Plischke, 2010). The 

main advantage of this method is that it does not require any specific numerical experiment 

design for the estimation of the indices. They have thus been computed at no extra cost using 
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all the simulations performed for the model inversions. Non-normalized Sobol’ indices were 

used (i.e. Sobol’ indices multiplied by the total variance of SSM / LAI) to visualize the 

variance explained by each parameter and not “just” the proportion of total variance they 

explain. 

3.0 Results 

3.1 Accuracy of estimated soil properties  

The mean value of RAE on the 45 situations ranged between 0.13 and 0.21 depending on the 

estimated parameter (Fig. 2). Estimation of field capacity of both layers (θFC1 and θFC2) 

showed relatively lower RAE (mean RAE < 0.15) as compared to the other parameters (0.19 

for θWP1 and DL2, 0.21 for θWP2). The standard deviation of RAE varied between 0.1 and 0.24. 

θFC1 and θFC2 exhibited relatively lower error variability than the other parameters. However, 

the quality of estimation of all the parameters varied significantly depending on the situations 

and RAE inferior to 10% can be obtained for all parameters.  

< Figure 2 here please > 

The RE in the estimations was less than 1.0 for all parameters (Fig. 3), indicating that the 

inversion improved the accuracy of all the estimated parameters with respect to the mean of 

the joint prior distribution. The RE in the estimation was the lowest for θFC1 (0.58) and similar 

for θWP1, θFC2 and DL2 (mean value approximately 0.76). For all the parameters RE was less 

than 0.80, which is a substantial improvement in the estimation of the parameters with respect 

to their prior information.   

< Figure 3 here please > 

Normalized standard deviation (     ) was largely inferior to 1 for θFC1 and θWC1 (Fig. 4), 

which means a significant reduction in the uncertainty of their estimated values as compared 
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to the uncertainty associated with the prior information. The reduction of uncertainty for the 

second layer parameters (θFC2, θWP2 and DL2) was not so significant. The relatively larger 

variability of       in the case of θWP1, θFC2 and θWP2 shows that under certain conditions the 

uncertainty in the estimates reduced significantly while in some cases the reduction in 

uncertainty is only marginal or nil. The level of uncertainty in DL2 is globally closer to that of 

prior information even if it can reach 70 to 80% of prior information uncertainty in some 

cases.   

< Figure 4 here please > 

3.2 Effect of crop type  

The crop type used for inversion plays an important role in the quality of estimation of the 

parameters. This is evident from the consistently lower MRAE of the parameters, except for 

θFC1, obtained with maize crop as compared to those obtained with the other crops (Fig. 5).  

< Figure 5 here please > 

The MRAE in the estimation of all parameters except θFC1 were nearly half for maize than 

that of the other crops, reaching values of about 10%. One of the main differences between 

maize and the other crops concerning the link between root zone hydraulic properties and 

crop growth is the water regime experienced by these crops. Due to both climatic conditions 

(sunflower and sorghum are grown in rainy season) and management options (irrigation is 

mainly devoted to turmeric as it is a cash crop), maize faces drier conditions than the other 

crops. Average (Rain+irrigation)/PET ratio was 0.87 for maize against 1.32 for sunflower and 

sorghum, and 1.3 for turmeric. STICS model simulations (Fig. 6) confirmed that maize 

experienced the maximum stress (both in intensity and duration) as compared to other crops. 

All maize plots experienced water stress, while for the other crops, the variability of water 
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stress index values is relatively higher, indicating that they experienced different levels of 

stress depending on year, soil type or farming practices.  

< Figure 6 here please > 

The quality of estimation of θFC1 was on the contrary better with sunflower and sorghum as 

compared to turmeric and maize. Higher rainfall (and hence higher frequency of high                            

moisture content conditions in the first layer) occurred during the cropping season of 

sunflower and sorghum which would have favored the estimation of θFC1 since SSM 

observations can be seen as a proxy of θFC1 in these conditions. For maize, soil moisture data 

used for inversion have not attained the actual values of field capacity for all situations 

(results not shown).  

 

3.3 Effect of water regime  

Figure 7 shows dynamics of sensitivity indices of LAI and SSM simulated by the STICS 

model to the estimated parameters for a maize plot, representative of the maize plots used in 

this study. The variance of SSM explained by the variations of θFC1 clearly follows the 

dynamic of simulated SSM: the wetter is the first layer the more the simulated soil moisture is 

sensitive to θFC1. This confirms that SSM observed during wet situations contains more 

information to estimate this parameter.  

< Figure 7 here please > 

The influence of the other parameters (θWP1 and second layer parameters) on simulated SSM 

starts with the first period of dryness faced by the crop (days 80-95) which coincide with the 

beginning of a long water stress period (Fig. 7a). It increases significantly during the 

senescence period (days 100-150) which is marked by a second period of dryness and a 
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continuous increase of water stress. In dry conditions the level of θWP1 limits plant water 

uptake in layer one and thus directly affect its moisture content. Second layer parameters also 

affect SSM by limiting available water capacity and plant water uptake in second layer and 

thus by modifying the repartition of plant water uptake between both layers.  

The dynamics of sensitivity indices of LAI to the estimated parameters follow that of the 

simulated water stress. In this case, LAI is only sensitive to parameters relative to the second 

layer indicating that AWC2 (available water capacity of layer-2, which represent the major 

part of total AWC) plays a major role in the dynamic of LAI when the crop is affected by 

water stress, as it occurs in this case after the maximum LAI (days 100-150, Fig.7b). Before 

this period, the water stress is nil and the sensitivity of LAI to the estimated parameters is 

very low.  

These results show that the levels of information content in LAI and SSM observations to 

estimate AWC components are strongly linked with the water regime and its interaction with 

the crop growth. This has been observed for all the situations although the dynamics and 

levels of sensitivity indices vary depending on the situations and crops (not shown here).  

Impact of the water regime and its interaction with crop growth on the quality of AWC 

components estimation is illustrated and quantified in the following subsections. 

 

3.3.3 Surface Layer Properties 

As a consequence of the linked patterns of sensitivity of simulated SSM to first layer 

parameters and SSM value, the quality of estimation of θFC1 and θWP1 showed a high 

dependence on the status of water content in the first layer (Fig. 8).  

< Figure 8 here please > 
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Inversions performed on dry situations (where SSM values were always far from θFC1) yielded 

poor estimates of θFC1. On the contrary, situations where at least 3 SSM observations were 

available when the first layer was wet (SSM values close to θFC1) provided particularly good 

estimates of θFC1 with an error of about 5 % in mean and inferior to 10 % in most cases. 

As expected, the opposite behavior was observed for θWP1 since the sensitivity of simulated 

SSM to θWP1 was found to be negatively correlated to SSM values (Fig. 7b). Situations in 

which at least one observation of SSM was available during period of dryness provided better 

estimates of θWP1 than the other situations (Fig. 8b) with errors reduced by approximately 

half.  

 

3.3.4 Second layer Properties 

Figure 9 shows that the quality of estimation of the second layer properties was related to the 

water stress experienced by the crop. Better results were obtained on situations experiencing 

large water stress compared to those obtained on situations with no or limited water stress. 

The level of water stress experienced by the crop was quantified by S, the proportion of days 

in the crop cycle when the water stress index was less than 0.6 (1 corresponds to no stress and 

values tending to 0 to very high stress). The error, expressed as MRAE, was relatively lower 

in situations where S > 20 % as compared to situations where S < 20 %.  In situations where S 

> 20 % there was a substantial improvement in the quality of estimation of θFC2 and θWP2, 

while DL2 showed only a marginal improvement. The MRAE in the estimation of θWP2 was 

reduced by more than half in case of S > 20% as compared to situations where S = 0, reaching 

a value inferior to 15%. MRAE of θFC2 was about 10% for S > 20%. Similar results were 

obtained when considering MRAE as a function of minimum stress values (not shown).   
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< Figure 9 here please > 

Figure 10 shows that the RAE of the estimation of second layer properties was clearly 

negatively correlated with the number of observations of LAI available when the simulated 

water stress index was under 0.60. Situations in which at least one LAI observation was 

available during period of crop stress considerably improved the estimation of θWP2. For θFC2 

at least 2 observations of LAI during period of crop stress were necessary to obtain results 

significantly better than when using observations done during periods without stress. We still 

notice that the estimation of DL2, even though it is slightly better when LAI observation are 

made during stressed periods, still remains poorer than that of θFC2 and θWP2. 

< Figure 10 here please > 

 

4.0 Discussion 

4.1 Accuracy of estimated soil properties 

We have shown that in favorable conditions crop model inversion using observations 

potentially available from remote sensing may lead to reasonably accurate estimations of 

AWC components of two-layered soils and this even using limited number of observations. 

Most of the studies dedicated to the estimation of soil hydraulic properties or AWC 

components from model inversion using observations potentially available from remote 

sensing are based on synthetic dataset (Jhorar et al., 2002, 2004; Montzka et al., 2011; 

Bandara et al., 2013) or on very limited number of real cases (Charoenhirunyingyos et al., 

2011; Sreelash et al., 2012; Shin et al., 2012; Bandara et al., 2014, 2015). However, assessing 

the interest of such methods requires their evaluation on large and diverse datasets. This study 
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represents a contribution toward this assessment and confirms the potential utility of this 

method. 

Further improvements of the estimation errors are still attainable by increasing the level of 

information used for the inversion. In addition to observations of model outputs, prior 

information on estimated parameters may be used in the inversion process to better constrain 

the estimations. A few recent studies (Scharnagl et al., 2011; Scholer et al., 2011), mainly 

using hydrological models, have proposed to use soil maps or local texture measurements 

combined with hydraulic properties databases or pedotransfer functions to constrain the 

inversion problem by using informative prior distributions in Bayesian inversion systems. 

This may be particularly helpful for reducing equifinality problems. Thanks to the, sometimes 

independent, role played by AWC components in the model, the decoupling in space and time 

of the hydric processes affecting the two layers, and the availability of both SSM and LAI 

observations in humid and dry conditions, the potential compensation effects between AWC 

components were limited. However, compensative effects may still occur in some situations 

and this additional information could also help in estimating additional parameters such as 

bulk density. The evaluation of the potential of such approaches on large real dataset and 

using commonly available data as source of constraints constitutes one of the next key 

methodological challenges for the estimation of AWC components from crop model 

inversion. 

4.2 Effect of hydric regime and its interaction with crop type 

We found that the quality of estimation of AWC components was largely dependent on the 

hydric regime and its interaction with crop type: field capacity of surface layer was better 

estimated in wet conditions whereas wilting point of surface layer and deeper layer properties 

were better estimated in dry conditions and with crops facing hydric stress. This confirms on a 
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large set of real data what was partially suggested in (Jhorar et al., 2002; Varella et al., 2010b; 

Bandara et al., 2013) mostly on synthetic datasets. Our sensitivity analysis experiments 

suggested that this was due to the variation of the level of information content in LAI and 

SSM observations. If water inputs from rain or irrigation are not sufficient for ensuring 

optimal crop growth then crop growth is highly dependent to AWC and vegetation 

measurements bring significant information, particularly on the layers mostly representative 

of the root zone. On the contrary if SSM can be seen as a proxy of surface field capacity in 

wet conditions, its information content to estimate this property decreases in dry conditions. 

This sensitivity analysis also shed light on the results obtained by (Sreelash et al., 2012) about 

the complementarity of SSM and LAI observations. In a more general way, these results 

confirm the interest of using multiple remotely-sensed constraints for the estimation of root-

zone soil moisture and associated soil properties in model-data fusion systems and the 

dependency of their information content on the vegetation state and soil moisture conditions 

(Barrett and Renzullo, 2009; Van Dijk and Renzullo, 2011).  

Situations which experience large water stress and include wetting and drying cycles are thus 

optimal observational objects for estimating AWC components of multi-layered soils from 

crop model inversion. The complementary use of a few SSM observations in wet conditions 

and LAI observations during water stress period bring significant level of information for 

their estimation. 

 

4.3 Impact of errors on the results 

The results of the inversions presented in this study are also impacted by different types of 

error: 
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(i) model errors (including both errors in the values set for model’s input 

parameters that are not estimated in the inversions and errors in model’s 

equations); 

(ii) observation errors, i.e. errors on measured LAI and SSM used in the 

inversions; and 

(iii) reference values errors, i.e. errors on the ‘observed’ values of the AWC 

components that are compared to the estimated parameters for assessing their 

quality. 

Model errors may be linked with model complexity. Complex crop models have been built to 

mimic as realistically as possible the different processes involved in crop growth and its 

interaction with its environment but the resulting high number of parameters increases the 

degrees of freedom in model calibration process and the amount of information needed to 

feed the model. This may contribute to decrease model’s robustness (Confalonieri et al., 

2012). The crop model used in this study is representative of the most complex category of 

crop models (Jones et al., 2016) and the way parameters and input variables non estimated in 

the inversion process are set is conform to the usual practices. Obviously, the limits of the 

plant parameters calibration process and the errors on the information used to set its other 

entries impact the model simulations as well as do the errors in its equations. The inversions 

are based on the computation of the differences between simulated and observed values of 

SSM and LAI (SAESSM and SAELAI, eq. 2). This computation is affected in the same way by 

model and observation errors and these errors may be compensated by unrealistic values of 

the inversed parameters. Errors on SAESSM and SAELAI have been approximated for each 

situation by comparing the observed and simulated values of LAI and SSM, using the 

reference values of AWC components in simulations. As expected, large SAE errors on LAI 

and/or SSM often lead to large errors in the estimated parameters that are sensitive to these 
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variables (results not shown). As practical applications of the method are likely to include 

situations with large model and/or observation errors, we didn’t remove such situations from 

our analysis, to evaluate as fairly as possible the performance we can expect from this 

method. Ensemble modelling has recently shown to be an efficient way of improving crop 

simulation (Martre et al., 2015). Although it would be cumbersome to implement, using 

several models could be considered in an inversion process to reduce the impact of model 

error.  

Reference values errors may impact the evaluation of the quality of parameters estimate. 

Particularly, the lesser reliability of DL2 measurements in field conditions, as it is difficult to 

estimate by augering the precise depth of the base of the soil profile, may partly explain that 

its estimation still remains poorer than that of θFC2 and θWP2. In addition, DL2 estimate from 

inversion represents an effective soil thickness that might be far from the value assessed in 

field conditions. Some particular situations may create such discrepancy between effective 

and measured values: presence of an obstacle that prevents the roots to attain the base of the 

soil profile and limits the effective AWC, or presence of a transient perched water table 

connected with the base of the profile that allows a larger effective AWC than observed. 

4.4 Practical application of the method on agricultural catchments 

The results presented in this study contribute to evaluate the potential of AWC components 

retrieval from crop model inversion and may help to define optimal configuration for the 

application of this method on agricultural catchments. This next step is challenging but 

necessary to bring solutions to the issue of monitoring water resources in irrigated agricultural 

catchments. 

Application of this method for deriving soil maps of AWC components would require the use 

of SSM and LAI data retrieved from remote sensing. The method presented here is directly 
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applicable with remote sensed data and the benefit of using them has already been shown in 

other studies (Santanello, et al., 2007; Charoenhirunyingyos et al., 2011; Ines et al., 2013; 

Bandara et al 2015). In tropical regions, where cloudy conditions are frequent, SSM and LAI 

are attainable from radar remote sensing (e.g. Wagner et al., 1999; Tomer et al., 2015 for 

SSM ; Kim et al., 2012 ; Hirooka et al., 2015 for LAI). 

Crop model inputs such as climate or farming practices are often less precisely known at the 

territory scale than at point scale. The level of precision of the available information on these 

inputs may impact crop models simulations (Jego et al., 2015). Additional studies would be 

required to assess the influence of these uncertainties on the results of the inversions to 

evaluate to what extent they impact the quality of AWC components retrieval. 

Finally, systematic multi-local application of this method in its current configuration for 

deriving soil maps of AWC components in agricultural catchments may face the problem of 

vegetation types or crops non-represented in the model and of the dependence of its 

performance to the agro-pedo-climatic conditions on which it is applied. It may thus 

advantageously be combined with advanced geostatistical methods able to take into account 

in an optimal way all kind of existing soil information (McBratney et al., 2003). In this 

context, the results presented in this study may guide the sampling of representative fields 

over a territory to use this technique for soil mapping exercise. 

 

5.0 Conclusion 

In this study we evaluated on an extensive field experiment the potential of crop model 

inversion for estimating AWC components on two-layered soils with observations potentially 

accessible from remote sensing.   
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We have shown that: 

1) the quality of estimation of AWC components varied depending on the situations on 

which it was estimated. These estimations were however systematically better than the 

prior information used although this prior information was already of relatively good 

quality; 

2) the quality of estimation of AWC components was found to largely depend on the 

hydric regime and its interaction with crop type: field capacity of surface layer was 

better estimated in wet conditions whereas wilting point of surface layer and deeper 

layer properties were better estimated in dry conditions and with crops facing hydric 

stress;  

3) using simultaneously LAI and SSM observations allowed to obtain mean relative 

absolute error of 5% for field capacity of surface layer, 10% for field capacity of root 

zone, 15% for wilting point of surface layer and root zone, and 20% for soil depth, in 

favorable conditions; and 

4) a few observations of LAI and SSM available in favorable conditions were sufficient 

to largely improve the estimation of AWC components. 

We confirmed the utility of the inversion of crop-models to provide realistic soil-water 

properties and further improvements such as inclusion of informative prior distributions or 

reduction of model error are still conceivable. Further studies are however still needed to 

apply this method for deriving soil maps of AWC components at agricultural catchment scale. 

Such improvements will allow deriving accurate maps of soil AWC at the catchment scale, 

which are essential for distributed hydrological models aimed at studying the impact of 

agriculture on water resource in tropical catchments.   
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List of Tables   
 

Table1 

Crop 

Number of  

situations 

monitored 

Growing  

Season 

Average length  

of the growing  

period 

Avg. number of  

LAI/SSM  

Observations per 

situation 

Turmeric 17 May to December ~240 days 10 

Sunflower 11 May to August ~110 days 8 

Sorghum 9 May to August ~110 days 8 

Maize 8 September to December ~100 days 7 

Table 1: Monitored plots and vegetation measurements from 2011 to 2013. (LAI – Leaf Area 

Index; SSM – Surface Soil Moisture)  
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Table2 

Variable 
2011 2012 2013 

S1   S2 S1 + S2 S1   S2 S1 + S2 S1   S2 S1 + S2 

Rain (mm) 520 321 841 302 282 584 557 301 858 

Irrigation (mm) 0 0 170 0 0 165 0 0 90 

PET (mm) 347 351 698 366 341 707 342 344 686 

(Rain + 

Irrigation)/PET 
1.50 0.91 1.45 0.83 0.83 1.06 1.63 0.88 1.38 

S1 - Season-1: May to August (sunflower and sorghum) 

   S2 - Season-2: September  to December (maize) 

   S1 + S2: May to December (turmeric). 

 

   Table 2: Cumulated Rain, Potential Evapotranspiration (PET Penman Method, Penman, 

1948), Irrigation and (Rain+ Irrigation)/PET ratio over the corresponding growing season for 

turmeric, sunflower, sorghum and maize crops for 2011, 2012 and 2013 in the Berambadi 

catchment.  
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Table3 

Soil Type/ 

Parameter 

No of  

Plots 

Soil moisture at 

Field Capacity θFC 

(g/g) 

Soil moisture at 

Wilting Point θWP 

(g/g) 

Available water  

Content AWC 

(mm) 

Sandy Loam 11 14.0 to 19.5 4.5 to 7.5 127.0 to 215.0 

Sandy Clay 

Loam 

15 17.5 to 23.5 6.5 to 11.0 139.0 to 231.0 

Clay Loam 7 22.5 to 30.0 10.5 to 12.5 129.0 to 198.0 

 

Table 3: Range of observed values of Field Capacity and Wilting Point obtained from long 

term soil moisture observations (2011-2014) and AWC (computed using Eq. 1) for different 

soil types in the 33 plots. Field Capacity and Wilting Point values are presented in gravimetric 

unit, the unit used in the model STICS. 
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Table4 

Parameter  

(name in STICS) 
Definition Unit Initial Range 

θFC1   (HCC(1)) Water content at field capacity of layer 1 g/g 10 – 32 

θFC2   (HCC(2)) Water content at field capacity of layer 2 g/g  10 – 32 

θWP1  (HMINF(1)) Water content at wilting point of layer 1 g/g  5 – 15 

θWP2  (HMINF(2)) Water content at wilting point of layer 2 g/g  5 – 15 

DL2   (EPC(2)) Thickness of  layer 2 cm  70 – 150 

 

Table 4: The soil parameters of STICS model selected for estimation along with their initial 

ranges of values used as prior information.  
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List of Figures 

 

Figure 1 

Figure 1: LAI curves for (a) Sunflower, (b) Sorghum, (c) Turmeric and (d) Maize showing the 

variability of LAI between plots and crops.  
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Figure 2 

Figure 2: Boxplot of the Relative Absolute Error (RAE, Eq.5) in the estimation of soil 

parameters for 45 situations (All Crops), * is the mean value of the RAE (MRAE), + represent 

outliers.   
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Figure 3 

Figure 3: Relative error (RE, Eq.7) in the estimation of soil parameters. 
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Figure 4 

Figure 4: Boxplot of the normalized standard deviation (σnorm, Eq.8) of the parameter 

estimates on the 45 situations,* is the mean value, + represent outliers.   
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Figure 5 

Figure 5: Boxplot of RAE in estimation of (a) θFC1,  (b) θWP1,  (c) θFC2,  (d) θWP2 and (e) DL2, 

for (i) Sunflower, (ii) Sorghum, (iii) Turmeric and (iv) Maize,* is the mean value (MRAE) , + 

represent outliers.   
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Figure 6 

Figure 6: Variability of simulated water stress between plots in terms of (a) maximum water 

stress index during crop cycle, (b) minimum water stress index during crop cycle and (c) 

percentage number of days S of the crop cycle for which stress index is inferior to 0.6, for (i) 

All crops (45 situations), (ii) Sunflower, (iii) Sorghum, (iv) Turmeric and (v) Maize. The 

water stress index in STICS model expresses the reduction of plant transpiration as compared 

to a potential and varies from 0 to 1, 0 being the highest stress and 1 indicating no stress. * is 

the mean stress, + represent outliers. 
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Figure 7 

 

Figure 7: Temporal variations of (non-normalized) Sobol’ main sensitivity indices of (a) SSM 

and (b) LAI to soil hydraulic parameters and 2
nd

 layer depth during the entire simulation 

period for one plot of maize crop. Solid black curves represent the mean of simulated (a) SSM 

and (b) LAI.  Bar chart in (b) represents the rainfall (in cm). Dashed black curve in (b) 

represents the mean of simulated water stress. 
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Figure 8 

Figure 8: Box plot of  RAE in the estimation of (a) θFC1 for different situations of N, (i) N = 0 

(17 Plots), (ii) N = 1 to 2 (14 Plots) and (iii) N > 2 (14 Plots), N being the number of 

observations of SSM measured when the first layer water content simulated by the model 

from measured SHPs falls within +/-10% of θFC1 values and (b) θWP1  for different situations 

of N, (i) N = 0 (21 Plots), (ii) N = 1 to 2 (14 Plots) and (iii) N > 2 (10 Plots), N being the 

number of observations of SSM measured when the first layer water content simulated by the 

model from measured SHPs was less than half of θFC1. * is the mean value (MRAE) , + 

represent outliers.  
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Figure 9 

Figure 9: MRAE in the estimation of 2nd layer parameters (θFC2, θWP1 and DL2) for three levels 

of water stress experienced by the crops. ‘S’ is the percentage number of days of the cropping 

seasons that are under significant stress (stress index of 0.6).  
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Figure 10 

Figure 10: Box plot shows the RAE in the estimation of (a) θFC2  (b) θWP2  and (c) DL2 for 

different situations of N, (i) N = 0 (26 Plots), (ii) N = 1  (7 Plots) and (iii) N > 1 (12 Plots). N 

is the number of observations of LAI measured when simulated stress index is under 0.6. * is 

the mean value (MRAE), + represent outliers. 
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Appendix-A 

Values and source of non-estimated soil parameters used in this study  

Parameter Source Range Remarks 

pH Soil Map 5.04 to 8.13 KSRSAC* 

Organic Nitrogen 

Content   

(% of dry soil) 

Site specific relation between 

clay content and organic 

nitrogen content from 

laboratory analysis on soil 

cores sampled in the fields 

0.06 to 0.16 Field Experiments 

Albedo of bare soil 

(%) 

Standard Values 0.18 to 0.28 Brisson et al., 2008 

Rainfall-Runoff Ratio 

(%) 

Estimated using profile soil 

moisture in bare soil conditions 

0.05 to 0.15 Field Experiments 

Bulk Density (g.cm-3) From ratio of volumetric and 

gravimetric soil moisture 

content 

1.15 to 1.60 Field Experiments 

Depth of tilling (cm) Ploughing and tilling depth 

from field 

5  to 30 Field Experiments 

*  Karnataka State Remote Sensing Application Center 
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Highlights:  

 Crop model inversion is a powerful method for estimating available water content 

components  

 It was evaluated on a large field experiment dataset (4 crops, 45 situations) 

 Interaction between crop type and soil water regime highly impacted the quality of 

estimation 

 Mean relative error of estimated properties varied between 5 and 20% in favorable 

conditions  

 

 

 

 


