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Multiple co-inertia analysis is an interesting method to explore a common multi-scale structure and to characterize complex trait such as fleshy fruit texture by integrating 

several levels of studies. However for this method, the weight  of each block depends on inertia of block. Therefore the “omic” level, highly complex exhibiting a strong inertia, 

is more difficult to exploit in the  analysis. A  selection or a sub-division of data based on functional analysis may improve their integration. 

Background - Objectives 
Tomato fruit texture is one of the most critical quality traits for both the consumer (purchase) and the production chain (transport, handling, storage). Texture is a complex trait 

for which several QTL and genes were found. However, interactions between the molecular, histological, physical and biochemical components of fruit texture have been 

rarely investigated. 
 

In this work an integrative approach based on multiblock analysis was applied to point out links among the different levels: from protein to fruit, then to identify main 

physiological mechanisms involved in fruit texture.  
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Integrative approach of tomato fruit texture 
using multiblock analysis 

Three contrasted parental lines (Cervil, Levovil, VilB) and three derived QTL-NILs harbouring texture QTL on chromosome 4 and 9 

(L4, L9 and B9) (Chaïb et al, 2007) were grown under two water regimes: control (C) and water deficit (S) corresponding to a 40% 

decrease in water supply from flowering of the third truss until the end of the experiment. Fruit size and texture were measured on 

individual fruits, then composition and proteome were assessed on four pools of 5 fruits for each genotype and each condition. 

Measurements were performed at the cell expansion stage, at harvest (red ripe stage) and after 7-days storage at 20
 

C.  Cervil Levovil VilB 

Plant material and cultural conditions 

Results  

Statistical analysis  
To identify a multi-scale structure among data sets measured at the protein, tissue and fruit levels, a multiple co-inertia analysis (MCOA) was applied based on a covariance 

criterion, for that ADE-4 software was used (Thioulouse et al. 1997). Simultaneous analysis were performed from several blocks to outline common patterns of the variability, if 

any (Chessel and Hanafi, 1996). For that purpose, three data categories named “blocks” were processed: 

Block 1 : contained physico-chemical data, vitamin C, soluble sugars, organic acid, alcohol insoluble solid (AIS), dry matter contents (DM), locul number and fruit weight (FW), 

Block 2 : included mechanical measurements of fruit texture, such as firmness (CPmax, FPmax), fruit deformation (CPdef, FPdef), work (FPw) and stiffness (CPslop, FPslop) 

obtained by compression and puncture tests. “p” before label means measurement was achieved on peeled fruit. 

Block 3:  included the quantities of 400 proteins (identified by 2D-MS),  

All data were obtained from the same sample for each genotype, condition (water deficit and control), and stage of development. Cervil was discarded from the analysis to 

avoid bias, because of its huge difference in some traits such as fruit weight. Data were normalized and each block was subjected to a scale factor (1/inertia). 

Cell expansion stage  At harvest (red ripe) After 7-days storage at 20
 

C 

Links between  block score  and  

compromise score (vectorial 

correlation) 

Results showed : 

Impact of genetic variability : a common structure between the different blocks which reveals a common multi-scale structure mostly related to the genetic variability. The first 

common component separates the two genetic backgrounds (L and B), while the second component reflects QTL effects.  

Compared to the Levovil background, VilB and VilB9 fruits were associated to a higher local firmness (puncture test), dry matter, sucrose and starch (at the expansion stage 

only) contents, but lower glucose, fructose, malic acid contents and locular number. The QTL9 was associated to low global firmness and stiffness (compression test). 

Stiffness was associated to high vitamin C content at the cell  expansion stage, and low calcium content in the post-harvest suggesting an effect on cell integrity.  

The water deficit effect was low and evidenced only at the red stage. 

Although the protein block hardly influenced the compromise, we examined the ten proteins which better contributed to the first and second axis. The first axis of the 

compromise separated proteins involved in carbohydrate metabolism, the second axis correlates with stress response proteins. At harvest stage and after 7-days storage at 

20
 

C, proteins implicated in cell wall metabolism mostly contributed to the first axis. However no clear functional links between biochemical data and proteins could be  up to 

now outlined. 

% of the variance of each block 

used to build the compromise 

(squared covariance )  

Block 
Cell expansion stage   At harvest   After 7-days storage at 20°C 

Component 1  Component 2    Component 1  Component 2    Component 1  Component 2  

Bioch  0,42 0,11 0,43 0,07 0,45 0,12 

Tex  0,47 0,24 0,60 0,26 0,57 0,27 

Prot  0,11 0,08   0,16 0,08   0,16 0,07 

Block 
Cell expansion stage   At harvest   After 7-days storage at 20°C 

Component 1  Component 2    Component 1  Component 2    Component 1  Component 2  

Bioch 0,91 0,84 0,96 0,81 0,93 0,80 

Tex  0,92 0,94 0,97 0,97 0,94 0,95 

Prot  0,93 0,89   0,91 0,90   0,90 0,90 

More than 50% of the variance of 

texture and biochemical blocks  

were  explained with the first two 

components of the compromise.  

Only 20% for proteome block. 

Blocks were all well correlated 

to the compromise for the three 

stages of development.  
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The reference structure (using the first two components) so-called “compromise” derived from the three data blocks: labels for each genotype and treatment represent 

barycenters of  each individual block (points), while the length of the segments indicates the similarity among blocks (the shorter, the more similar).  

On variable projection in the compromise, numbers represents functional class of protein (1: stress response, 2: carbohydrate metabolism, 3: energy, 4: cell wall, 5: 

proteolysis, 6: secondary metabolism, 7: signaling, 8: ripening, 9: other, 10: regulation of protein activity, 11: amino acid metabolism). Protein data had strong inertia, all 

proteins clustered near the origin. 

The 3 figures show the difference (arrow lengths) between the compromise (point) and each block (the end of arrow), “Bioch”: block 1, “Tex”: block 2 and “Prot”: block 3 for 

each stage of development.  

Conclusion 


