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Abstract

Background: Given a gene and a species tree, reconciliation methods attempt to retrieve the macro-evolutionary
events that best explain the discrepancies between the two tree topologies. The DTL parsimonious approach
searches for a most parsimonious reconciliation between a gene tree and a (dated) species tree, considering four
possible macro-evolutionary events (speciation, duplication, transfer, and loss) with specific costs. Unfortunately,
many events are erroneously predicted due to errors in the input trees, inappropriate input cost values or because of
the existence of several equally parsimonious scenarios. It is thus crucial to provide a measure of the reliability for
predicted events. It has been recently proposed that the reliability of an event can be estimated via its frequency in
the set of most parsimonious reconciliations obtained using a variety of reasonable input cost vectors. To compute
such a support, a straightforward but time-consuming approach is to generate the costs slightly departing from the
original ones, independently compute the set of all most parsimonious reconciliations for each vector, and combine
these sets a posteriori. Another proposed approach uses Pareto-optimality to partition cost values into regions which
induce reconciliations with the same number of DTL events. The support of an event is then defined as its frequency
in the set of regions. However, often, the number of regions is not large enough to provide reliable supports.

Results: We present here a method to compute efficiently event supports via a polynomial-sized graph, which can
represent all reconciliations for several different costs. Moreover, two methods are proposed to take into account
alternative input costs: either explicitly providing an input cost range or allowing a tolerance for the over cost of a
reconciliation. Our methods are faster than the region based method, substantially faster than the sampling-costs
approach, and have a higher event-prediction accuracy on simulated data.

Conclusions: We propose a new approach to improve the accuracy of event supports for parsimonious
reconciliation methods to account for uncertainty in the input costs. Furthermore, because of their speed, our
methods can be used on large gene families. Our algorithms are implemented in the ecceTERA program, freely
available from http://mbb.univ-montp2.fr/MBB/.
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Background
The evolutionary history of a gene family often differs
from the history of the species containing those genes due
to macro-evolutionary events other than speciation. Rec-
onciliation methods compare gene trees with a species
tree in order to recover these events. The DTL recon-
ciliation model [1–4] accounts for three types of events:
gene duplications (D), losses (L), and transfers (T). This
model is typically used in a parsimony framework, which
searches for the reconciliations that minimize the overall
cost, given a cost vector specifying the costs for D,T and
L events. Unfortunately, ensuring the time-consistency of
gene transfers, i.e., satisfying the chronological constraints
among nodes of the species tree that are involved in trans-
fer events, is NP-hard [4, 5]. However, if the internal nodes
of the species tree are ordered, i.e. using a dated species
tree, the problem can be efficiently solved [1, 6]. Although
there can be an exponential number of optimal reconcili-
ations for a given cost vector, the DTL-graph can be used
to represent them compactly [7].
Some of the events predicted by reconciliations meth-

ods may not be reliable due to potential inaccuracies in
the input trees and the inherent imprecision of the input
costs. Thus, it is necessary to estimate confidence values,
or supports, for each predicted event. Supports can be
defined, for example, as the frequency of an event over a
space of alternative solutions.
In [7–9], the support of an event is defined as the

frequency of the reconciliations containing it over all rec-
onciliations in the solution space. In [7, 8], the DTL-graph
was used to compute event supports in this sense over
the set of all parsimonious solutions (for one cost vector
in [7] and for several ones in [8]). Moreover, in [8], the
authors used these event supports to identify the median
reconciliation, that is the reconciliation that minimizes the
sum of event-based distances between itself and all other
parsimonious alternatives (here, the event-based distance
between two reconciliations is defined as the number of
events contained in one but not in the other). Bansal et al.
[9] presented another way to address the problem, suit-
able for non-dated species trees as well as dated ones:
they designed a method which samples the space of par-
simonious reconciliations uniformly at random and then
counts the frequency of each event within all sampled
solutions.
However, the approaches presented in [7, 9] only focus

on one cost vector; though, it is often difficult to know
the appropriate cost vector, and the solutions can be very
sensitive to the input costs. In [8], the authors used a
time-consuming approach that samples the space of cost
vectors around the input one and then apply the algorithm
presented in [7] to compute a DTL-graph for each sample.
Libeskind-Hadas et al. [10] presented a method to esti-
mate the sensibility of a parsimonious reconciliation with

respect to the input costs. They use Pareto-optimal event
count vectors to partition the cost space into regions such
that the costs in the same region induce reconciliations
with the same number of DTL events. These regions are
then used to compute events supports, defined as the frac-
tion of regions having an event in all (or one of, depending
on the option used) their reconciliations. However, for
the support measure to be reliable, the events should be
recovered using biologically realistic costs, which can vary
with respect to the phylum we are interested in (e.g., in
Mammalian, duplications are much more frequent than
transfers, whilst transfers are predominant in the evolu-
tion of Bacteria).
But, when analyzing a realistic cost space with the

method in [10], we observe that, often, a small number
of regions, e.g. in many cases only one, is returned; thus,
the corresponding supports can only be either 0 or 1 and
are almost useless to filter out events. On the other hand,
a larger cost space can account for more regions, but
the event supports may be unreliable since they consider
events retrieved using unrealistic costs (we will see in the
Results section that this is indeed the case). Moreover, the
method in [10] does not generate median reconciliations.
It was shown in [8] that the median reconciliation has
better event predictions than random ones.
Here, we use the definition of an event support given

in [7, 8] and extend the work in [7] by taking into
account several cost vectors. Rather than using the time-
consuming sampling method in [8], we construct the
space of all solutions corresponding to the input cost
range and then compute the event supports over this
space. As we shall see, our algorithm also makes use of
Pareto-optimal reconciliations, which are efficiently com-
puted via an extended version of the DTL-graph. This has
the advantage of efficiently taking into account all relevant
parsimonious reconciliations – even those that are parsi-
monious for very few event cost combinations and that
are thus unlikely to be discovered by an ad hoc choice or a
random sampling of event costs [10].
The approaches presented in [7–9] only consider opti-

mal parsimonious reconciliations, even though the real
gene evolutionmight not be optimal. In this paper, we also
present a method for computing near optimal reconcilia-
tions that allows a tolerance ε for the overall reconciliation
cost. Our methods are faster than the one presented in
[10], substantially faster than the sampling-costs approach
presented in [8], and have a higher event prediction accu-
racy on simulated data than both methods.

Basic notations
Let T be a binary rooted tree where only leaf nodes are
labeled. We denote by V (T),E(T), r(T), L(T), and L(T)

respectively the sets of nodes and edges, the root node, the
set of leaf nodes, and the set of species labeling the leaves
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of T. If u is a leaf node, we denote by s(u) the species that
labels u, and if u is not a root we denote by up its parent
and by (up,u) the edge connecting up and u. Note that, in
a rooted tree, all edges are directed away from the root.
For any node u of T, Tu is the subtree of T rooted at u.
A tree T is dated if it is associated with a time function

θ : V (T) → R
+ such that θ(u) = 0 for every leaf u and

θ(u) < θ(v) if u is a strict descendant of v. Given a dated
tree T and a positive time t, we denote as Vt(T) the set of
nodes of T at time t. In this context, we are only interested
in the order of internal nodes. Hence the time function
consists of integer values: 0 (for the leaves), 1, 2, . . . We
can derive the dated subdivision tree T ′ from a dated tree
T by adding, on each edge (up,u) ∈ E(T) such that there
exists z ∈ V (T) with θ(u) < θ(z) < θ(up), a new node y
with θ(y) = θ(z). An internal node u is said to be artifi-
cial if it has only one child, denoted by u1; otherwise we
call it a speciation node and we denote its two children by
u1 and u2. The time interval between a node of T ′ and its
parent is called a time slice. For example, Fig. 1b repre-
sents the subdivision of the tree ((A,B), (C,D)) in which
θ(x) = 1, θ(y) = 2 and θ(r) = 3. Artificial nodes are used
to ensure the time-consistency of gene transfers efficiently
(more on this below).
A species tree S is a rooted binary tree such that each

leaf represents an extant species and there is a bijection
between L(S) and L(S). A gene tree G is a rooted binary
tree such that each leaf corresponds to a contemporary
gene and is labeled by the species that contains it.
In this paper, we will use G to denote a gene tree, and

S′ to denote the subdivision of a dated species tree S such
that L(G) ⊆ L(S).
Finally, given an order list L, we denote by Li the ith

element of L.

Reconciliation
In this paper, we build on the reconciliation model
accounting for duplication, loss and transfer events

introduced in [1]. In this model, the time-consistency of
gene transfers is ensured by constraining each transfer
event to happen between a donor and a receiver species in
the same set Vt(T) and hence in the same time slice. The
seven basic events considered by this model are depicted
in Fig. 2: speciation (S), duplication (D), transfer (T),
contemporary (C), transfer+loss (TL) and speciation+loss
(SL) events, plus the additional no event (∅). S,D and
T events are self-explanatory. A ∅ event denotes that a
gene crosses a time boundary, with no other event hap-
pening. A contemporary event C associates a leaf u of
G with a leaf x of S′ such that s(u) = s(x). A duplica-
tion followed immediately by a loss, i.e. a DL event, can
occur an arbitrary number of times in a reconciliation,
making the solution space infinite. To prevent this, loss
events are never considered alone but are always coupled
with either a speciation or a transfer event. Thus, an SL

event is a speciation where the gene is lost in one of the
two derived species, while a TL event is a T event where
the transferred gene is not kept in the descendants of the
donor species. Note that the models of [9–11] only con-
sider SL events and notTL events. ConsecutiveTL events
are not allowed in order to prevent the solution space
from being infinite. Note that DL events and consecu-
tive TL cannot happen in parsimonious reconciliations.
S,D,T are called birth-events, since they produce new
lineages.
A reconciliation α is defined as a function that maps

each vertex u of G onto an order sequence of nodes
(x1, · · · , xk) of S′ and such that the mappings of u and its
children satisfy some biologically-dictated constraints [1].
In Definition 2, we express these constraints via the func-
tion postlist defined below, which, for every u ∈ V (G),
x ∈ V (S′) and e ∈ {S,D,T, SL,TL,C,∅}, defines all pos-
sible mappings of the children of u, denoted u1,u2, if e is
a birth-event, or all possible next mappings of u otherwise
(see Fig. 2). Hence, postliste(u, x) is a set of sets of pairs if
e ∈ {S,D,T}, and a set of pairs if e ∈ {SL,TL,∅}.

Fig. 1 A gene tree (a) and the subdivision of a dated species tree (b). Two reconciliations between the trees (a) and (b) are shown in (c, d): each ◦
corresponds to a loss, each arrow indicates a transfer event from the donor to the receiver species
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Fig. 2 An illustration of the basic events described in Definition 1

Definition 1. For every u ∈ V (G)\L(G), x ∈ V (S′):
1. postlistS(u, x) = {{(u1, x1), (u2, x2)},

{(u1, x2), (u2, x1)}} if x is a speciation node and u is
not a leaf, otherwise ∅.

2. postlistD(u, x) = {{(u1, x), (u2, x)}} if u is not a leaf,
otherwise ∅.

3. postlistT(u, x) = ⋃
z �=x,θ(z)=θ(x)

{{(u1, x), (u2, z)},
{(u2, x), (u1, z)}}, if u is not a leaf, otherwise ∅.

4. postlist∅(u, x) = {(u, x1)} if x is an artificial node,
otherwise ∅.

5. postlistSL(u, x) = {(u, x1), (u, x2)} if x is a speciation
node, otherwise ∅.

6. postlistTL(u, x) = ⋃
z �=x,θ(z)=θ(x)

{(u, z)}.

The definition of a reconciliation can be adapted from
[1] and [7] by using postlist as follows.

Definition 2 (Reconciliation). Let α be a function map-
ping each node u of G onto an ordered sequence of nodes
of S′. We denote by α�(u) the last element of the sequence
α(u). For all u �∈ L(G), let postα(u,αi(u)) be (u,αi+1(u))

if i �= �, and {(u1,α1(u1)), (u2,α1(u2))} otherwise. Then, α
is said to be a reconciliation between G and S′ if and only
if, for each pair of nodes u of G and x = αi(u) of S′, one of
these conditions holds:
1. i = �, u ∈ L(G), and x ∈ L(S′), s(x) = s(u); (C event);
2. i = �, u �∈ L(G), and there exists exactly one

event type e ∈ {S,D,T} such that postα(u, x) ∈
postliste(u, x);

3. i �= �, and there exists exactly one event type e ∈
{SL,TL,∅} such that postα(u, x) ∈ postliste(u, x).

For example, Figures 1c, d present two different rec-
onciliations, between the gene tree in Fig. 1a and the
subdivision of a dated species tree in Fig. 1b. Denote by α

the reconciliation in the Fig. 1d, then α(w) = {y}, α(u) =
{x′′,A}, α(v) = {x′,B},α(a) = {A},α(b) = {B},α(c) =
{C},α(d) = {D}.
Note that, due to the subdivision, two events belong-

ing to two different reconciliations located in differ-
ent branches of S′ may correspond to the same event
in S. This implies that two reconciliations that are
distinct according to Definition 2 in S′ may be equiv-
alent in S. We can thus define a canonical reconcil-
iation [7] as the member of this equivalent set for
which each event is located as low as possible within a
branch.
For every pair (u, x) of a reconciliation α, where x =

αi(u) for some i, with 1 ≤ i ≤ |α(u)|, we denote by
α(u, x) the reconciliation corresponding to the restric-
tion of α on Gu such that the first element associ-
ated to u by this reconciliation is x; for the sake of
simplicity, we call α(u, x) a reconciliation between u
and x.
The fact that the solution space is finite when we disal-

low sequences of consecutive TL (and also DL events) is
implied by the following remark, which is easily deduced
from Definition 1:
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Remark 1. If an event that is not a TL happens at
(u,αi(u)), and if (v, y) is a pair of nodes in postα(u,αi(u)),
then either v is a child of u or y is a child of αi(u).

Pareto-optimal reconciliations
Given two vectors v = (d1, t1, l1) and v’ = (d2, t2, l2), we
say that v ≤ v’ if and only if d1 ≤ d2, t1 ≤ t2, and l1 ≤ l2.
Moreover, v < v’ if and only if v ≤ v’ and at least one
entry of v is strictly smaller than its corresponding entry
in v’. Denote by v ⊕ v’ the vector (d1 + d2, t1 + t2, l1 + l2)
and by v⊗ v’ the value d1 · d2 + t1 · t2 + l1 · l2. Note that ⊕
and ⊗ are used to denote respectively the vector addition
and the dot product.
The event count vector (notion proposed in [10]) of

an event type e, denoted by v(e), defines the number of
duplications, transfers, and losses associated with e. For
example, v(TL) = (0, 1, 1), v(SL) = (0, 0, 1), v(S) =
(0, 0, 0). Let α be a reconciliation that contains exactly d
duplications, t transfers, and l losses, then we denote the
event count vector (d, t, l) of α as v(α). Thus, for every
pair (u, x) of a reconciliation α, we denote by v(α(u, x))
the event count vector for α(u, x). Since postα defines a
traversal for all mappings of α, v(α(u, x)) can be computed
recursively as follows: let e be the event type associated
with (u, x) in α; if e = C then v(α(u, x)) = (0, 0, 0),
otherwise v(α(u, x)) = v(e) ⊕ (

⊕
(v,y)∈postα(u,x) v(α(v, y))).

A reconciliation α is said to be Pareto-optimal if and
only if there is no reconciliation α′ such that v(α′) <

v(α). For example, the reconciliation in Fig. 3c is not
Pareto-optimal because there exists a reconciliation with
a smaller event count vector (e.g. Fig. 3d).

Parsimonious reconciliation with respect to a cost range
Let δ, τ , λ be three positive real numbers that correspond
respectively to the costs for a D, a T, and a L event. For
every pair (u, x) of a reconciliation α, the cost of α(u, x)
with respect to the cost vector c = (δ, τ , λ), denoted by
cost(α(u, x), c), is defined by v(α(u, x)) ⊗ c. Hence, the
cost of α with respect to c is cost(α, c) = v(α) ⊗ c. A

reconciliation α is said to be parsimonious with respect to
a cost vector c if and only if there is no reconciliation α′
such that cost(α′, c) < cost(α, c).

Remark 2. If a reconciliation α is parsimonious with
respect to a certain cost vector (δ, τ , λ), then it must be
Pareto-optimal. However, the converse is not ensured if
only strictly positive costs are considered. For example,
there exist five Pareto-optimal reconciliations for the gene
tree in Fig. 3a and the species in Fig. 3b, associated with
the following event count vectors: v1 = (0, 4, 0), v2 =
(0, 3, 2), v3 = (1, 1, 5), v4 = (1, 2, 4) and v5 = (2, 0, 7).
The reconciliation associated with v4 is Pareto-optimal but
never parsimonious for any set of positive costs. Indeed, if
τ ≤ λ, then the solution (0, 4, 0) is more parsimonious
than (1, 2, 4), because 4τ < δ + 6τ ≤ δ + 2τ + 4λ. If
τ > λ, then the solution (1, 1, 5) is more parsimonious than
(1, 2, 4) because δ + τ + 5λ < δ + 2τ + 4λ.

Therefore, the space of all Pareto-optimal reconcilia-
tions is not necessarily equivalent to the one of all parsi-
monious reconciliations.
Since the cost is unit-less, and the solutions depend on

the ratios between the event costs rather than on the abso-
lute costs, we define, for each cost vector c = (δ, τ , λ),
the ratio cost vector associated with c, denoted by r(c),
as (λ/τ , δ/τ , λ/δ). Given two vectors rm and rM, a rec-
onciliation α is said to be parsimonious with respect to
the ratio cost range [ rm; rM] if and only if there exists at
least one cost vector c such that rm ≤ r(c) ≤ rM, and α

is parsimonious with respect to c. A first straightforward
formulation of the suboptimal reconciliation problem can
be stated as follow.

Problem 1: All Parsimonious Reconciliations With
Respect to a Ratio Cost Range.
Input: A dated species tree S, a gene tree G such that
L(G) ⊆ L(S), two ratio cost vectors rm, rM.

Fig. 3 A gene tree (a) and species tree (b) for which there exists a Pareto-optimal reconciliation with 1 duplication, 2 transfers, and 4 losses that is
never parsimonious for any set of positive costs. The sub optimal reconciliation α in (c) is encompassed by the reconciliation α′ in (d) since α

contains 2 duplications, 4 losses while α′ has 2 duplications, and 1 loss
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Output: The set Ro of all parsimonious reconciliations
between G and S′ with respect to the cost range [ rm; rM].

Note that the set Ro can have an exponential size but
can be represented in a polynomial-size graph, as we shall
see soon.

ε-Pareto-optimal reconciliations
A given cost vector may fail to yield to the true gene
evolution; this happens when the latter is not parsimo-
nious with respect to the given cost vector. This is why
we extend here the concepts presented previously in
this section to suboptimal reconciliations. Given a dated
species tree S, a gene tree G and a cost vector c, denote
by costm(G, S′, c) the cost of a parsimonious reconcilia-
tion between the subdivision S′ of S and G with respect
to c (this value can be computed in O(|V (S)|2 · |V (G)|)
time [1]). Then, given an over-cost ε, we will consider all
reconciliations that have cost at most costm(G, S′, c) + ε.
However, allowing a tolerance in the cost can lead to rec-
onciliation sets containing pairs of reconciliations α,α′
such that α �= α′ and v(α′) < v(α). To avoid this, we con-
sider reconciliations with cost at most costm(G, S′, c) + ε

only if they are Pareto-optimal, and we call them ε-
Pareto-optimal reconciliations. Moreover, note that by
allowing an over-cost ε, we not only consider the recon-
ciliations that are suboptimal with respect to the input
cost vector, but also consider some reconciliations that
are parsimonious with respect to some other cost vectors.
Hence, this approach allows us to implicitly vary the input
costs.
The second problem that we are interested in here is the

following:

Problem 2: All ε-Pareto-optimal Reconciliations
Input: A dated species tree S, a gene tree G such that
L(G) ⊆ L(S), a cost vector c = (δ, τ , λ) for D, T and L

events, and an over-cost ε.
Output: The set Rso of all reconciliations α between G
and S′ such that cost(α, c) ≤ costm(G, S′, c) + ε and α is
Pareto-optimal.

Methods
In this section, we will show how to compute all
event count vectors of Pareto-optimal reconciliations (see
Algorithm 1). This list of vectors is cleaned to keep either
reconciliations that are parsimonious with respect to the
given cost range (for solving Problem 1), or those hav-
ing cost at most costm(G, S′, c) + ε (for solving Problem
2). Each of the returned lists is then used to construct
the corresponding graph (Algorithm S1 in the Additional
file 1) that represents all the solutions for the associated
problem. Using this graph, we can compute supports for
events, as well as median reconciliations.

Computing all event count vectors of parsimonious
reconciliations for a given cost range (Algorithm 1)
Here, we adapt the algorithm from [10] to the case of
dated species tree. We start by describing the two opera-
tions ⊕p and concatPareto used in Algorithm 1.
A list L of vectors is said to be Pareto-optimal if and

only if, for every vector v in L, there is no vector v’ in L
such that v’ ≤ v. Given two lists of vectors L1, and L2,
denote by L1 ⊕p L2 the list consisting of all Pareto-optimal
vectors v such that there exists at least a vector vi in Li
for every i ∈ {1, 2} such that v = v1 ⊕ v2. The method
concatPareto(L1, L2) concatenates the lists L1 and L2 and
ensures that the resulting list is a Pareto-optimal one by
removing its non Pareto elements. The implementation of
these two operations are detailed in the Additional file 1
(see proof of Theorem 1).
For all u ∈ V (G) and x ∈ V (S′), denote by C(u, x) the

list consisting of all triplets (d, t, l) such that there exists at
least a Pareto-optimal reconciliation between u and x that
has (d, t, l) as its event count vector. Algorithm 1 starts
by computing C(u, x) for all u ∈ V (G) and x ∈ V (S′)
(lines 3–19). Note that, from Definition 2 and Remark 1,
the list C(u, x) can be computed recursively from those of
themappings in postliste(u, x) for all event types except for
e = TL in a bottom-up order of V (G) and increasing time
order of V (S′). This is done on lines 6–16 of Algorithm 1.
However, since consecutive TL events are not allowed,
the event count vectors due to TL can be computed once
those of all other events have been computed for all nodes
in the same time slice as x (line 19), via the function
bestTriplets (more on this below). Indeed, TL events are
defined only for nodes of S′ in the same time slice. The
event count vectors of all Pareto-optimal reconciliations
between G and S′, denoted by PO(G, S′), are thus those
in concatParetox∈V (S′)(C(r(G), x)) (line 20). The operation
computePars (line 21) filters from the latter list the rec-
onciliations that are not parsimonious with respect to the
input cost range. This filtering is done in the same way as
in [10] by normalizing the cost vector (e.g. fixing τ = 1).
Then a vector v ∈ PO(G, S′) is retained if and only if the
linear system of inequalities where v ⊗ (δ, 1, λ) ≤ v’ ⊗
(δ, 1, λ) for every v’ ∈ PO(G, S′) and v’ �= v has at least one
solution (λ, δ) such that rm ≤ (λ, δ, λ/δ) ≤ rM. Following
[10], this can be done in time O(|V (G)|2 · log(|V (G)|)) for
each vector v, and O(|V (G)|4 · log(|V (G)|)) for all the list
PO(G, S′).
Note that, in Algorithm 1, to speed up the computation

of transfer events, we use the fact that the event count
vectors of the receivers must also form a Pareto-optimal
list (this observation can be trivially proved). Hence, we
compute for each mapping (u, x) the list bestTriplets(u, x),
which is the Pareto-optimal vector list containing all vec-
tors v such that there exists at least a node z �= x
(since the receiver must be different from the donor) at
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Algorithm 1 Compute all parsimonious event count vectors with respect to rm, rM
1: Input: A dated subdivision species tree S′, a gene tree G, and a ratio cost range [ rm, rM].
2: Output: A matrix C such that, for every u ∈ V (G) and x ∈ V (S′), C(u, x) consists of all event count vectors of

parsimonious reconciliations with respect to [ rm, rM] between u and x.
3: for all u ∈ V (G) according to a bottom-up traversal do
4: for all ts ∈ 0, 1, ..., θ in backward time order do
5: for all x ∈ Vts(S′) do
6: C(u, x) ← ∅;
7: if u ∈ L(G), x ∈ L(S′) and s(u) = s(x) then C(u, x) ← {(0, 0, 0)};
8: else
9: for each e ∈ {SL,∅} do

10: for each (u, y) in postliste(u, x) do
11: C(u, x) ← concatPareto(C(u, x), v(e) ⊕p C(u, y));
12: for each e ∈ {D,S} do
13: for each {(u1, y), (u2, z)} in postliste(u, x) do
14: C(u, x) ← concatPareto(C(u, x), v(e) ⊕p (C(u1, y) ⊕p C(u2, z)));
15: C(u, x) ← concatPareto(C(u, x), v(T) ⊕p (C(u1, x) ⊕p bestTriplets(u2, x)));
16: C(u, x) ← concatPareto(C(u, x), v(T) ⊕p (C(u2, x) ⊕p bestTriplets(u1, x)));
17: Compute bestTriplets(u, ts);
18: for all x ∈ Vts(S′) do
19: C(u, x) ← concatPareto(C(u, x), v(TL) ⊕p (C(u, x) ⊕p bestTriplets(u, x)));
20: PO(G, S′) ← concatParetox∈V (S′)(C(r(G), x));
21: dtl(G, S′) ← computePars(PO(G, S′), rm, rM);
22: for each x ∈ V (S′) do Remove from C(r(G), x) all triplets not in dtl(G, S′);
23: return C

the same time slice as x and v ∈ C(u, z). Again to speed up
the algorithm, we can compute, for each time slice ts, the
Pareto-optimal list bestTriplets(u, ts) which consists of all
vectors v such that there exists at least a node z ∈ Vts(S′)
and v ∈ C(u, z). Then, bestTriplets(u, x) for all x ∈ Vts(S′)
can be deduced from bestTriplets(u, ts) by removing from
it all triplets that are only contained in C(u, x).

Theorem 1. Algorithm 1 returns a matrix C such
that a reconciliation α between G and S′ is parsimo-
nious with respect to the range [ rm, rM] if and only
if C(r(G),α1(r(G))) contains v(α). The complexity of
Algorithm 1 is O(|V (S)|2 × |V (G)|5), and the algorithm
can be implemented in a space complexity of O(|V (S)|2 ×
|V (G)|3).

The algorithm is very similar to the algorithm presented
in [10], except that: 1) we process the operation⊕p for two
lists of size k in times O(k2) instead of O(k2log(k)) [10]
by using sorted lists; 2) we consider the dated version of
the reconciliation problem while in [10] they consider the
undated one; 3) we take into accountTL events, which are
not considered in the model of [10].
The proof of Theorem 1 is deferred to the Additional

file 1.

Computing all event count vectors of ε-Pareto-optimal
reconciliations
Problem 2 can be solved similarly to Problem 1 as shown
in the following lemma, whose proof is deferred to the
Additional file 1.

Lemma 1. Let α be a reconciliation between G and S′.
If α(u, x) is an ε-Pareto-optimal reconciliation between u
and x, then α(v, y) is also an ε-Pareto-optimal between v
and y for every (v, y) ∈ postα(u, x).

For each mapping (u, x), denote by costm(u, x, c) the
minimum cost over all reconciliations between u and x
with respect to the cost vector c. By Lemma 1, the set
of all event count vectors for all ε-Pareto-optimal recon-
ciliations can be computed by Algorithm 1 with a small
modification: for each pair (u, x) only event count vectors
with an associated cost that is at most costm(u, x, c) + ε

are retained. Hence, the time complexity of this problem
is at most the one of Algorithm 1.

Representing a space of reconciliations in a compact way
There exist cases for which the number of equally opti-
mal reconciliations is exponential with respect to the
input trees size. However, by factorizing their common
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mappings, it is possible to store in polynomial space all
optimum reconciliations within a single graph, via the
reconciliation graph (or DTL-graph) [7]. This graph is a
bipartite graph made of event nodes and mapping nodes.
Rather than having only one node for each mapping (u, x),
we extend this representation by associating each map-
ping node with an event count vector. This allows us to
keep track of the different combinations of event counts a
mapping (u, x) may be associated to in different reconcili-
ations of our solution space. In more detail:

Definition 3 (Reconciliation graph (adapted from
[7])). A reconciliation graph G for G and S′ is an acyclic
directed bipartite graph that contains two kinds of nodes –
event nodes and mapping nodes. An event node is associ-
ated with an event typeC, S,D,T,∅,SL, orTL. Amapping
node m is associated with (u, x, v) where u ∈ V (G), x ∈
V (S′), and v = (d, t, l) ∈ N

3; we denote u as mG, x as mS′ ,
and v as mv. The following properties hold:

1. The root set of G consists of mapping nodes m where
mG = r(G);

2. For every mapping node m = (u, x, v), if u ∈ L(G),
x ∈ L(S′) and s(u) = s(x), then v = (0, 0, 0), and
m has one unique child of type C. Otherwise, m has
a non-empty set of children and each one has a type
different than C;

3. For every event node ne of G that is associated with
type e, ne has one unique parent, which is a mapping
node (u′, x′, v’). If e = C, then ne is a leaf of G.
Otherwise, the children set of ne is not empty and:
a) either e ∈ {S,D,T}, and ne has two children
m1,m2 such that {m1,m2} ∈ postliste(u′, x′);
or e ∈ {SL,TL,∅} and ne has only one
child m1 such that m1 ∈ postliste(u′, x′),
b) v’ = v(e) ⊕ (

⊕
m∈children(ne) mv).

For example, Fig. 4 presents the reconciliation graph
that contains the two reconciliations depicted in Fig. 1c, d.
In this example, each mapping node has one child
and at most one parent, but in general, each map-
ping node can have several children and several
parents.

Definition 4 (Reconciliation tree (adapted from [7])).
A reconciliation tree of G and S′ is a reconciliation graph
of G and S′ that has one root, and each mapping node
has precisely one child. A reconciliation tree T of G and S′
depicts a reconciliation α of G and S′ if and only if the root
of T has form (r(G),α1(rG), v(α)), and for each mapping
(u, x) of α, there exists one and only one mapping node
(u, x, v) of T where v = v(α(u, x)).

Note that the definition of reconciliation tree given in
[7] is actually the same as the one given in Definition 4,
but here we reformulated it to be in agreement with
the new definition of a reconciliation graph. Following
[7], each reconciliation tree depicts a unique reconcilia-
tion and conversely each reconciliation is depicted by one
reconciliation tree.

Definition 5 (Full subtree). Let G be a reconciliation
graph of G and S′, a connected subtree T of G is a full
subtree of G if and only if:

• the root of T is a mapping node m wheremG = r(G);
• each mapping node of T has precisely one child;
• each event node of T has the same children set in T

as in G;
• all leaves of T are leaves in G.

For example, in Fig. 4 the graph has two roots. Start-
ing from one root, and going down to the leaves, we can
obtain a full subtree of this graph. Here, each mapping
node has only one child, so there are only two full sub-
trees. In general, each root of the graph can correspond to
several full subtrees.

Lemma 2. Given a reconciliation graph G of G and S′,
every full subtree T of G is a reconciliation tree of G and S′,
i.e. T depicts a reconciliation between G and S′.

Proof. Since T is a connected subtree of G and T has the
four properties in Definition 5, it is easy to check that T
respects the three conditions required to be a reconcilia-
tion graph according to Definition 3. Moreover, T has a
unique root and each of its mapping node has a unique
child, thus it respects the definition of a reconciliation tree
(Definition 4).

Given a matrix of event count vectors, its reconcilia-
tion graph can be constructed by a backtracking process,
that searches, for each event count vector, all possible
events associated to it that can occur in a reconciliation.
Moreover, each mapping node appears just once in the
graph. This process is described by Algorithm S1 in the
Additional file 1.

Theorem 2. Algorithm S1 runs in O(|V (S)|3 × |V (G)|5)
space and time complexity. The returned graph G is a rec-
onciliation graph of G and S′ such that, every full subtree
of G depicts a reconciliation between G and S′ whose event
count vector is contained in C; and conversely, every rec-
onciliation between G and S′ whose event count vector is
contained in C is depicted by a full subtree of G. Moreover,
G has the minimum number of vertices among the graphs
having this property.
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Fig. 4 The reconciliation graph that represents the two reconciliations in Fig. 1 c, d. Circles indicate event nodes – the event type is specified inside
the circle. The remaining nodes are mapping ones and the vectors associated to them specify respectively the node of the gene tree, the node of
the species tree, and the associated number of duplications, transfers, and losses

The proof of Theorem 2 is deferred to the Additional
file 1.

Support andmedian reconciliation
Recall that in this paper we are interested only in canon-
ical reconciliations [7]. Thus, for the sake of simplicity,
hereafter reconciliations will always be assumed to be
canonical.
The support of an event e, denoted by f (e), is defined

as the percentage of reconciliations containing this event,
i.e. its frequency in the space of considered reconciliations
R. Once the graph G has been computed (Algorithm S1
in the Additional file 1), we can compute the frequency
f (e) associated with any event e within the set of rec-
onciliations represented by G via two traversals of this
graph. The outline of the algorithm is similar to the one
given in [7]. First, via a post-order traversal of G, we com-
pute, for each node z of the graph, the value score(z) as
described in Algorithm 5 of [7]. The value score(z) corre-
sponds to the number of possible subtrees of the graph G
rooted at z that are contained in a full subtree of G.
Second, using a pre-order traversal, we can compute,

for each node z, the value recNum(z), which corre-
sponds to the number of reconciliations between G and
S′ that contain z, using the following recursive property.
If mG(z) = r(G), then recNum(z) = score(z). Otherwise,
if z is a mapping node that has p1, . . . , pk as parents (all
are event nodes), then recNum(z) = ∑k

i=1 recNum(pi).
If z is an event node that has p as its parent, then
recNum(z) = recNum(p) · score(z)/score(p). Since in
our generalization, each mapping can be associated with
different event count vectors, then each event may be
present in more than one event node. The frequency of
each event e is thus obtained by summing the frequen-
cies f (ne) of all event nodes ne that represent this specific
event.
Dealing with a set of reconciliations can be cumber-

some, especially for further analysis and biological inter-
pretations where a single reconciliation will suffice. Rather
than randomly picking a reconciliation among the par-
simonious ones, in [8] the authors proposed to return
oneminimizing the sum of event-based distances between
itself and all other parsimonious alternatives. The authors
also proved that this so called median reconciliation can



To et al. BMC Bioinformatics  (2015) 16:384 Page 10 of 15

be computed by two traversals of G. Their algorithm can
easily be adapted to our generalization of the reconcilia-
tion graph. Hence, we consider the median reconciliation
of G as the output reconciliation of our methods, using as
event-based (symmetric) distance between two reconcili-
ations the number of events present in only one of the two
reconciliations (as done in [8]).

Experiments
Simulated data and comparedmethods
Experiments were conducted on the simulated data set
in [8, 12], available at http://www.atgc-montpellier.fr/
Mowgli/, which we briefly describe below. To construct
the data set, first 1000 evolutionary histories, composed of
D,T,L and S events, were simulated according to a birth
and death process along a phylogeny of 37 proteobacteria
[13]. Rates for macro-evolutionary events are as follows:
(a) the loss rate was randomly chosen in the [0.001, 0.0018]
interval, where the units are events per gene per million
years. Moreover, the ratio between the birth rate (sum
of the duplication and transfer rates) and the loss rate
was randomly chosen in the [0.5, 1.1] interval, while the
proportion of the duplication rate to the birth rate was
randomly chosen in the [0.7, 1] interval. This led to 1000
simulated gene trees (GTrue) on which the numbers of spe-
ciations, duplications, transfers, and losses in average are
respectively 29.75, 3.87, 0.88, and 8.26. The mean num-
ber of genes per family in this dataset is 28.9, the largest
family has 67 genes and the smallest 11 genes. Each fam-
ily is found in 20.88 species in average, with a minimum
of 5 and a maximum of 33 species. These gene trees were
used to generate DNA sequences with the Seq-Gen pro-
gram [14]. From these sequences, RAxML [15] was used
to infer 1000 maximum likelihood gene trees (GML). For
more details, we refer to [8], [12] Results section.
We used the so-obtained 1000 pairs of dated species

tree/gene trees to compare the performances of the two
approaches presented in this paper (strategies s3–s5) with
the ones presented in [7, 8] and [10] (strategies s1, s2, s6
and s7 respectively, more details below). We did not test
the method presented in [9] as the software is not yet
available.
For testing the method in [10], we used the tool even-

scape of the software Xscape (version used in [10]). Note
that Xscape considers the species tree as undated. Sev-
eral options to compute event supports are proposed by
this program; we tested them all, and present here the
ones that give the best accuracy: supports computed using
option ‘I’, based on the number of regions, without taking
into account the area of the regions. A list of the options
and their description is given in the Additional file 1.
Meaningful cost vectors can be obtained from the real

simulated frequencies of each event type as described
in [12, see Equation 1 of the Experiments on simulated

datasets section]: if a real gene history encompasses ntot
events (duplications, transfers and losses) among which ne
are duplications (respectively transfers and losses), then
the cost of a duplication (respectively of a transfers and of
a loss) is log(ntot/ne). This cost vector has been already
used in the literature, for example to test a method to
correct gene trees via reconciliations [12], and to test the
sample-based method for computing event supports [8]
on the same data set. Hence, we use it here for our exper-
iments. Since, in real applications, these frequencies are
unknown, we tested a second cost vector, which is a stan-
dard cost vector (2, 3, 1) for duplications, transfers and
losses that is used in several studies [13; 16, among oth-
ers]. Moreover, for the region-based method, the standard
cost range used in [10] was also tested (strategy 6). Hence,
we have tested the following methods for each cost vec-
tor (except strategy 6 that always uses the cost range given
in [10]). Other cost vectors could be proposed and tested,
but this is beyond the scope of this paper.

s1 MPR one cost: This strategy computes the median
reconciliation, as well as the event supports, via
the optimal reconciliation graph, that is the graph
containing all parsimonious reconciliations for the
given cost vector [7].

s2 MPR sampled costs: This strategy is the one pre-
sented in [8]. For each gene tree Gi

ML, we generated
a set of 1000 cost vectors around the initial cost of
Gi
ML using a noise level of 20% for cost vector 1, and

5% for cost vector 2 – these are the noise levels that
gave the best results among the ones we tested on
our simulated data. The 1000 optimal reconciliation
graphs constructed for each sampled cost vector are
then combined in a unique graph that is used to
compute the event supports and to construct the
median reconciliation.

s3 MPR cost range: This strategy corresponds to
Problem 1. We computed the graph containing all
the parsimonious reconciliations with respect to a
cost range, which are used to compute the median
reconciliation as well as the event supports. The
input ratio cost range [ rm, rM] was chosen around
the ratio r(c) = (λ/τ , δ/τ , λ/δ) of the input cost
c by varying the two last ratios (δ/τ and λ/δ) of
± 80% for cost vector 1, and ±40% for cost vec-
tor 2. We did not constrain the first ratio cost
(λ/τ ) and let this one be defined by the two oth-
ers (we did so because the method in [10] does
not restrict this ratio, and we want to compare the
two methods on the same ranges. Nevertheless, our
method can restrict this ratio and, when we do
so, we observe a slight improvement – results not
shown). For example, for cost vector 2, the initial
ratio is (1/3, 2/3, 1/2), which gives us the ranges

http://www.atgc-montpellier.fr/Mowgli/
http://www.atgc-montpellier.fr/Mowgli/
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[60% · 2/3; 140% · 2/3] and [60% · 1/2; 140% · 1/2]
for the two last ratios, implying that the range for
the first ratio is [60% ·60% ·1/3; 140% ·140% ·1/3].
Hence, we have rm = (0.12, 0.4, 0.3) and rM =
(0.653, 0.933, 0.7).

s4 ε-Pareto: This strategy corresponds to Problem 2.
It computes the median reconciliation – as well as
the event supports – via the ε-Pareto optimal rec-
onciliation graph, which is the graph containing all
ε-Pareto optimal reconciliations. This strategy dif-
fers from the first one by the set of reconciliations
it takes into account to construct the reconciliation
graph. The choice of ε is described below.

s5 ε-Pareto∗: Similar to strategy s4, but we added
more constraints on the retained event count vec-
tors such that, for every retained event count (d, t, l),
it does not exist any (d′, t′, l′) with l′ ≤ l, t′ ≤ t,
and d′ + t′ ≤ d + t (see the Discussion Section for
an explanation on why this latter constraint was
added). Note that other types of constraints can be
easily integrated into this model.

s6 Region-based: This strategy uses the tool
eventscape of Xscape, which is an implementation
of the method described in [10]. Since Xscape does
not generate reconciliations, this software is used to
assign supports to our best median reconciliations
– namely the ones of strategy s3 with cost vector
(2, 3, 1). We do this instead of using the full list
of events returned by Xscape because the full list
provides too many events leading to a large number
of false positives; moreover, many events in the
list cannot happen in a same reconciliation. This
choice gives indeed substantially better results than
using the Xscape list (data not shown). The input
cost range was chosen as the one used in [10]:
λ/δ in [0.1; 5], and τ/δ in [0.1; 5]. Hence,we have
rm = (0.02, 0.2, 0.1) and rM = (50, 10, 5).

s7 Region-based (small range): Similar to the previ-
ous strategy, but we used the same input cost ranges
as strategy s3. Note that these ranges are smaller
than the one used in the strategy 6. As for strat-
egy s6, the event lists are obtained from the median
reconciliations of strategy s3.

For the strategies that use the ε-Pareto optimality, the
over-cost ε was chosen as the difference between the input
transfer cost and duplication cost. This choice is based on
the fact that the topological differences between a species
tree and a gene tree can be explained by either dupli-
cations or transfer events. This over-cost permits some
duplications to change into transfer events (and vice versa)
if the resulting reconciliations are not too far (that is, their
over-cost is smaller than ε) from the parsimonious ones.
Obviously, there can be other adequate choices for the

over-cost, and depending on the data, one should choose
an appropriate over-cost.
The first five strategies all use dated species trees,

reconciliation-based supports, and generate median rec-
onciliations. The two last strategies constitute a second
group that uses undated species trees, region-based sup-
ports, and does not generate median reconciliations.
For each strategy sj with 1 ≤ j ≤ 5, denote by Ê

i
sj(t)

the set of all events obtained from the median reconcili-
ation given by strategy sj on the gene tree Gi

ML that have
supports above a given threshold t. For s6 and s7, Êi

sj(t)
has the same signification, but, as already mentioned, the
supports are calculated by the strategy while the sets of
events are those of the median reconciliations computed
by strategy s3 with cost vector (2, 3, 1).

Results and discussion
As was done in previous papers [1, 8, 12], the recon-
ciliation error for each strategy sj, gene tree Gi

ML, and
threshold t was measured on D, T and L events using the
symmetric distance between the set of predicted events
(Êi

sj(t)) and the true event set (Ei
True):

d
(
Ê
i
sj(t),ETrue

)
=

∣∣∣Êi
sj(t)\ETrue

∣∣∣
DTL

+
∣∣∣ETrue\Êi

sj(t)
∣∣∣
DTL

,
where the first and second term respectively correspond
to false positive (FPisj(t)) and false negative (FNi

sj(t)).
Then, FPsj(t) and FNsj(t) are respectively the mean of
FPisj(t) and FNi

sj(t) on all 1000 gene trees of GML.
Figure 5 a, b show the total error rate FPsj(t) + FNsj(t)

of each strategy sj for various thresholds, respectively
for cost vectors 1 and 2. Each of the displayed curves
connects the dots (t, FPsj(t) + FNsj(t)) for each thresh-
old t = 0, t = 1, . . . , 100. Hence, the lower the curve,
the more accurate the corresponding method is. Statis-
tical tests, mentioned in this section when comparing
two strategies, have been performed using a paired t-test
on 1,000 trees with a threshold p-value of 5%, using –
unless otherwise stated – the best threshold for each
strategies.
Surprisingly, the first cost vector (vector 1) – although

computed from the real event frequencies – is less effec-
tive for recovering the events than the default cost vector
(vector 2). This is probably due to the fact that transfer
events are convenient to handle gene tree reconstruction
errors. Indeed, in vector 1, transfers have a very high cost
since transfers are rare in the simulated gene histories.
Thus, using this cost vector, the erroneous misplacement
of a leaf in a gene tree, e.g. due to methodological artifacts
such as long branch attraction, is preferentially explained
using multiple duplication and loss events – rather than
a single transfer event, as done when using vector 2 –
hence inducing multiple false positive ev ents instead of a
single one.
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Region-based
Region-based (small 
range)

a) FP+FN curves, cost 1 b) FP+FN curves, cost2

c) (FP,FN) curves, cost 1 d) (FP,FN) curves, cost 2

Fig. 5 False Positives (FP) and False Negatives (FN) for the 7 strategies presented in the Experiments section on the two cost vectors described in
the main text, where (a), (c) correspond to cost vector 1, while (b), (d) correspond to cost vector 2 . For each strategy sj , the associated curve in (a),
(b) consists of the points (t, FPsj (t) + FNsj (t)), while the associated curve in (c), (d) consists of the points (FPsj (t), FNsj (t)), where t is a threshold
varying from 0–100%, and FPsj (t), FNsj (t) are respectively the false positives and false negatives of strategy sj after removing all events having
supports smaller than t. Note that in Figure (c), (d), the same number of FP does not correspond to the same threshold

The impact of using cost vector 1 or 2 varies from one
strategy to another. The most impacted strategies is s1 –
that considers only reconciliations that are parsimonious
for the input vector – whereas s6 – at the other extreme,
does not make use of input cost vectors. The other strate-
gies adopt a more nuanced approach, accounting for the
input cost vector without blindly trusting it. This allows
them to perform much better for cost vector 1 than the
extreme s1 and s6 approaches. Indeed, this cost vector is
inappropriate for reconciling imperfect trees (hence fully
trusting its input costs is penalizing s1) but not as much as
some more extreme possible costs (hence accounting for
these extreme costs is penalizing s6).
Strategy s1 performs so badly with cost vector 1 while

not being the best one with cost vector 2 that it seems
unreasonable to rely on it while better options (e.g. strate-
gies s2–s5) are available.
As previously shown in [8], the sampling method (strat-

egy s2) provides a big improvement compared to s1
with cost vector 1 (Fig. 5a). However, it has almost no
impact with cost vector 2, for which s1 gives good results
(Fig. 5b).

Strategy s6 and s7 perform poorly compared to meth-
ods s2–s5 for both cost vector 1 and 2. No matter the
chosen threshold, they lead to an average FP + FN above
8.5 whereas other methods reach a significantly smaller
average FP + FN for high thresholds. This can be due
to several reasons. First, as already mentioned, s6 does
not make use of input cost vectors and can consider non
biologically-relevant cost vectors. Second, both strategies
have a crude “binary" approach to compute region sup-
port: a region either supports or rejects an event and we
cannot differentiate the cases, for example, where 10%
of the reconciliations in a region contain this event from
cases where 95% do. Moreover, those two methods are
also penalized by being the only ones dealing with undated
trees. Indeed, despite using similar cost regions, strat-
egy s3 has significantly better results than s7: s3 reaches
FP + FN < 8.5 for cost vector 1 when using thresholds
above 70% (while FP + FN is always greater than 9 with
s7) and reaches FP + FN < 7 for cost vector 2 when
using thresholds above 70% (while FP + FN is always
greater than 10 with s7). Note that at threshold 100%,
only events of the median reconciliation that are present
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in all reconciliations are retained. Hence, for this extreme
threshold, the only remaining difference between s3 and
the less accurate strategy s7 is that s7 uses undated species
trees, while s3 uses dated ones. This confirms that using
dated (or at least partially dated) species trees has a strong
impact on reconciliation accuracy and should be favored
whenever possible.
Strategy s2 uses cost vectors directly sampled from the

input one. Its results are thus more influenced by the qual-
ity of the input costs than those of the new strategies
proposed in this paper, namely s3, s4 and s5. The three
new strategies are thus more robust to the choice of the
input cost vector than s1 and s2 while avoiding the pitfall
of ignoring it as done by s6 and, to a lesser extend by s7.
Strategy s4 performs better than s3 and is only slightly less
accurate than s5 for cost vector 1; but the performance of
s4 (relative to s3 and s5) drops for cost vector 2 – where
the transfer cost is much lower. This happens because
ε-Pareto optimal reconciliations, considered by s4, may
include improbable evolutionary scenarios chaining sev-
eral transfer events (for example a gene that is transferred
and comes back to the donor via a TL events) that can-
not be parsimonious under any cost vector. The constraint
added to s4 to obtain strategy s5 removes all these aber-
rant event count vectors/reconciliations. This additional
constraint indeed improves the accuracy for both input
cost vectors, and more clearly for cost vector 2, where s5
significantly outperforms s4 for all thresholds.
It is not our aim to draw strong conclusions concerning

the relative performance of the two cost vectors used here.
What we want to point out here is the following:

(i) when using a single cost vector, the predicted events
strongly depend on its quality, and there is currently
no way to identify the best cost vector (see strategy s1
and, to a lesser extend, strategy s2);

(ii) the extreme Pareto-only approaches may consider
some scenarios that are optimal under unrealistic
assumptions such as transfers being 10000 times
more likely than duplications;

(iii) the in-between solutions considering Pareto
solutions that are optimal for a reasonable cost range
give better results;

(iv) event support measures based on the frequency of a
event in the reconciliation space seem to work better
that those based on the frequency in the cost region
space.

Figure 5c, d show the ratio between FP and FN of
each method. Thresholds are not reported in the figures,
but we know implicitly that the right extremity of each
curve corresponds to threshold 0 while the left one cor-
responds to threshold 100. This is because the higher

the threshold, the fewer events are retained, thus lead-
ing to fewer FP and more FN. An efficient method should
not increase the number of FN when decreasing the
FP. Figure 5c, d confirm that our new filtering strate-
gies s3, s4, and s5 do not remove too many true events
when increasing the threshold. For example, s3 on cost
vector 2 (Fig. 5d) decreases FP from 6.5–1.2 while FN
increase only from 3.1–5.1. Besides, while all other curves
have at least 1.5 FP, the curves of s6 and s7 using cost
1 extend till 0. This means that, when increasing the
threshold until 100%, these two methods retain almost
no events, while other methods always retain some. In
other words, the median reconciliation of s3 (the one
that strategies s6 and s7 use) does not contain many
events whose support computed by strategies s6 and s7 is
nearly 1.
Further analyses were conducted for each event type. As

already noted in [10], our experiments show that predict-
ing duplications is quite easy, while predicting transfers
is harder. The reader is referred to the Additional file 1:
Figures S1, S2 for more details.
The running times of all strategies on a computer

equipped with a 3.2GHz Intel Core i3 processor with 8Gb
of RAM are given in Table 1. In general, our methods (s3,
s4 and s5) are 500–1000 times faster than the sampling
method (s2). This is because we construct only one rec-
onciliation graph while the sampling method constructs
1000 of them. Compared to the region-based methods
of [10] (s6 and s7), we are still faster (∼20 times), even
though we use a dated species tree rather than an undated
one as done in [10] (usually, using the dated version of a
species tree increases the complexity ofO(V (S))). Indeed,
because of the reconciliation graph, we do not need to
compute and store the list of events associated with each
mapping as done in [10]. We can count the number of
reconciliations as well as enumerating the events and
compute themedian reconciliation just by traversals of the
graph.

Conclusion
In a parsimony framework, the choice of the costs for
basic events may have a strong impact on the set of pre-
dicted events. In this paper, we provide a new tool dealing
with this problem, which both improves the accuracy
of D,T,L events predicted by parsimonious reconcilia-
tion methods and scales up to handle the larger set of
gene trees used in phylogenomic studies nowadays. This
work combines the complementary ideas of the meth-
ods presented in [8] and [10] into new strategies that
combine their strengths: speed and reliability. To deal
with the inherent uncertainty of the input cost vectors,
two approaches have been proposed and tested: explicitly
providing an input cost range (strategy s3), or consider-
ing non-optimal reconciliations up to a fixed over-cost
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Table 1 Average, minimum and maximum running times – given in seconds and for a computer equipped of a 3.2 GHz Intel Core i3
processor with 8 Gb of RAM – for the 7 strategies described in the Experiments Section

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6 Strategy 7

Average 0.273 305 0.541 0.291 0.331 10.11 10.5

Min 0.086 20.5 0.132 0.09 0.089 2.61 2.35

Max 0.725 3826.3 1.53 0.886 0.963 56.75 91.15

(strategies s4 and s5). Our approaches and models are
flexible so that one can choose the strategy that fits the
data better: considering either only parsimonious rec-
onciliations or nearly optimal ones, choosing acceptable
cost ranges, the over-cost, and even providing some-user
defined additional constraints to filter the event count
vectors list (see strategy s5).
Our tests on simulated data demonstrate that mod-

els using dated (or partially dated) species trees seem
to provide more accurate event predictions than those
using undated species trees. Moreover, in our experi-
ments, usingmedian reconciliations is more effective than
picking a random one, and better than taking the list of
all events, confirming the findings of [8]. Furthermore,
our approaches are faster and more accurate than both
methods in [8] and [10]. Finally, this work emphasizes the
benefits of using the reconciliation graph to manage the
space of reconciliations efficiently. Many other tools could
be developed by using this graph, for example calculat-
ing the reconciliation whose average of the supports is
maximized.
This work confirms that erroneously inferred events

can be, at least in part, filtered out. This filtering
could probably be further improved by also taking
into account reconciliations of close alternative gene
tree/species tree topologies. Yet, taking such alternative
reconciliations into account is challenging, as the rec-
onciliation graph solution [7], proposed to efficiently
handle alternative reconciliations, was not designed to
handle reconciliations between different gene/species
trees.

Nomenclature
α(u, x): the restriction reconciliation of α onGu that maps
u to x;
α�(u): the last element of α(u);
αi(u): the ith element of α(u);
C: Contemporary event;
DL: Duplication Loss;
D: Duplication event;
L: Loss event;
SL: Speciation Loss event;
S: Speciation event;
TL: Transfer Loss event;
T: Transfer event;
C(u, x): the set of event count vectors of all reconciliations

between u and x of the considered problem;
⊕: vector addition;
⊕p: addition of two lists of vectors, the resulting list must
be Pareto-optimal;
⊗: vector dot product;
∅: No event;
cost(α, c): the cost of α with respect to the cost vector c;
costm(u, x, c): the minimum cost over all reconciliations
between u and x with respect to the cost vector c;
f (e): the support of the event e;
Li: the ith element of the list L;
mG: the first element of the mapping node m, which is a
node of the gene tree G;
mv: the third element of the mapping nodem, which is an
event count vector;
mS′ : the second element of the mapping node m, which is
a node of S′;
postliste(u, x): the set of possible next mappings of (u,x)
associated with the event e;
u1: the first child of u;
u2: the second child of u;
up: the parent of u;
Vt(T): the set of nodes of the tree T having time t;
c: the cost vector (δ, τ , λ);
r(c): the ratio cost vector (λ/τ , δ/τ , λ/δ) of the cost vector
c = (δ, τ , λ);
rM: the upper bound of the ratio cost vector;
rm: the lower bound of the ratio cost vector;
v(e): the event count vector of the event e;
v(α): the event count vector of the reconciliation α;
costm(G, S′, c): the cost of the most parsimonious rec-
onciliation between S′ and G with respect to the cost
vector c;
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Additional file 1: TheAdditional file 1 contains the proof of Theorem1,
the graph construction algorithm, the proof of Theorem 2, and some
supplementary experiment descriptions and results. (PDF 1014 kb)
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